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Abstract

Lighter is a fast, memory-efficient tool for correcting sequencing errors. Lighter avoids counting k-mers. Instead, it uses
a pair of Bloom filters, one holding a sample of the input k-mers and the other holding k-mers likely to be correct. As
long as the sampling fraction is adjusted in inverse proportion to the depth of sequencing, Bloom filter size can be
held constant while maintaining near-constant accuracy. Lighter is parallelized, uses no secondary storage, and is
both faster and more memory-efficient than competing approaches while achieving comparable accuracy.

Introduction
The cost and throughput of DNA sequencing have
improved rapidly in the past several years [1], with recent
advances reducing the cost of sequencing a single human
genome at 30-fold coverage to around $1,000 [2]. With
these advances has come an explosion of new software
for analyzing large sequencing datasets. Sequencing error
correction is a basic need for many of these tools. Remov-
ing errors can also improve the accuracy, speed and
memory-efficiency of downstream tools, particularly for
de novo assemblers based on De Bruijn graphs [3,4].

To be useful in practice, error correction software must
make economical use of time and memory even when
input datasets are large (many billions of reads) and
when the genome under study is also large (billions of
nucleotides). Several methods have been proposed, cov-
ering a wide tradeoff space between accuracy, speed and
memory- and storage-efficiency. SHREC [5] and HiTEC
[6] build a suffix index of the input reads and locate errors
by finding instances where a substring is followed by a
character less often than expected. Coral [7] and ECHO
[8] find overlaps among reads and use the resulting multi-
ple alignments to detect and correct errors. Reptile [9] and
Hammer [10] detect and correct errors by examining each
k-mer’s neighborhood in the dataset’s k-mer Hamming
graph.
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The most practical and widely used error correction
methods descend from the spectral alignment approach
introduced in the earliest De Bruijn graph based assem-
blers [3,4]. These methods count the number of times
each k-mer occurs (its multiplicity) in the input reads,
then apply a threshold such that k-mers with multiplic-
ity exceeding the threshold are considered solid. These
k-mers are unlikely to have been altered by sequencing
errors. k-mers with low multiplicity (weak k-mers) are
systematically edited into high-multiplicity k-mers using a
dynamic-programming solution to the spectral alignment
problem [3,4] or, more often, a fast heuristic approxima-
tion. Quake [11], one of the most widely used error correc-
tion tools, uses a hash-based k-mer counter called Jellyfish
[12] to determine which k-mers are correct. CUDA-EC
[13] was the first to use a Bloom filter as a space-efficient
alternative to hash tables for counting k-mers and for
representing the set of solid k-mers. More recent tools,
such as Musket [14] and BLESS [15], use a combination
of Bloom filters and hash tables to count k-mers or to
represent the set of solid k-mers.

Lighter (LIGHTweight ERror corrector) is also in the
family of spectral alignment methods, but differs from
previous approaches in that it avoids counting k-mers.
Rather than count k-mers, Lighter samples k-mers ran-
domly, storing the sample in a Bloom filter. Lighter then
uses a simple test applied to each position of each read to
compile a set of solid k-mers, stored in a second Bloom
filter. These two Bloom filters are the only sizable data
structures used by Lighter.
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A crucial advantage is that Lighter’s parameters can be
set such that memory footprint and accuracy are near
constant with respect to depth of sequencing. That is, no
matter how deep the coverage, Lighter can allocate the
same sized Bloom filters and achieve nearly the same:
(a) Bloom filter occupancy, (b) Bloom filter false positive
rate and (c) error correction accuracy. Lighter does this
without using any disk space or other secondary memory.
This is in contrast to BLESS and Quake/Jellyfish, which
use secondary memory to store some or all of the k-mer
counts.

Lighter’s accuracy is comparable to competing tools.
We show this both in simulation experiments where false
positives and false negatives can be measured, and in
real-world experiments where read alignment scores and
assembly statistics can be measured. Lighter is also very
simple and fast, faster than all other tools tried in our
experiments. These advantages make Lighter quite practi-
cal compared to previous counting-based approaches, all
of which require an amount of memory or secondary stor-
age that increases with depth of coverage. Lighter is free
open-source software available from [16].

Method
Lighter’s workflow is illustrated in Figure 1. Lighter makes
three passes over the input reads. The first pass obtains a
sample of the k-mers present in the input reads, storing
the sample in Bloom filter A. The second pass uses Bloom
filter A to identify solid k-mers, which it stores in Bloom
filter B. The third pass uses Bloom filter B and a greedy
procedure to correct errors in the input reads.

