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Identification of epitopes which invokes strong humoral responses is an essential issue in the field of immunology. Various
computational methods that have been developed based on the antigen structures and themimotopes these years narrow the search
for experimental validation. These methods can be divided into two categories: antigen structure-based methods and mimotope-
based methods. Though new methods of the two kinds have been proposed in these years, they cannot maintain a high degree of
satisfaction in various circumstances. In this paper, we proposed a new conformational B-cell epitope prediction method based on
antigen preprocessing andmimotopes analysis.Themethod classifies the antigen surface residues into “epitopes” and “nonepitopes”
by six epitope propensity scales, removing the “nonepitopes” and using the preprocessed antigen for epitope prediction based on
mimotope sequences. The proposed method gives out the mean F score of 0.42 on the testing dataset. When compared with other
publicly available servers by using the testing dataset, the new method yields better performance. The results demonstrate the
proposed method is competent for the conformational B-cell epitope prediction.

1. Introduction

In humoral immunization, a pathogenic antigen is recog-
nized by an antibody or B-cell receptor (BCR) through some
regions on the surface of the antigen that is commonly
known as the B-cell epitope. Since humoral responses are
induced by epitopes on the surface of antigen, rather than
the whole antigen, it is important to locate these epitopes on
antigen for the purpose of effective vaccine design. The most
reliable methods for identification of an epitope are X-ray
crystallography and NMR techniques, but they are time con-
suming and expensive. Candidate epitopes that are selected
by computational methods prior to laboratory experiments
can lead to both significantly reducing the experimental cost
and substantially accelerating the identifying process [1].

A B-cell epitope can be categorized into two types by its
spatial structure: liner epitope and conformational epitope.

A liner epitope is composed of residues that are sequentially
consecutive, whereas a conformational epitope consists of
sequential segments that are brought together in spatial
proximity when the corresponding antigen is folded. It has
been reported that more than 90% of B-cell epitopes are
discontinuous B-cell epitopes [2]; therefore, the prediction of
conformational epitope is more significant.

Conformational epitope prediction methods can be
divided into two categories: structure-based prediction and
mimotope-based prediction. Structure-based prediction is
through the 3D structure features of antigen and epitope
propensity scales, such as geometric attributes and specific
physicochemical properties. Mimotope-based prediction is
a combinatorial method which requires both mimotope
sequences and the 3D structure of antigen as input. These
kinds of methods are essentially mapping mimotopes back
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to the surface of a source antigen to locate the best alignment
sequences and predict possible epitopic regions.

In these years, many mimotope-based conformational
B-cell prediction methods have been proposed, such as
MEPS [3], 3DEX [4], MIMOX [5], Mapitope [6, 7],
Sitelight [8], EpiSearch [9], PepSurf [10], Pep-3D-Search
[11], and MimoPro [12]. These methods can be classified
into two categories: sequence-sequence alignment methods
and sequence-structure alignment methods [13]. Sequence-
sequence alignment methods predict epitopes according the
alignment of mimotope sequences and the antigen sequence,
while sequence-structure alignment methods predict epi-
topes according to the alignment of mimotope sequences
and the antigen structure. Sequence-structure alignment
methods can be further divided into 4 kinds by the core
idea of the alignment: motif-based methods, pairs-based
methods, patch-based methods, and graph-based methods.

The latest mimotope-based conformational B-cell pre-
diction method is MimoPro which was proposed by our
team in 2011. MimoPro employs the idea of patch-based
and graph-based searching. The core idea of MimoPro is
a searching algorithm operated on a series of overlapping
patches on the surface of antigen. These patches are then
transformed to a number of graphs using an adaptable
distance threshold (ADT) regulated by compactness factor
(CF), a novel parameter proposed in the method. Then
on each single patch, a complete search is conducted to
guarantee the best alignment for each mimotope sequence.
Dynamic programming and branch-bound methods are also
adopted to both avoid repetition in searching and further
narrow the search space.

Though the sensitivity of MimoPro is the highest so
far, the specificity is not improved compared with other
methods. In this paper, we present a new conformational B-
cell epitope prediction method by antigen preprocessing and
MimoPro searching. The method first absorbed the idea of
both structure-based method and mimotope-based method.
The performance of this method has been tested on 18 test
cases which are relative large and complete datasets from
the benchmark of MimoDB 2.0 [14]. The results showed
the specificity of new method improved a lot. Moreover,
it achieved the highest 𝐹 score among all the available
mimotope-based B-cell epitope prediction methods.

