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Kacper Łoś * and Napoleon Waszkiewicz

����������
�������
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Abstract: Anxiety disorders are one of the most commonly reported disorders in psychiatry, causing a
high medical and socio-economic burden. Recently, there has been a soaring interest in the biological
basis of anxiety disorders, which is reflected in an increasing number of articles related to the topic.
Due to the ambiguity of the diagnosis and a large number of underdiagnosed patients, researchers are
looking for laboratory tests that could facilitate the diagnosis of anxiety disorders in clinical practice
and would allow for the earliest possible implementation of appropriate treatment. Such potential
biomarkers may also be useable in monitoring the efficacy of pharmacological therapy for anxiety
disorders. Therefore this article reviews the literature of potential biomarkers such as components of
saliva, peripheral blood, cerebrospinal fluid (CSF), and neuroimaging studies. There are promising
publications in the literature that can be useful. The most valuable and promising markers of saliva
are cortisol, lysozyme, and α-amylase (sAA). In the blood, in turn, we can distinguish serotonin,
brain-derived serum neurotrophic factor (BDNF), cortisol, and microRNA. Structural changes in the
amygdala and hippocampus are promising neuroimaging markers, while in CSF, potential markers
include oxytocin and 5-Hydroxyindoleacetic acid (5-HIAA). Unfortunately, research in the field of
biomarkers is hampered by insufficient knowledge about the etiopathogenesis of anxiety disorders,
the significant heterogeneity of anxiety disorders, frequent comorbidities, and low specificity of
biomarkers. The development of appropriate biomarker panels and their assessment using new
approaches may have the prospective to overcome the above-mentioned obstacles.
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1. Introduction

Anxiety disorders are among the most commonly reported mental disorders [1,2].
The literature review by Remes et al. on the epidemiology of anxiety disorders prevalence
reported a worldwide spread of 3.8% to 25% [1]. Every year, in the European Union,
at least 60 million people suffer from these conditions [3]. Due to the high incidence of
these mental disorders, many countries are struggling with the high cost of treatment [1,4].
The annual cost in the United States is estimated at $42.3 billion [5]. Stress and anxiety
cause physiological changes, in which hormone levels are altered by the activation of the
hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS),
which are especially noticeable in chronic anxiety symptoms [6,7]. The moment when
the level of stress becomes disturbed is a very individual factor influenced by various
circumstances [8]. It is associated with the difficulty in diagnosing and identifying dis-
ease thresholds [2]. Research shows that among the commonly conducted questionnaires,
anxiety disorders are not identified in up to 50% of affected people [9]. Significant under-
diagnosis and difficulties in the treatment of these disorders have been demonstrated over
the years [10]. One of the modern approaches to the issue that will facilitate diagnosis
and allow a better understanding of the disease is the identification of biomarkers that
underlie the pathogenesis of anxiety disorders [10]. Recently there has been a trend to cate-
gorize mental disorders on the basis of objective factors such as biological markers [11–13].
Biomarkers are described as a trait that is accurately measured and assessed as an indicator
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of regular biological processes, pathological processes, or biological responses to therapeu-
tic interventions [12,13]. Researchers have noted that markers could explain the etiology of
mental illness, help to confirm diagnoses, help with the identification of susceptible people,
and determine the severity of patient disease [11,14,15]. Some authors also suggested that
markers could be used to adjust the treatment method to a specific patient’s case and to
monitor their clinical response [11,14,15] presented in (Figure 1)Obviously, the markers
should have a satisfactory level of sensitivity, specificity, and prognostic value to be used
for this purpose [15].
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2. Aim and Methods

In this article, the biomarkers of anxiety disorders that may be helpful in the early
diagnosis of anxiety disorders will be reviewed. In particular will be discussed those
biomarkers that can be tested in saliva, plasma, CSF, and neuroimaging (Figure 2). The
acquired knowledge could result in the improvement of care for patients suffering from
anxiety disorders, speed up their treatment and improve their detection [10,16].
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The literature review was performed using PubMed, Scopus, Google Scholar using
keywords: anxiety disorders, biomarker, saliva, peripheral blood, cerebrospinal fluid,
neuroimaging, and various combinations of these keywords. Valid articles were then
included with the intention of covering the broadest possible range of potential markers
for anxiety disorders.