Bloom filter
A Bloom filter [17] is a compact probabilistic data struc-
ture representing a set. It consists of an array of m bits,
each initialized to 0. To add an item o, h independent hash
functions H0(o), H1(o), . . . , Hh−1(o) are calculated. Each
maps o to an integer in [0, m) and the corresponding h
array bits are set to 1. To test if item q is a member, the
same hash functions are applied to q. q is a member if
all corresponding bits are set to 1. A false positive occurs
when the corresponding bits are set to 1 ‘by coincidence’,
that is, because of items besides q that were added pre-
viously. Assuming the hash functions map items to bit
array elements with equal probability, the Bloom filter’s

false positive rate is approximately
(

1 − e−h n
m

)h
, where

n is the number of distinct items added, which we call
the cardinality. Given n, which is usually determined by
the dataset, m and h can be adjusted to achieve a desired
false positive rate. Lower false positive rates can come at
a cost, since greater values of m require more memory
and greater values of h require more hash function calcu-
lations. Many variations on Bloom filters have been pro-
posed that additionally permit compression of the filter,
storage of count data, representation of maps in addition
to sets, etc. [18]. Bloom filters and variants thereon have
been applied in various bioinformatics settings, including
assembly [19], compression [20], k-mer counting [21] and
error correction [13].

By way of contrast, another way to represent a set is with
a hash table. Hash tables do not yield false positives, but
Bloom filters are far smaller. Whereas a Bloom filter is an
array of bits, a hash table is an array of buckets, each large

Figure 1 The framework of Lighter.
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enough to store a pointer, key or both. If chaining is used,
lists associated with buckets incur additional overhead.
While the Bloom filter’s small size comes at the expense
of false positives, these can be tolerated in many settings
including in error correction.

Lighter’s efficiency depends on the efficiency of the
Bloom filter implementation. Specifically Lighter uses a
pattern-blocked Bloom filter to decrease overall the num-
ber of cache misses and improve efficiency. This comes
at the expense of needing a slightly larger filter to achieve
a comparable false positive rate to a standard filter, as
discussed in Additional file 1: Supplementary Note 1.

In our method, the items to be stored in the Bloom fil-
ters are k-mers. Because we would like to treat genome
strands equivalently for counting purposes, we will always
canonicalize a k-mer before adding it to or using it to
query a Bloom filter. A canonicalized k-mer is either
the k-mer itself or its reverse complement, whichever is
lexicographically prior.

Sequencing model
We use a simple model to describe the sequencing pro-
cess and Lighter’s subsampling. The model resembles one
suggested previously [22]. Let K be the total number of
k-mers obtained by the sequencer. We say a k-mer is
incorrect if its sequence has been altered by one or more
sequencing errors. Otherwise it is correct. Let ε be the
fraction of k-mers that are incorrect. We assume ε does
not vary with the depth of sequencing. The sequencer
obtains correct k-mers by sampling independently and
uniformly from k-mers in the genome. Let the number of
k-mers in the genome be G, and assume all are distinct.
If κc is a random variable for the multiplicity of a correct
k-mer in the input, κc is binomial with success probability
1/G and number of trials (1 − ε)K :

κc ∼ Binom((1 − ε)K , 1/G).

Since the number of trials is large and the success prob-
ability is small, the binomial is well approximated by a
Poisson:

κc ∼ Pois(K(1 − ε)/G).

A sequenced k-mer survives subsampling with probabil-
ity α. If κ ′

c is a random variable for the number of times a
correct k-mer appears in the subsample:

κ ′
c ∼ Binom((1 − ε)K , α/G),

which is approximately Pois(αK(1 − ε)/G).
We model incorrect k-mers similarly. The sequencer

obtains incorrect k-mers by sampling independently and
uniformly from k-mers ‘close to’ a k-mer in the genome.
We might define these as the set of all k-mers with low but
non-zero Hamming distance from some genomic k-mer.

If κe is a random variable for the multiplicity of an incor-
rect k-mer, κe is binomial with success probability 1/H
and number of trials εK : κe ∼ Binom(εK , 1/H), which is
approximately Pois(Kε/H). It is safe to assume H � G.
κ ′

e ∼ Pois(αKε/H) is a random variable for the number of
times an incorrect k-mer appears in the subsample.