2. Materials and Method

2.1. Definitions. The definitions of an epitope inferred from
the 3D structure of Ag-Ab complex are mainly based on
either ASA or the contact area between residues of antigen
and antibody. In the first state, an epitope is defined as the
surface residue of antigen with ASA decreased more than a
given threshold upon binding with the antibody, and 1 Å2

is frequently used. There are some tools to calculate ASA,
and the usually used tool is NACCESS [15] or Surface Racer
program [16]. In the second state, an epitope is defined as
the residue of antigen which has a contact area above a
given threshold upon interaction with the antibody, while
the value 4 Å is frequently used. Among these two ways of

definition the second one is generally accepted and applied.
Ponomarenko tested in his paper that choosing which way to
define epitopemay not influence the results [17]. In this paper
we define epitopes by the first way. In addition, we consider
an amino acid residue as a surface residue if the RSA (relative
accessible surface area) of its side chain is greater than 5%
with 1.4 Å probe radius.

2.2. Datasets. The training datasets are from the repre-
sentative Ag-Ab complexes in Ponomarenko and Bourne,
the protein docking Benchmark 2.0 [18], and the testing
datasets in the relevant papers [19–25]. We selected all Ag-
Ab complexes and excluded the redundant structures and
also excluded the ones which have more than one antigen
chain. The 3D structure of the complexes is obtained from
the PDB [26]. Finally, 150 Ag-Ab complexes with only one
antigen chain were obtained as the training dataset. This
dataset is used for machine learning in the step of antigen
preprocessing. The training datasets can be obtained upon
request.

The testing dataset is from the Mimobench of MimoDB.
MimoDB is an information portal to biopanning results of
random libraries [27]. It is the latest and largest database
for mimotopes. In version 2.0, it offers a benchmark for
mimotope-based site mapping. We compile the testing
datasets as our previous work [28], and at last 18 cases which
have only one mimotope set for one complex structure and
the number of antigen amino acids which is larger than 67
from this Mimobench were selected. In 18 testing cases there
are 13 antigen-antibody complexes and 5 protein-protein
interactions. The testing dataset is listed in Table 1. We use
the testing datasets for verifying the effectiveness of the
new method and comparing the prediction performance of
different methods.

2.3. Algorithm. The algorithm flowchart of this method was
shown in Figure 1. Input module is the start of a request
submitted by user. Output module is the prediction results of
the new method. The middle part is the flow of the method.

As shown in Figure 1, Figure 1(a) is the module of antigen
processing, and Figure 1(b) is the module of mimotope-
based epitope prediction which employs the core idea of our
MimoPro.

2.3.1. Antigen Processing. In 2011, we proposed MimoPro
which is a novel mimotope-based conformational B-cell pre-
diction method. Compared with other available mimotope-
based methods, MimoPro achieved a better performance in
sensitivity and precision; however, the specificity is lower
than other methods. Since a good method should have a
high score in both sensitivity and specificity, we analyzed
the algorithm of MimoPro deeply and found that MimoPro
predicted more candidate epitope residues, including true
epitope residues and nonepitope residues. Hence, in this
paper we developed MimoPro with the step of antigen
preprocessing in which both reduce the number of predicted
epitope residues which are not indeed the true ones and
increasing the searching speed of MimoPro.
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Table 1: The detailed information of the testing dataset.

PDB ID Template chain Target Mimotope size Reference
Antigen-antibody complex

3IU3 I Basiliximab 6 ∗ 9 17440057
1YY9 A Cetuximab 4 ∗ 12 16288119
1N8Z C Herceptin 5 ∗ 12 15210798
2ADF A 82D6A3, IgG 3 ∗ 8 12855711
1IQD C Anti-coagulation factor VIII monoclonal antibody BO2C11 27 ∗ 12 12676786
2GHW A 80R 18 ∗ 15 16630634
2NY7 G B12 17 ∗ 14, 1 ∗ 10, 1 ∗ 13 16940148
1G9M G Anti-gp120 monoclonal antibody 17b 1 ∗ 10, 10 ∗ 12 14596802
1E6J P 13b5 14 ∗ 14, 2 ∗ 7 14596802
1ZTX E E16 3 ∗ 13, 19 ∗ 14 18760481
2AJF A SARS-coronavirus spike protein 18 ∗ 15 1116480
1BJ1 W rhuMAb 36 ∗ 6, 3 ∗ 5, 2 ∗ 4 10543973
1JRH I A6, IgG1 59 ∗ 5 11123892

Protein-protein
1AVZ B Fyn 8 ∗ 10,10 ∗ 12 7988556
1HX1 B Heat shock cognate 71 kDa protein 8 ∗ 15 7649995
2GSK A Protein TONB 6 ∗ 9 16414071
3EZE B Protein (phosphotransferase system, HPR) 11 ∗ 6 10048929
1II4 A Fibroblast growth factor receptor 2 30 ∗ 7 12032665

(b)
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Figure 1: The algorithm flowchart of the method.