3. Salivary

The use of saliva in laboratory diagnostics seems to be more and more popular due to
its low cost and non-invasiveness [17–19]. Saliva contains many substances, the concentra-
tion of which exposes the wellness of the whole body, that can be used for easy and rapid
detection of primary pathological symptoms in humans [17,20–23]. Saliva components
can be controlled by specific and sensitive immunological and biochemical techniques,
such as radioimmunoassay (RIA), enzyme immunoassay (ELISA), spectrophotometry, or
chromatography [24]. On the other hand, the composition of saliva can be affected by many
issues, such as circadian rhythm on secretion, age, sex, smoking, diet, and medications [25].
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There are publications in the literature showing a relationship between anxiety and the
level of cortisol, immunoglobulin A, lysozyme, melatonin, alpha-amylase, chromogranin
A, and fibroblast growth factor 2 in saliva [26].

Cortisol is a hormone that activates metabolism, and activates the bodies “fight or
flight” response, and enhances the action of other “stress hormones” such as adrenaline and
noradrenaline [27,28]. Therefore, cortisol is one of the substances that are commonly used
as a stress biomarker [29–32]. Miller et al., in their meta-analysis, confirmed the significance
of cortisol in saliva as a biomarker for acute stress. Among the surveyed people, the authors
of the article showed a decrease in morning salivary cortisol levels along with a decrease in
the intensity of the stressor [33]. However, according to the constantly high level of stress,
the human body is exposed to regularly high levels of cortisol. Consequently, there is a
theory that after prolonged exposure to stress, the HPA axis becomes less sensitive, which
affects exhaustion and consequently a decrease in the release of cortisol by the adrenal
glands [34,35]. This concept has been validated by the results of a study using participants
with long-term anxiety disorders, which had lower cortisol production than in healthy
controls [36]. The use of cortisol in saliva as a potential biomarker of anxiety disorders
requires further research, as a meta-analysis revealed high heterogeneity [26]. The study
found that these results appear to be due to the lack of standardized laboratory kits and
the clinical variety of enrolled participants [37].

Immunoglobulins are proteins that are responsible for specific human immune system
responses. Anxiety disorders can deteriorate the immune system, and therefore the pro-
duction of immunoglobulins is reduced [38]. IgA is a class of antibodies that occurs mainly
in mucous membranes, including the oral mucosa. These antibodies are often the body’s
primary response factor when encountering a pathogen or allergen [38]. Psychological
factors can also alter the concentration of IgA in saliva; for example, a positive mood causes
an increased level, while negative, stressful stimuli result in a decrease [38,39]. Studies
have shown that there is a potent association between perceived stress, anxiety, and low
levels of salivary immunoglobulin A [40].

Lysozyme is a protein that is continuously produced and released by monocytes
and macrophages; therefore, it is commonly circulated in body tissues and secretions,
including saliva. Lysozyme provides saliva antibacterial properties and contributes to
antiviral defense [41,42]. Perera et al. found noticeably lower concentrations of lysozyme
in saliva samples taken from academics prior to an exam, in contrast to the values after the
exam [43], suggesting that salivary lysozyme is useful as a potential stress marker. Other
researchers have also shown a negative association between lysozyme concentration and
exposure to stress [44–46]. However, there is a lack of information on the relationship
between lysozyme concentration in saliva and anxiety disorders.

Melatonin is a derivative of serotonin that modulates sleep phases and impacts sleep
quality [47]. Ito et al. showed that melatonin concentration in saliva during sleep was
correlated with anxiety disorders [48]. Interestingly, in the case of depression, this cor-
relation was much stronger. Moreover, Paul et al. showed a significant reduction in the
level of melatonin in the saliva of soldiers with post-traumatic stress disorder (PTSD) [49].
The results released by scientists seem to be extremely propitious; therefore, it is worth
expanding the scientific research on melatonin because melatonin in saliva could be a
valuable biomarker in the future [50].

Salivary alpha-amylase (sAA) is one of the digestive enzymes found in the oral cavity,
which is responsible for both the hydrolysis of starch and glycogen as well as immuno-
logical function, providing the oral cavity protection against infections [51]. Moreover,
salivary alpha-amylase has also been found to be a marker for response to incentives that
activate the sympathetic system [52]. In response to stress, there is a rapid increase in
the concentration of alpha-amylase in saliva, which could make it a significant biomarker
in the future [53]. Jafari et al. confirmed the usefulness of sAA as a biomarker indicat-
ing its objectivity and reliability in measuring anxiety related to dental treatment [54].
Acute stress activates the axis of the sympathetic nervous system, the adrenal medulla,
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which is reflected both in the level of salivary alpha-amylase and in the concentration of
chromogranin A in saliva [40].