Others have noted that, given a dataset with deep and
uniform coverage, incorrect k-mers occur rarely while
correct k-mers occur many times, proportionally to cov-
erage [3,4].

Stages of the method
First pass
In the first pass, Lighter examines each k-mer of each
read. With probability 1 − α, the k-mer is ignored. k-
mers containing ambiguous nucleotides (e.g. ‘N’) are also
ignored. Otherwise, the k-mer is canonicalized and added
to Bloom filter A.

Say a distinct k-mer a occurs a total of Na times in the
dataset. If none of the Na occurrences survive subsam-
pling, the k-mer is never added to A and A’s cardinality
is reduced by one. Thus, reducing α can in turn reduce
A’s cardinality. Because correct k-mers are more numer-
ous, incorrect k-mers tend to be discarded from A before
correct k-mers as α decreases.

The subsampling fraction α is set by the user. We
suggest adjusting α in inverse proportion to depth of
sequencing, for reasons discussed below. For experiments
described here, we set α = 0.1 when the average cover-
age is 70-fold. That is, we set α to 0.1(70/C), where C is
average coverage.

Second pass
A read position is overlapped by up to x k-mers, 1 ≤ x ≤
k, where x depends on how close the position is to either
end of the read. For a position altered by sequencing error,
the overlapping k-mers are all incorrect and are unlikely
to appear in A. We apply a threshold such that if the num-
ber of k-mers overlapping the position and appearing in
Bloom filter A is less than the threshold, we say the posi-
tion is untrusted. Otherwise we say it is trusted. Each
instance where the threshold is applied is called a test case.
When one or more of the x k-mers involved in two test
cases differ, we say the test cases are distinct.

Let P∗(α) be the probability an incorrect k-mer appears
in A, taking the Bloom filter’s false positive rate into
account. If random variable Be,x represents the number
of k-mers appearing in A for an untrusted position over-
lapped by x k-mers:

Be,x ∼ Binom(x, P∗(α)).

We define thresholds yx, for each x in [1, k]. yx is the
minimum integer such that:

p(Be,x ≤ yx − 1) ≥ 0.995.
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Ignoring false positives for now, we model the prob-
ability of a sequenced k-mer having been added to A
as:

P(α) = 1 − (1 − α)f (α).

We define:

f (α) = max{2, 0.2/α}.
That is, we assume the multiplicity of a weak k-mer is at

most f (α), which will often be a conservative assumption,
especially for small α. It is also possible to define P(α) in
terms of random variables κe and κ ′

e, but we avoid this here
for simplicity.

A property of this threshold is that when α is small:

P(α/z) = 1−(1−α/z)0.2z/α ≈ 1−(1−α)0.2/α = P(α),

where z is a constant greater than 1 and we use the fact
that:

(1 − α/z)z ≈ 1 − α.

For P∗(α), we additionally take A’s false positive rate into
account. If the false positive rate is β , then:

P∗(α) = P(α) + β − βP(α).

Once all positions in a read have been marked trusted or
untrusted using the threshold, we find all instances where
k trusted positions appear consecutively. The k-mer made
up by those positions is added to Bloom filter B.

Third pass
In the third pass, Lighter applies a simple, greedy error
correction procedure like that used in BLESS [15]. A read
r of length |r|, contains |r| − k + 1 k-mers. ki denotes the
k-mer starting at read position i, 1 ≤ i ≤ |r| − k + 1. We
first identify the longest stretch of consecutive k-mers in
the read that appear in Bloom filter B. Let kb and ke be
the k-mers at the left and right extremes of the stretch. If
e < |r| − k + 1, we examine successive k-mers to the right
starting at ke + 1. For a k-mer ki that does not appear in B,
we assume the nucleotide at offset i + k − 1 is incorrect.
We consider all possible ways of substituting for the incor-
rect nucleotide. For each substitution, we count how many
consecutive k-mers starting with ki appear in Bloom filter
B after making the substitution. We pick the substitution
that creates the longest stretch of consecutive k-mers in B.
The procedure is illustrated in Figure 2.

If more than one candidate substitution is equally good
(i.e. results in the same number of consecutive k-mers
from B), we call position i+k −1 ambiguous and make no
attempt to correct it. The procedure then resumes start-
ing at ki+k , or the procedure ends if the read is too short
to contain k-mer ki+k .