The implementation of antigen processing includes 3
steps: feature extraction, amino acids classification, and
residues deletion.

Firstly, the method extracts 6 epitope related features
as EPCES: residue epitope propensity, conservation score,
side chain energy score, contact number, surface planarity
score, and secondary structure composition. The detailed
calculation of these six features is described in EPCES [29].

Secondly, the amino acids of antigen surface were
classified into “epitope residue” and “nonepitope residues”
according to the 6 features. The common machine learning
methods can better handle the problemswith nearly the same
number of positive samples and negative samples. In fact, the

real dataset in this study is imbalanced, and the instances
from negative class take the majority of the data. There
are commonly two approaches to deal with the imbalanced
datasets: one is adding samples to minority class or assigning
a highweight to the samples tominority class, and the other is
downsizing the majority class. In the training dataset of this
work, the rate of nonepitopes versus epitopes is about 8 : 1.
To ensure the effectiveness of prediction, we deal with the
imbalance data through the following ways.

(1) Random sample from the negative data of the training
dataset was executed tomake the ratio of positive data
and negative data 1 : 1 for 𝑛 times; then there would be
𝑛 new subsets of the training datasets.
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(2) Random forest model was built on each subset. Then
for a new instance, 𝑛 random forest models will give 𝑛
results and the voting mechanism is utilized to make
the final decision.

Random forest and data bootstrapping are implemented
by Weka [30]. The purpose of antigen preprocessing is
removing some real nonepitope residues to increase the
prediction performance of the whole method. On the basis of
this idea, we tested several combinations of parameters, and
the parameters (𝐼 = 5, 𝐾 = 0, 𝑆 = 1) are adopted finally.

Lastly, “nonepitope” residues obtained in the above step
were removed in the surface of antigen, and this preprocessed
antigen would be taken as the input of epitope prediction
module.

2.3.2. Epitope Prediction. We use our prediction algorithm
which is known as MimoPro for mimotopes analysis when
the preprocessing of antigen finished. As shown in Figure 1,
the core algorithm includes five steps: dividing antigen sur-
face into overlapped patches, constructing undirected graph
on each patch, generating extreme value distribution for each
mimotope sequence, aligning mimotopes on each patch and
scoring patch, and determining candidate epitope residues in
the highest score patch.

(1) As usually used, the number of amino acids in an
antigen surface patch of given size is constant and
may contain fixed number of amino acids in epitope
and nonepitope. However, this may take an obvious
defect. Different protein has different structures; even
the same protein may have different domains. The
space compactness of these regions has big diversity;
hence an efficient patch should be “big” enough to
contain the meaningful edges in sparse region and
also be “small” enough to prune the false edges in
compact region. MimoPro solves this problem; it
generates overlapped patches with variable number of
amino acids in it according to a compactness factor
(CF). The presence of CF also makes next searching
step simpler and faster.

(2) For every antigen surface patch, we take each residue
as a vertex and the useful connections which were
determined in the above step were taken as edges to
construct surface undirected graph.

(3) Then the method needs to find the best matched path
for each mimotope sequence in each surface patch
graph. Since these pathsmay have different lengths, to
assess the similarity between a path and a mimotope
sequence and to give consensus scores to these paths
with different lengths, MimoPro employs a statistical
scoring norm called 𝑃 value which is derived from
the extreme value distribution, and the parameters are
fitted from the empirical distribution [31].

(4) Dynamic programming and branch and bound
method were employed in the step of aligning mimo-
topes on each patch. Dynamic programming method
ensures the searching is complete; and the branch and

boundmethod ensures the searching is efficient.Then
after this step, every patchwas scored according to the
matching paths.Then the residues in the highest score
patch are retained as the candidate epitopes.

The detail of the algorithm was described in our previous
work [12]. Then the output of this module was taken as the
prediction results of the whole method.

2.3.3. Performance Measures. The performance of the pre-
diction methods is scored by the commonly used measures:
sensitivity (Sen), specificity (Spe), precision (PPV),Matthews
correlation coefficient (MCC), accuracy (ACC), and 𝐹-
measure. The measures are computed as follows:

Sen (sensitivity or true positive rate) = TP
TP + FN

,

Spe (specificity) = TN
FP + TN

.