Chromogranin A (CgA) belongs to the group of acid proteins that contain oligosaccha-
ride chains, which are released from the adrenal medulla and sympathetic nerve endings,
which can be detected in saliva samples [55,56]. A noteworthy increase in the absorption of
CgA was found in the saliva of animals that were exposed to a stressful situation. Salivary
CgA has been suggested by many researchers as a promising, sensitive biomarker in saliva
for psychological stress in patients [57–63]. On the other hand, an important advantage
of CgA determination in saliva is the independence of levels from the time of day, which
makes this biomarker very promising [58].

Fibroblast Growth Factor 2 (FGF-2) is a mitogen for different kinds of cells found in
saliva that is involved in physiological functions related to stress regulation and neurore-
generation [64,65]. During studies on rats, researchers proved that FGF-2 is a promising
biological marker for susceptibility to stress and anxiety disorders [66]. Interestingly, the
expression of fear, measured among a large group of healthy people who were subjected to
stressors, correlated negatively with the level of FGF-2 measured in saliva [67]. Therefore,
FGF-2 could be used as a stress biomarker. Moreover, people with a lower starting point of
FGF-2 due to stress exposure could have psychological difficulties in coping with stress
and, as a result, be more prone to anxiety disorders [65].

4. Peripheral Blood

Peripheral blood assessment is the most commonly used clinical test for detecting
many diseases and is often part of complete body function assessments. Measurement
of peripheral serotonergic parameters related to 5-hydroxytryptamine (5-HT, serotonin)
such as whole blood serotonin, platelet serotonin transporters, and platelets inositol 1,4,5-
trisphosphate (IP3) have been identified as clinical predictors of obsessive-compulsive
disorder (OCD) [29]. Delorme et al. reported that a higher concentration of serotonin in
whole blood was a factor that may predict better improvement in patients with OCD [68].
So far, studies related to biomarkers have shown decreased serotonin binding by platelets
in patients with generalized anxiety disorders (GADs) [69], but unchanged 5-HT binding
in the lymphocytes of these patients compared to controls [70].

Platelet markers such as mean platelet volume (MPV) and platelet count (PLT) reflect
central serotonergic functions and are thought to reflect the serotonergic functions of the
brain [71]. Ransing et al. suggested that platelet and red blood cells (RBC) markers may
demonstrate to be useful etiological and predictive markers in patients with panic disor-
ders [72]. Interestingly, research data show that stress increases platelet activity, reactivity,
and immunomodulatory capacity [71]. In a 6-month study, it was shown that patients
suffering from panic disorders had an elevated platelet distribution width (PDW) and red
cell distribution width (RDW). However, the clinical utility of these platelet markers is not
yet fully established in psychiatry [71,73,74].

It was also found that lower levels of brain-derived serum neurotrophic factor (BDNF)
occurred in patients with panic disorders, further suggesting that BDNF may contribute
to the therapeutic response in panic disorders [75], which was confirmed by research by
Suliman et al., who confirmed significantly lower levels of brain-derived neurotrophic
factor (BDNF) in the plasma of people suffering from GAD compared to the control group.
In addition, clinically significant improvements were observed with paroxetine treatment
reflecting restoration of BDNF levels, suggesting its potential as a biomarker [76].

Neuropeptide S (NPS) is involved in states related to fear and stress and the accom-
panying neuroendocrine processes [77]. Results from Jüngling et al. confirmed that the
levels of NPS measured in plasma were associated with the severity of anxiety in GAD
and could be considered a candidate marker for the identification of GAD. Moreover, it
has also been associated with other neurochemical processes, including activation of the
HPA axis and modulation of proinflammatory cytokines, neuroendocrine systems related
to anxiety disorders [78–80].
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HPA axis activation studies of panic disorders have used cortisol secretion as an indi-
cator of HPA function through panic attacks and compared patients with panic disorders
(PDs) to a control group [81]. Studies report inconsistent results, although some evidence
points to higher cortisol secretion in people being tested with a PD compared to controls;
other studies have found comparable cortisol levels between these two groups [29,82–85].
As indicated by Bandelow et al. [86], it is not clear whether dysfunction of the HPA axis
is a potential reason for PD or a consequence of constant stress caused by recurrent panic
attacks. However, HPA axis dysregulation can be considered a prognostic biomarker
because higher cortisol secretion predicts worse long-term outcomes in patients with panic
disorders [87,88]. Unfortunately, predictive PD biomarkers are still unclear due to inconsis-
tent results. Social anxiety is characterized by an increased response to cortisol and lower
testosterone levels [89]; Bandelow et al. [82] and Fisher et al. [90] reported that basal cortisol
levels did not predict response to psychological therapy. In contrast, Petrowski et al. [91]
observed evidence of HPA axis hyporeactivity in patients with a social phobia with low
blood cortisol. It has been suggested that this decreased HPA axis reactivity may be related
to the inability to induce adequate hormone release as a direct result of prolonged, repeated
exposure to stress.