When errors are located near to the end of a read,
the stretches of consecutive k-mers used to prioritize
substitutions are short. For example, if the error is at

Figure 2 An example of the greedy error correction procedure.
k-mer CCGATTC does not appear in Bloom filter B, so we attempt to
substitute a different nucleotide for the C shown in red. We select A
since it yields the longest stretch of consecutive k-mers that appear in
Bloom filter B.

the very last position of the read, we must choose a
substation on the basis of just one k-mer: the right-
most k-mer. This very often results in a tie, and no
correction. Lighter avoids many of these ties by con-
sidering k-mers that extend beyond the end of the
read, as discussed in Additional file 1: Supplementary
Note 2.

For better precision, Lighter also limits the corrections
that can be made in any window of size k in a read.
The default limit is 4, and it is configurable. Corrections
at positions with an ‘N’ contribute 0, and corrections at
low-quality bases (defined in the Quality score section
below) contribute 0.5 toward this limit. All other positions
contribute 1.

Scaling with depth of sequencing
Lighter’s accuracy can be made near constant as the
depth of sequencing K increases and its memory foot-
print is held constant. This is accomplished by holding
αK constant, i.e., by adjusting α in inverse proportion to
K . This is illustrated in Tables 1 and 2. We also argue
this more formally in Additional file 1: Supplementary
Note 3.

Quality score
A low base quality value at a certain position can force
Lighter to treat that position as untrusted even if the over-
lapping k-mers indicate it is trusted. First, Lighter scans
the first 1 million reads in the input, recording the qual-
ity value at the last position in each read. Lighter then
chooses the fifth-percentile quality value; that is, the value
such that 5% of the values are less than or equal to it, say
t1. Using the same idea, we get another fifth-percentile
quality value, say t2, for the first base for the first 1 mil-
lion reads. When Lighter is deciding whether a position
is trusted, if its quality score is less than or equal to
min{t1, t2 − 1}, then it is called untrusted regardless of
how many of the overlapping k-mers appear in Bloom
filter A.
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Table 1 Accuracy measures for datasets simulated with Mason with various sequencing depths and error rates

Coverage 35× 70× 140×
Error rate 1% 3% 1% 3% 1% 3%

α for Lighter 0.2 0.2 0.1 0.1 0.05 0.05

Quake 89.68 48.77 89.64 48.82 89.59 48.78

SOAPec 57.71 38.00 57.57 37.71 57.09 36.76

Recall Musket 93.75 92.62 93.73 92.64 93.73 92.63

Bless 99.81 99.33 99.82 99.58 99.82 99.58

Lighter 99.87 98.53 99.84 98.72 99.86 98.78

Quake 99.99 99.99 99.99 99.99 99.99 99.99

SOAPec 99.99 100.00 99.99 99.99 99.99 99.99

Precision Musket 99.99 99.93 99.99 99.93 99.99 99.93

Bless 99.73 98.86 99.73 99.35 99.72 99.36

Lighter 99.98 99.96 99.98 99.96 99.98 99.96

Quake 94.55 65.56 94.54 65.61 94.51 65.57

SOAPec 73.18 55.07 73.07 54.77 72.68 53.75

F score Musket 96.77 96.14 96.76 96.15 96.76 96.15

Bless 99.77 99.09 99.77 99.47 99.77 99.47

Lighter 99.93 99.24 99.91 99.33 99.92 99.36

Quake 89.67 48.76 89.64 48.82 89.59 48.78

SOAPec 57.70 38.00 57.57 37.71 57.09 36.75

Gain Musket 93.74 92.56 93.72 92.58 93.72 92.57

Bless 99.54 98.19 99.54 98.93 99.54 98.94

Lighter 99.85 98.49 99.81 98.68 99.84 98.73

Quake 17 17 17 17 17 17

SOAPec 17 17 17 17 17 17

k Musket 23 19 23 19 23 19

Bless 31 23 31 23 31 23

Lighter 23 19 23 19 23 19

Rows labeled k show the k-mer sizes selected for each tool and dataset.