PPV (positive predictive value or precision) = TP
TP + FP

,

MCC (Matthews correlation coefficient)

=
(TP × TN) − (FP × FN)

√(TP + FP) (TP + TN) (TN + FP) (TN + FN)
,

ACC (accuracy) = |TP| + |TN|
|TP| + |TN| + |FP| + |FN|

,

𝐹 (𝐹-measure) = 2 × PPV × Sen
PPV + Sen

,

(1)

where TP is the number of predicted epitope residues proven
to be the true epitope residues. FP is the number of predicted
epitope residues proven not to be the true epitope residues.
TN is the predicted nonepitope residues proven not to be
the true epitope residues. FN is the number of predicted
nonepitope residues proven to be the true epitope residues. In
this paper, we took the number of antigen surface amino acids
as TP + FP + FN + TN for calculating the above performance
measures.

3. Results and Discussion

3.1. Performance of the Method Based on Antigen Processing.
The results on the testing dataset of this method are shown
in Table 2. Sensitivity, specificity, PPV, MCC, ACC, and 𝐹
scores were listed. To give a comparison with MimoPro, we
also tested MimoPro and listed the performance measures
together with the new method.

As seen from Table 2, the number of predicted epitope
of this method was less than MimoPro for most cases, and
it leads to the improvement of the specificity of the new
method. The average specificity score on testing dataset has
reached 81% which is higher than MimoPro. The average
sensitivity score of this method decreased slightly, and the
reason is that there is no validated feature or feature combi-
nation that can distinguish epitope residues from nonepitope
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Table 2: The prediction results on testing datasets.

PDB ID MimoPro/this method
True epitopes Predicted epitope Sen Spe PPV MCC (Sen + Spe)/2 ACC 𝐹

Antigen-antibody interactions
3IU3 I 23 34/32 0.61/0.61 0.75/0.78 0.41/0.44 0.18/0.19 0.68/0.69 0.72/0.74 0.49/0.51
1YY9 A 15 43/18 0.00/0.00 0.91/0.96 0.00/0.00 −0.01/−0.01 0.45/0.48 0.88/0.93 0.00/0.00
1N8Z C 20 38/36 0.90/0.85 0.95/0.95 0.47/0.47 0.14/0.13 0.93/0.90 0.95/0.95 0.62/0.61
2ADF A 15 24/20 0.87/0.87 0.90/0.94 0.54/0.65 0.23/0.25 0.89/0.90 0.90/0.93 0.67/0.74
1IQD C 16 40/37 0.56/0.50 0.68/0.70 0.23/0.22 0.08/0.07 0.62/0/60 0.66/0.67 0.32/0.30
2GHW A 29 38/37 0.48/0.48 0.80/0.81 0.37/0.38 0.13/0.14 0.64/0.64 0.73/0.74 0.42/0.42
2NY7 G 25 30/29 0.12/0.12 0.87/0.87 0.10/0.10 0.00/0.00 0.49/0.50 0.78/0.79 0.11/0.11
1G9M G 15 47/46 0.73/0.73 0.83/0.84 0.23/0.24 0.10/0.10 0.78/0.79 0.83/0.83 0.35/0.36
1E6J P 11 45/43 0.73/0.73 0.77/0.79 0.18/0.19 0.08/0.08 0.75/0.76 0.77/0.78 0.29/0.30
1ZTX E 14 39/37 0.10/0.10 0.63/0.66 0.36/0.38 0.24/0.24 0.81/0.83 0.69/0.72 0.53/0.55
2AJF A 20 43/39 0.10/0.10 0.90/0.91 0.05/0.05 0.00/0.00 0.50/0.50 0.86/0.87 0.06/0.07
1BJ1 W 19 32/32 0.68/0.68 0.72/0.72 0.41/0.41 0.19/0.19 0.70/0.70 0.72/0.72 0.51/0.51
1JRH I 21 31/30 0.95/0.90 0.82/0.82 0.65/0.63 0.38/0.36 0.88/0.86 0.85/0.84 0.77/0.75