Persistent anxiety and the associated chronic stress cause proinflammatory changes
that are directly related to the hypothalamic-pituitary (HPA) axis, thus, increasing the
risk of excessive systemic inflammation [92]. Cross-sectional analyses have shown some
indications for higher levels of IL-6 and TNF-α in people with GAD compared to those
without GAD, although most studies had small sample sizes and did not sufficiently take
into account confounding factors. In addition, decreased levels of adiponectin (polypeptide
hormone produced and secreted into the blood with anti-inflammatory activity) were
observed over time in people with GAD compared to those without GAD [93]. Relevant to
mood and anxiety disorders, inflammatory biomarkers such as inflammatory cytokines and
acute-phase proteins are substantially elevated in a significant proportion of patients with
anxiety disorders and post-traumatic stress disorder (PTSD) [94,95]. Numerous scientific
studies have shown that peripheral inflammation targets brain structures related to mood
disorders and anxiety, which may be related to the effects of cytokines on neurotransmitters
such as monoamines, especially dopamine (DA), as well as glutamate [94]. Considering
the availability of DA, concentrations of phenylalanine and tyrosine can be found in the
peripheral blood and in the cerebrospinal fluid and could serve as indirect biomarkers for
the capacity to synthesize DA [96–98]. Inflammatory biomarkers, such as inflammatory
cytokines and acute-phase proteins, are substantially elevated in a significant proportion
of patients with anxiety disorders and PTSD and may be a causative agent of behavioral
symptoms [94]. It could be explained by the existence of specific biological mediators
between stress and inflammation, including corticotrophin-releasing factor [2]. Another
inflammatory marker, C-reactive protein, has been shown to be significantly higher in
men with anxiety disorders than in men without, even taking into account other disease
factors and lifestyle [99]. In addition, stress and anxiety can cause physiological changes
that are especially strong in chronic anxiety symptoms [100]. Thus, the presence of anxiety,
especially in the long term, can cause a cascade of physiological changes, putting the
individual at risk for general health conditions. Costello et al., in a recent systematic review
and meta-analysis of peripheral proinflammatory cytokines in people with GAD, found
that some cytokines were elevated in people with GAD compared to controls [101]. These
immune factors included the CRP protein [102,103]. Another study measuring peripheral
cytokine levels in a small group of GAD patients showed an increase in plasma levels of
interleukin (IL)-1 and melanocyte-stimulating hormone (α-MSII) but ruled out significant
variability in IL-2 [104]. However, only the CRP data were statistically significant in the
meta-analysis [95].

Accumulating evidence suggests that a significant proportion of patients with anxiety-
related disorders are characterized by low-grade chronic inflammation as measured by
augmented peripheral and central inflammatory cytokines and other mediators of inflam-
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matory and acute phase proteins [105–107]. Blood inflammatory cytokines, e.g., IL-1, IL-6,
and tumor necrosis factor (TNF), their specific receptors, and acute phase reagents such as
C-reactive protein (CRP), were increased in patients with anxiety [107,108].

Berardis et al. focused on the common problem of alexithymia among patients with
OCD which coexists in 30% to 40% of people suffering from this disease [108]. Alexithymia
is a difficulty in recognizing and managing emotions, which is associated with an increased
risk of suicide among these patients. Researchers confirmed increased suicide ideations
in a group of 79 patients suffering from OCD, which, interestingly, was associated with
lower levels of high-density lipoprotein cholesterol (HDL-C) measured in the serum. This
is probably due to the fact that patients suffering from anxiety disorders have an increased
level of oxidative stress, which directly affects the oxidation (peroxidation) of lipids [109].
What is more, studies on 70 people suffering from GAD with alexithymia disorder also
confirmed dysregulated cholesterol levels; in addition, researchers found variability in CRP
levels among these patients, confirmed by the elevated level of inflammatory factors in the
serum of people suffering from anxiety disorders [110]. Research on patients suffering from
PTSD with accompanying alexithymia is also extremely interesting. Although there was a
greater level of difficulty in recognizing feelings and an increase in suicidal ideation among
people with PTSD, which explains the accompanying alexithymia, there was no correlation
observed with the level of homocysteine measured in the serum of these patients [111].
The above relationships indicate a promising direction for future researches.