Table 2 Occupancy (fraction of bits set) for Bloom filters A
and B for various coverages

Coverage α Bloom A (%) Bloom B (%)

20× 0.35 53.082 34.037

35× 0.2 53.085 34.398

70× 0.1 53.082 34.429

140× 0.05 53.094 34.411

280× 0.025 53.088 34.419

Parallelization
As shown in Figure 1, Lighter works in three passes: (1)
populating Bloom filter A with a k-mer subsample, (2)
applying the per-position test and populating Bloom filter
B with likely correct k-mers and (3) error correction. For
pass 1, because α is usually small, most time is spent scan-
ning the input reads. Consequently, we found little benefit
in parallelizing pass 1. Pass 2 is parallelized by using con-
current threads to handle subsets of input reads. Because
Bloom filter A is only being queried (not added to), we
need not synchronize accesses to A. Accesses to B are
synchronized so that additions of k-mers to B by differ-
ent threads do not interfere. Since it is typical for the
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same correct k-mer to be added repeatedly to B, we can
save synchronization effort by first checking whether the
k-mer is already present and adding it (synchronously)
only if necessary. Pass 3 is parallelized by using concur-
rent threads to handle subsets of the reads; since Bloom
filter B is only being queried, we need not synchronize
accesses.

Evaluation
Additional file 1: Supplementary Note 4 describes the
computer all experiments were conducted on. Additional
file 1: Supplementary Note 5 describes the exact com-
mand lines used.

Simulated dataset
Accuracy on simulated data
We compared the performance of Lighter v1.0.2 with
Quake v0.3 [11], Musket v1.1 [14], BLESS v0p17 [15]
and SOAPec v2.0.1 [23]. We simulated a collection of
reads from the reference genome for the K12 strain of
Escherichia coli (NC_000913.2) using Mason v0.1.2 [24].
We simulated six distinct datasets with 101-bp single-end
reads, varying average coverage (35×, 75× and 140×) and
average error rate (1% and 3%). For a given error rate e we
specify Mason parameters -qmb e/2 -qme 3e, so that the
average error rate is e but errors are more common toward
the 3′ end, as in real datasets.

We then ran all four tools on all six datasets, with results
presented in Table 1. BLESS was run with the -notrim
option to make the results more comparable. In these
comparisons, a true positive (TP) is an instance where an
error is successfully corrected, i.e. with the correct base
substituted. A false positive (FP) is an instance where a
spurious substitution is made at an error-free position.
A false negative (FN) is an instance where we either fail
to detect an error or an incorrect base is substituted. As
done in previous studies [14], we report the following
summaries:

recall =TP/(TP + NP),
precision = TP/(TP + FP),

F score =2 × recall × precision/(recall + precision) and
gain =(TP − FP)/(TP + FN).

Since these tools are sensitive to the choice of k-mer
size, we tried several values for this parameter (17, 19, 23,
27 and 31) and picked the value yielding the greatest gain
in the accuracy evaluation. The k-mer sizes chosen are
shown in the bottom rows of Table 1. Note that SOAPec’s
maximum k-mer size is 27. We found that Quake crashed
for k-mer sizes 23 and up.

Unlike the other tools, Quake both trims the untrusted
tails of the reads and discards reads it cannot correct.
BLESS also trims some reads (even in -notrim mode),

but only a small fraction (0.1%) of them, which has only a
slight effect on results. For these simulation experiments,
we measure precision and recall with respect to all the
nucleotides (even the trimmed ones) in all the reads (even
those discarded). This tends to lead to higher precision
but lower recall for Quake relative to the other tools.

Apart from Quake, SOAPec, Musket and Lighter
achieve the highest precision. Lighter achieves the highest
recall, F score and gain in the experiments with 1%
error, and is comparable to BLESS when the error rate
is 3%.

To see how quality value information affects perfor-
mance, we repeated these experiments with quality values
omitted (Additional file 1: Table S1). Quake and BLESS
accept only FASTQ input files (which include quality
values), and so were not included in the experiment.
Lighter achieves superior recall, gain and F score.

To see how the choice of read simulator affects per-
formance, we repeated these experiments using the Art
[25] simulator to generate the reads instead of Mason
(Additional file 1: Table S2). All tools perform quite
similarly in this experiment, except SOAPec, which has
poor recall compared to the others. There is less dif-
ference between tools than in the Mason experiment,
likely because Art simulates a relatively low (approxi-
mately 0.25%) error rate. Lighter and Musket perform best
overall.

For the Mason-simulated 1% error dataset, we found
that Lighter’s gain was maximized by setting the k-
mer size to 23. We therefore fix the k-mer size to
23 for subsequent experiments, except where otherwise
noted.

Caenorhabditis elegans simulation
We performed a similar accuracy test as in the previous
section, but using data simulated from the larger C. ele-
gans genome, WBcel235 (Additional file 1: Table S3). We
used Mason to simulate a dataset of 101-bp single-end
reads with a 1% error rate totaling 35× coverage. We again
tried several values for the k-mer size parameter (19, 23,
27 and 31) and picked the value yielding the greatest gain
in the accuracy evaluation. As for the E. coli experiment,
Lighter had the greatest recall, F score and gain.