Protein-protein interactions
1AVZ B 16 32/31 0.69/0.69 0.71/0.72 0.34/0.35 0.16/0.17 0.70/0.70 0.70/0.72 0.46/0.47
1HX1 B 20 38/38 0.75/0.75 0.69/0.69 0.39/0.39 0.20/0.20 0.72/0.72 0.70/0.70 0.52/0.52
2GSK A 33 40/37 0.21/0.21 0.93/0.93 0.18/0.19 0.04/0.04 0.57/0.57 0.88/0.88 0.19/0.20
3EZE B 20 27/26 0.75/0.70 0.74/0.74 0.56/0.54 0.29/0.27 0.75/0.72 0.75/0.73 0.64/0.61
1II4 A 30 41/39 0.60/0.60 0.69/0.72 0.44/0.46 0.18/0.19 0.64/0.66 0.66/0.68 0.51/0.52

Average 0.60/0.58 0.79/0.81 0.33/0.34 0.14/0.15 0.70/0.70 0.78/0.79 0.41/0.43

residues completely so far. That is, the removed residues
which we took as “nonepitope” residues in the step of antigen
preprocessingmay containmore or less true epitope residues.
Taking vascular endothelial growth factor (PDB id: 1BJ1)
as an example, the native epitope includes two consecutive
segments (I80M81 R82 I83K84, and H86 Q87 G88 Q89
H90 I91 G92 E93M94) and five isolated amino acids (F17
Y21 Y45K48 Q79). In the step of antigen preprocessing, 15
residues were removed (20V 27H 28P 40P 42E 47F 56R 58G
67E 68C 71T 78M 82R 98Q 100N), including R82, which is
the true epitope residue. While predicted only by MimoPro,
32 candidate epitope residues (V33 D34 F36 Q37 E38 Y39
P40 D41 E42 I43 E44 Y45 I46 F47K48 P49 S50 C51M78M81
R82 I83K84 P85 Q87 G88 Q89 H90 G92 E93M94 S95) were
predicted which covers the residue R82. The new method
predicted one less true epitope residue thanMimoPro.Hence,
the sensitivity of the new method is slightly lower than
MimoPro.

However, sensitivity and specificity are not complete for
evaluating the performance of one method. The PPV have
more predictive validity. As seen from Table 2, the average
PPV values of thismethodwere higher than that ofMimoPro,
which not only illustrated that the overall performance of this
method is superior to MimoPro but also indicated that the
improvement of this study is effective.

Further, we draw Figure 2 to give directly relations
between sensitivity and 1− specificity of this method. From
Figure 2, we can see that for most test cases this method can
precisely localize epitope regions. The predicted results of
the method are totally better than random prediction. For
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Figure 2: Sensitivity versus 1− specificity scores of the method on
testing dataset.

3BT1 and 2HYM, the two points on the 𝑥-axis, the method
displayed no predictive ability. The main reason is that the
second step of the method predicts no epitope residues
according to mapping the mimotopes to the surface of the
antigen.

3.2. Performance of This Method Based on RF and SVM. We
use RF from Weka for classifying antigen surface residues
in this work. To answer whether different machine learning
method would influence the prediction performance of the
method, we also employed SVM for classifying the surface
amino acids of antigen, and latest version of LibSVM [30]
was exploited in this work. For both methods, we tried lots
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Table 3: The prediction performance of SVM and RF with different parameters.

Different parameters Sen Spe PPV MCC (Sen + Spe)/2 ACC 𝐹

RF
𝐼 = 5, 𝐾 = 0, 𝑆 = 1 0.58 0.81 0.34 0.15 0.70 0.79 0.43
𝐼 = 10, 𝐾 = 0, 𝑆 = 1 0.56 0.83 0.34 0.14 0.69 0.80 0.42
𝐼 = 15, 𝐾 = 0, 𝑆 = 1 0.53 0.83 0.34 0.14 0.68 0.80 0.40

LibSVM
Blocked 0.58 0.80 0.32 0.14 0.69 0.79 0.42
Weight 0.57 0.81 0.33 0.14 0.69 0.79 0.41
Blocked and weight 0.58 0.81 0.33 0.14 0.69 0.79 0.42
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Figure 4: The PPV of each method on the testing dataset.

of combinations of parameters. Several better results of the
two methods are listed in Table 3.

For RF, we tested lots of combinations of parameters.
Table 3 listed three results with top three PPV scores. For
SVM, we deal with this imbalance through three ways:
partition of the training data into blocks as introduced by
Fu et al. [32], setting a weight value for positive instances,
and both. In addition, binary-class cross validationwith AUC
was used. Table 3 gave the best results for each solution.
As seen from Table 3, no matter if we use RF or SVM for
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Figure 5: The ACC of each method on the testing dataset.

antigen preprocessing, the performance of the new method
performed better than MimoPro whose results have been
listed in Table 2. Moreover, we can see that the predicted
ability of RF on the testing dataset was better than SVM, and
this is the reason why we chose RF in the module of antigen
preprocessing. Then compared with the different parameters
combination of RF, we chose 𝐼 = 5, 𝐾 = 0, and 𝑆 = 1
which gave the highest values of PPV for RF in the antigen
preprocessing.