MicroRNAs (miRNAs) are regulators of gene expression that play an important role
in neuronal development, in particular in the formation and shaping of synapses. Gene
expression, in turn, is directly related to the neurobiological system that underlies stress
and anxiety management [112]. Incorrect expression of microRNAs has been implicated
in a wide variety of fear and anxiety disorders. It has also been shown that experimental
regulation of potential microRNAs in the nervous system during anxiety in animals can
directly influence anxiety-related behavior. Murphy et el. found individual microRNAs
that were associated with the regulation of anxiety, including miR-15a, miR-17-92, miR-34,
miR-101, miR-124, miR-135, and miR-155 [113]. Moreover, it has been found that both drug
therapy and non-pharmacological intervention can influence the regulation of microRNAs
in specific regions of the brain. This is particularly important as it offers particular hope for
deepening our understanding of the underlying mechanisms of anxiety disorders as well
as opens the door for new treatment strategies in the future.

Due to the relatively simple method of sampling, blood seems to be a rational source
of metabolic measurements. However, because of the existence of the blood-brain barrier,
drawing conclusions from the neurochemical composition of plasma about the processes
taking place in the brain is not always straightforward [114]. The prevalence of anxiety
disorders and the small amount of research indicates the need for further investigations of
such potentially valuable approaches [115].

5. Cerebrospinal Fluid

Cerebrospinal fluid (CSF) is among the potential body fluids in which biomarkers
may be detected. The CSF study has brought significant benefits in understanding the
pathophysiology of brain disorders [116]. However, it should be taken into account that
lumbar puncture is an invasive procedure, and the components of the cerebrospinal fluid
do not accurately reflect the neurochemistry of the cells in the brain [117]. Therefore, this
procedure is not performed very often for psychiatric disorders, and most of the data
collected concerns affective or psychotic disorders, but not anxiety disorders [118].

5-Hydroxyindoleacetic acid (5-HIAA) is one of the main serotonin metabolites, and it
is used to determine serotonin levels in the whole body. Interestingly in patients with major
depressive disorder (MDD) and coexisting PD, a significant increase in the concentration of
5-HIAA in CSF was found equated to patients without PDA and a control group [119]. On
the other hand, it was found that 5-HIAA in CSF was reduced in patients with a positive
response to tricyclic drugs [120].
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Neuropeptides, which are small protein-like molecules created and excreted by neu-
rons [121,122], underlie the pathophysiology of anxiety disorders. Accordingly, they have a
potential role as biological markers [123,124]. The most important neuropeptides that play a
role in modulating stress and anxiety-related behavior are cholecystokinin (CCK) [125,126],
oxytocin (OXT) [127–130], and ghrelin [131].

CCK seems to be one of the most plenteous neuropeptides in the brain. What is more,
CCK-B receptors could be located in high density in the hypothalamus, limbic system, basal
ganglia, hippocampus, cortex, and brainstem. Numerous studies have investigated the role
of CCK in moderating anxiety and the stress response in humans [125,132]. Lydiard et al.
showed that compared to the control group, patients with PD had lower concentrations of
cholecystokinin-8 (CCK-8) in the cerebrospinal fluid [133].

OXT is a neuropeptide that is produced by the hypothalamus, which regulates the
activity of many brain structures, including the amygdala, hippocampus, and cingulate
cortex [134]. Additionally, OXT has various significant peripheral roles, especially in
muscle contraction during labor and milk secretion [135]. The activity of OXT plays a key
role in societal bearing, anxiety, mood control, and stress modulation [136]. Myers et al.
confirmed that OXT plays a role in the pathophysiology of anxiety disorders [137]. OXT
concentrations in the cerebrospinal fluid were significantly higher than in the plasma, and
patients with higher anxiety scores had lower CSF OXT concentrations than controls [129].
These results suggest the notion that OXT concentrations may have clinical significance as
an anxiety biomarker.

Ghrelin is a neuropeptide involved mainly in food intake, which additionally influ-
ences the regulation of emotions, mood, and anxiety [131]. Several studies have found
that ghrelin induces anxiety effects [138], and increased ghrelin secretion under stressful
conditions determines anxiety behavior and the activation of the HPA axis [139].

The level of these neuropeptides could be observed in both cerebrospinal fluid and
plasma samples, suggesting their potential role as peripheral biomarkers, but due to the
small research samples and the ambiguity of the results, this topic requires further study.

6. Neuroimaging

There is currently a growing interest in measuring microglia activation, which occurs
in patients with anxiety disorders, by using neuroimaging strategies such as positron
emission tomography (PET) or magnetic resonance imaging (MRI). These strategies aim
to understand the role of CNS inflammation in psychiatric disorders and to be able to
determine if anti-inflammatory therapies can reduce inflammation in the brain.

The effect of systemic inflammation on the brain involves glutamatergic and dopamin-
ergic pathways that can lead to psychiatric disorders, including anxiety disorders. These
pathways regulate the patient’s motivation and motor activity, as well as sensitivity to
danger [137]. We can use MRI and PET imaging to assess the effects of inflammation on
neurotransmitters and neurological circuits related to the reward and anxiety pathways in
the central nervous system (CNS). These could serve as biomarkers for the brain’s response
to treatment, and in the future, could be used as a method for studies investigating blocking
or reversing inflammation in the brain, thereby more effectively detecting and treating
patients with anxiety disorders [140].

One of the basic strategies for this approach is to develop radioligands that, when
activated, bind to macrophages and microglia in the brain, increasing the surface expression
of the translocator protein (TSPO) [141]. PET ligands that bind to TSPO are used as potential
markers of activated microglia, e.g., (11C)-PK 11195, which exhibits an increased non-
displacement binding potential (NDBP) [142]. On the other hand, there are doubts about
measuring microglia activation by PET imaging. It is known that even when at rest,
microglia play various important functions that cannot be ignored, for example, the sentinel-
type function [141]. Moreover, microglia show graded activation responses [143], and
an increase in some activation markers, such as TSPO, may not be indicative of a pure
inflammatory phenotype, making the interpretation of TSPO expression difficult [144,145].
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Among patients with anxiety disorders, there is an accumulation of peripheral im-
mune cells in the perivascular and meningeal compartments, which is associated with
local specific activation of microglia. Peripheral inflammatory cytokines can enter the CNS
to initiate a local immune response [146,147]. In response to this chemokine, activated
monocytes/macrophages travel to the brain, and it has been shown that this may contribute
to behavioral changes in stress-induced anxiety behavior patterns in rodents [147–149]. Of
particular interest in anxiety-related disorders that are directly related to inflammation in
the body is the effect of inflammatory cytokines on specific areas of the brain, especially
those involved in the detection of fear, anxiety, and danger. These structures include the
amygdala, insula, the medial prefrontal cortex, and the anterior cingulate cortex (ACC) [94].

The amygdala is the major brain region responsible for anxiety [150]. Neuroimaging
results in humans indicate that increased levels of inflammatory cytokines increase the
activity of the amygdala and enlarge the amygdala [151–153]. Increased levels of IL-6
and TNF following administration of endotoxin to healthy people have been shown to
increase the activity of the amygdala in response to socially threatening factors, which was
associated with an increased sense of social separation [152]. Stress, increased amygdala
neuronal activity in response to a psychosocial laboratory stressor have been related to
superior stress-induced increases in IL-6 [153]. Consequently, the greater sensitivity of the
amygdala to stress can lead to increased production of inflammatory cytokines, which
in turn can affect the activity of the amygdala, creating a feedback effect that is linked to
anxiety and its symptoms. The medial prefrontal cortex and the medial frontal gyrus are
strongly connected to the amygdala and are believed to be involved in fear extinction and
emotional regulation in PTSD [150,154]. Numerous studies have described an association
between peripheral inflammatory cytokines and the activity of the medial prefrontal cortex
under stress [151,155]. Certainly, administration of the typhoid vaccine to healthy controls
persuaded mood changes that are related to increased activity in the subgenual anterior
cingulate cortex (subgenual ACC) during the implicit task of emotional facial perception.
Increased neuronal activity in the amygdala was correlated with an increased response of
IL-6 to a psychosocial laboratory stressor, and functional connectivity analyzes showed
that individuals who showed an increased inflammatory response to the stressor showed
a stronger coupling between the amygdala and the dorsomedial part of the prefrontal
cortex [153]. In a separate study of women undergoing chronic emotional stress related
to grief, it was shown that elevated levels of IL-1beta and the soluble TNF II receptor
in saliva positively correlated with the degree of ventral prefrontal activation (including
subgenual ACC and orbitofrontal cortex) during grief [28,155], suggesting a link between
stress, inflammation, and activation of the medial prefrontal cortex that may be important
for emotional processing in stress and anxiety disorders.

Another region associated with the activity of the amygdala resulting from anxiety
disorders is the insula [156,157]. For example, increased activation of the anterior amygdala
and anterior insula has been observed in women with violent post-traumatic stress disorder
compared to those with happy faces while matching to “fearful vs. happy target faces” [158].
It has been shown that increased sensitivity of the insula to peripheral inflammatory
cytokines, especially in the presence of emotional stimuli, may alter the neural circuits,
including the amygdala, medial prefrontal cortex, and ACC, inducing symptoms of anxiety,
restlessness, and emotional disturbance.