3.3. Comparison with Other Methods. In recent years, there
are several mimotope-based methods that have been pro-
posed to predict conformational B-cell epitopes. In this work,
we compared the new method with three other available
mimotope-based conformational B-cell epitope prediction
methods: PepSurf, EpiSearch, and Pep-3D-Search. These
methods were tested in April of 2014, and the default
parameters were adopted for eachmethod. Figures 3, 4, 5, and
6 give the sensitivity, PPV, ACC, and 𝐹 of eachmethod on the
testing dataset. 1ZTX, 1JRH, and 1WLP have no prediction
results by EpiSearch due to the restriction of the method that
the number of mimotope sequences cannot be larger than 30.

Further, we calculate the average values of these perfor-
mance measures using the testing dataset for each method,
respectively. Table 4 gives the overall performance for each
method. As shown in Table 4, the sensitivity of our method
achieves 0.44 which is the same as the Pep-3D-Search and the
highest among the 4methods.The specificity is slightly lower
than the EpiSearch which has the best specificity measure of
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Table 4: The overall performance of the compared methods on testing dataset.

Methods Sen Spe PPV MCC (Sen + Spe)/2 ACC 𝐹

Pep-3D-Search 0.48 0.78 0.29 0.08 0.63 0.75 0.35
EpiSearch 0.31 0.89 0.28 0.09 0.60 0.70 0.19
PepSurf 0.36 0.86 0.26 0.07 0.61 0.79 0.31
This method 0.58 0.81 0.33 0.14 0.69 0.79 0.42
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Figure 6: The 𝐹 of each method on the testing dataset.

0.83 on this testing dataset. However, the new method was
rated the best with a PPV of 0.33 which is improved a lot than
the other methods.

In general, our new method demonstrates overall
higher prediction accuracy than MimoPro and other three
mimotope-based conformational B-cell epitope prediction
methods on the testing dataset.

4. Conclusions

B-cell epitope prediction is important for vaccine design,
development of diagnostic reagents, and interpretation of the
antigen-antibody interactions on a molecular level. Localiz-
ing epitopes by experimental methods is expensive in terms
of time, cost, and effort; therefore, computational methods
feature for its low cost and high speed was employed to
predict B-cell epitopes. In these years, lots of computational
methods have been proposed for epitope prediction. These
methods predict epitopes either by antigen structure or by
mapping mimotopes to the original antigen surface. In this
study, we proposed a new epitope prediction method based
on antigen preprocessing by six epitope propensity scales
and MimoPro searching. The performance of the method
is superior to random prediction. Besides specificity, PPV
measure improved a lot compared toMimoPro on the testing
datasets. Compared with Pep-3D-Search, EpiSearch, and
PepSurf, three other mimotope-based tools, testing results
from the new method have shown that in most cases, it
performed equal to or better than the what three methods
did. On average from 18 test cases, performance of the
new method indicated by sensitivity, PPV, and 𝐹 value is
better than that of Pep-3D-Search, EpiSearch, and PepSurf
in epitope prediction. This implies that the new method

is a viable alternative to, if not the preferred choice, all
of PepSurf, Pep-3D-Search, EpiSearch, and MimoPro for
epitope prediction in the same kind.

However, the new method is the first attempt to combine
the idea of structure-based method and mimotope-based
method, and themethod is an improvement of ourMimoPro.
As seen from the results that for extremely difficult cases
where amino acids forming the epitope include both consec-
utive segments and isolated amino acids, such as 3BT1 and
2HYM, the method failed in producing any useful mappings.
This indicatedwhere ourmethod should be further improved
although outcomes from PepSurf, EpiSearch, and Pep-3D-
Search for the two test cases were not good either. Potentially
this could be achieved through the following aspects in
future. Firstly, selecting effective features or feature combi-
nation may potentially improve the performance of antigen
processing. Secondly, to improve the performance of map-
ping mimotopes to the antigen surface, a more appropriate
substitutionmatrix according to a specific application should
be adopted so that graph rating is more meaningful to such
application. In addition, intelligent searching algorithmcould
be modified so that the highly rated patches are searched first
to make searching more efficient.
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