A place in the CNS that is particularly influenced by inflammatory mediators in
the form of cytokines is the dorsal part of the ACC (dACC). The dACC has been found
to be involved with social discomfort and hence has been proposed to contain a neural
“alarm system” that detects and reacts to any stimuli coming from the environment that are
recognized as dangerous [159]. Further activation of the autonomic excitation system by the
dACC is another element of this “human protection”, which can both identify and react to
the threat cognitively, emotionally, and physically [160]. Increased dorsal ACC activity has
been proposed as a mediator of hyperactivity symptoms in PTSD [161] as well as a potential
family risk factor for the development of PTSD [162]. PET has shown that individuals
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with PTSD have increased metabolic activity in the dACC [163]. Increased activation
of dACC has also been found in people with severe anxiety and obsessive-compulsive
disorder [164–166].

Taken together, these data indicate that cytokines may increase dACC reactivity, pos-
sibly through their effects on glutamate, and thus increase sensitivity. This increased
sensitivity of the dACC to the presence of cytokines may further contribute to the symp-
toms of PTSD anxiety and stress disorders and in trauma patients with increased in-
flammation [94]. Neuroimaging effects of inflammation on reward and threat circuits are
particularly expressed in the amygdala, insula, and dACC areas and could be used as
inflammation biomarkers. This may be especially important for the future improvement of
new therapeutic strategies to better treat mood and anxiety disorders resulting from severe
anxiety-related inflammation [94].

7. Questionnaires

We cannot forget about screening questionnaires which are important diagnostic aids.
The tests are useful methods that facilitate the diagnosis of anxiety disorders. This is a very
extensive topic that needs to be discussed in a separate review. However, the authors of
this article would like to mention a couple of questionnaires. The occurrence of anxiety
symptoms can be assessed using the Questionnaire Symptom Checklist (SCL-90) [167]. The
examination allows determining the severity of symptoms in the following dimensions:
somatization, anxiety, obsessive-compulsive behavior, hostility, interpersonal sensitivity,
and anxiety in the form of phobias [168,169]. In turn, the self-assessment tool Perceived
Stress Scale (PSS-10) can be used to assess the degree to which experienced situations are
perceived by patients as stressful [170]. It concerns various subjective feelings related to
problems and personal events, behaviors, and methods of coping with stress. It is used to
measure the intensity of stress related to one’s own life situation in the last month [169,171].
Another questionnaire worthy of attention is the Patient Health Questionnaire for Depres-
sion and Anxiety (PHQ-4). The PHQ-4 questionnaire can be used with patients to detect
people with inappropriate psychological conditions. Renovanz et al. examined patients
with intracranial tumors and detected those with relevant psychological comorbidities with
a sensitivity of 76.8% [172]. The Generalized Anxiety Disorder Screener (GAD-7) and the
Hospital and Depression Scale (HADS-A) are used with adequate diagnostic accuracy as
screening tools for generalized anxiety disorder [173,174]. The State-trait anxiety inventory
(STAI) is an appropriate questionnaire to measure the self-reported presence and severity
of current anxiety symptoms and generalized anxiety tendencies [174].

8. Discussion

Anxiety disorders are a multi-dimensional topic, as they have multifactorial ori-
gins [175], and it is unlikely that a single biomarker could explain the dynamic nature of
the psychiatric illness [15]. An approach that includes both psychiatric diagnoses, taking
into account the course of the disease, and a combination of various biomarkers, seems
to be the most reliable [12]. Biomarkers can be used for early detection of mental states,
especially those requiring urgent medical intervention, known as trait markers [176]. The
most promising biological trait markers included in this article are sAA, CgA, FGF-2, NPS,
and ghrelin. Another interesting group of biological markers are state markers; they show
the level of clinical symptoms that can be observed in patients. It is particularly important
in the case of monitoring the treatment progress and possible modification of treatment of
patients suffering from anxiety disorders [176]. Such biomarkers mentioned in this review
are melatonin, BDNF, 5-HIAA, microRNAs, and neuroimaging biomarkers. Numerous
biomarkers, such as serotonin, cortisol, lysozyme, and inflammatory biomarkers, can per-
form both functions. Depending on the duration of the disease, their concentration in
the body varies. Cortisol in the initial stage is elevated, which makes it possible to treat
it as a trait biomarker, then its concentration decreases; therefore, we can monitor it to
assess the progress of the disease. The worth emphasizing topic is the mutual relation-
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ship among biomarkers derived from different sources. The condition and functioning
of the brain and its processes are best reflected by CSF. The inflammation in the brain
in the course of anxiety disorders is reflected both in the results of the measurement of
inflammatory factors in the blood and in the local activation of microglia in imaging tests.
However, due to the existence of the blood-brain barrier, the neurochemical composition
of plasma may be different from that of the CSF, and therefore it is difficult to draw direct
conclusions. For example concentration of OXT in the cerebrospinal fluid is definitely
higher than in the blood. In contrast, the identified microRNAs are associated with the
characteristic expression of BDNF. Moreover, it is correlated with the HPA axis and the
stress regulation function, which in connection with PET neuroimaging is a very promising
prognosis. Given the accumulated medical knowledge, the potential use of anxiety disorder
biomarkers is only a suggestion, and this topic requires in-depth research [115]. Moreover,
it is possible that different biomarkers are associated with a group of symptoms and not
with a specific diagnosis [177]. The most promising biomarkers are listed in the table
below (Table 1). The saliva biomarkers described in this review only show their potential
application in practice. Presumably, promising markers, such as structural differences in
the amygdala and hippocampus, although they proved to be highly reliable [29,82], are
not commonly used in diagnostics for practical and economic reasons [177]. To enable
the use of biomarkers and their dissemination, we would need simple and economically
advantageous biomarkers [15]. Moreover, the identification of biomarkers is based on the
observation that a specific biomarker is only detected in affected patients [177]. However,
due to the overlapping pathophysiological symptoms of psychiatric disorders, biomarkers
may be common to various psychiatric disorders, which may lead to an interpretation
bias, thus to the lack of availability of highly specific biomarkers [178,179]. Even though
some of the biomarkers listed for panic disorders had high sensitivity, they did not show
sufficient specificity to distinguish PD from other psychiatric disorders [82]. Most of the
suggested biological markers described above (e.g., structural brain morphology, lower
plasma 5-HT concentration, increased/decreased cortisol secretion, PWD, and RDW) can
be used to differentiate patients with panic disorders from healthy subjects they can not be
used to differentiate from patients with other psychiatric disorders, such as other anxiety
disorders, schizophrenia, or mood disorders with hyperactive HPA [149,178]. It should
also be noted that biomarkers are influenced by environmental and lifestyle factors such as
stress, physical activity, comorbidities, and medications [177].

Table 1. Potential biomarkers of anxiety disorders and their variability.

Salivary Biomarker Blood Biomarker Cerebrospinal Fluid Neuroimaging Marker

Cortisol ↓ [33,36]
(PD)

Serotonin ↑ [68]
(OCD)

5-HIAA ↑ [119]
(PD)

Amygdala activity ↑
[151,153] (Stress)

sIgA ↓ [38,40]
(Stress)

BDNF ↓ [76]
(PD, GAD)

CCK ↓ [133]
(PD)

ACC ↑ [155]
(Stress)

Melatonin ↓ [49]
(PTSD)

NPS ↑ [78,79]
(GAD)

Oxytocin ↓ [129]
(Stress)

Insula ↑ [158]
(PTSD)

sAA ↑ [53]
(Stress)

Cortisol ↓ [87,89]
(PD)

Ghrelin ↑ [139]
(Sress)

dACC ↑ [161,163]
(PTSD)FGF-2 ↓ [67]

(Stress)

IM: IL-1, IL-6, CRP ↑ [94,95]
(PTSD, GAD)

HDL-C ↓ [109]
(OCD)

↑: increased concentration/activity; ↓: decrease concentration/activity. sIgA: Immunoglobulin A; sAA: Alpha-
amylase; CgA: Chromogranin A; FGF-2: Fibroblast Growth Factor 2; BDNF: brain-derived serum neurotrophic
factor; NPS: Neuropeptide S; IM: inflammatory markers; 5-HIAA: 5-Hydroxyindoleacetic acid; ACC: subgenual
anterior cingulate cortex; dACC: dorsal ACC; PD: Panic disorder; PTSD: post-traumatic stress disorder; GAD:
generalized anxiety disorder; OCD: obsessive-compulsive disorder.
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Overall, it is highly unlikely that a single common biomarker for anxiety disorders
can be established. However, even though the diagnosis of anxiety disorders is still largely
based on clinical symptoms, biomarkers could be a valuable tool to help identify individual
patients with the disorder, improve treatment fit, and predict treatment responses. Such
use of a biomarker is already common in other medical fields for various diseases such as
asthma and rheumatoid arthritis [180,181], but detection of such a marker in psychiatric
disease will be one of the most difficult tasks that researchers will ever face [182]. Identify-
ing beneficial biomarkers can help diagnose and classify a group of psychiatric disorders.
Further exploration of biomarkers in psychiatry should focus efforts on numerous clinical
populations, with the harmonization of biomarker specificity and their importance in
clinical practice [177].
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