Scaling with depth of simulated sequencing
We also used Mason to generate a series of datasets with
1% error, like those used in Table 1, but for 20×, 35×,
70×, 140× and 280× average coverage. We ran Lighter on
each and measured final occupancies (fraction of bits set)
for Bloom filters A and B. If our assumptions and scaling
arguments are accurate, we expect the final occupancies
of the Bloom filters to remain approximately constant for
relatively high levels of coverage. As seen in Table 2, this is
indeed the case.
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Cardinality of Bloom filter B
We also measured the number of correct k-mers added to
table B. We used the Mason dataset with 70× coverage and
1% error rate. The E. coli genome has 4,564,614 distinct
k-mers, and 4,564,569 (99.999%) of them are in table B.

Effect of ploidy on Bloom filter B
We conducted an experiment like that in the previous
section but with Mason configured to simulate reads from
a diploid version of the E. coli genome. Specifically, we
introduced heterozygous SNPs at 0.1% of the positions in
the reference genome. Mason then sampled equal num-
bers of reads from both genomes, making a dataset with
70× average coverage in total. Of the 214,567 simulated k-
mers that overlapped a position with a heterozygous SNP,
table B held 214,545 (99.990%) of them at the end of the
run. Thus, Lighter retained in table B almost the same
fraction of the k-mers overlapping heterozygous positions
(99.990%) as of the k-mers overall (99.999%).

Musket and BLESS both infer a threshold for the multi-
plicity of solid k-mers. In this experiment, Musket inferred
a threshold of 10 and BLESS inferred a threshold of 9. All
three tools use a k-mer size of 23. By counting the multi-
plicity of the k-mers overlapping heterozygous positions,
we conclude that Musket would classify 214,458 (99.949%)
as solid and BLESS would classify 214,557 (99.995%) as
solid. So in the diploid case, it seems Lighter’s ability to
identify correct k-mers overlapping heterozygous SNPs is
comparable to that of error correctors that are based on
counting.

Diploidy is one example of a phenomenon that tends
to drive the count distribution for some correct k-mers
(those overlapping heterozygous variants) closer to the
count distribution for incorrect k-mers. In the Discussion
section we elaborate on other such phenomena, such
as copy number, sequencing bias and non-uniform
coverage.

Effect of varying α

In a series of experiments, we measured how different
settings for the subsampling fraction α affected Lighter’s
accuracy as well as the occupancies of Bloom filters A and
B. We still use the datasets simulated by Mason with 35×,
70× and 140× coverage.

As shown in Figures 3 and 4, only a fraction of the
correct k-mers are added to A when α is very small, caus-
ing many correct read positions to fail the threshold test.
Lighter attempts to ‘correct’ these error-free positions,
decreasing accuracy. This also has the effect of reducing
the number of consecutive stretches of k trusted positions
in the reads, leading to a smaller fraction of correct k-
mers added to B, and ultimately to lower accuracy. When
α grows too large, the yx thresholds grow to be greater
than k, causing all positions to fail the threshold test, as
seen in the right-hand side of Figure 4. This also leads to a
dramatic drop in accuracy as seen in Figure 3. Between the
two extremes, we find a fairly broad range of values for α

(from about 0.15 to 0.3) that yield high accuracy when the
error rate is 1% or 3%. The range is wider when the error
rate is lower.
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Effect of varying k
A key parameter of Lighter is the k-mer length k. Smaller
k yields a higher probability that a k-mer affected by a
sequencing error also appears elsewhere in the genome.
For larger k, the fraction of k-mers that are correct

decreases, which could lead to fewer correct k-mers in
Bloom filter A. We measured how different settings for
k affect accuracy using the simulated data with 35×
coverage and both 1% and 3% error rates. Results are
shown in Figure 5. Accuracy is high for k-mer lengths
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Figure 5 The effect of k-mer length k on accuracy.
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Table 3 Alignment statistics for the 75× Escherichia coli dataset

Read level Base level

k Mapped reads Increase (%) Matches/aligned base (%) Increase (%)

Original – 3,464,137 – 99.038 –

Quake 19 3,373,498 −2.62 99.659 0.63

SOAPec 17 3,465,819 0.05 99.130 0.09

Musket 17 3,467,875 0.11 99.601 0.57

BLESS 19 3,468,677 0.13 99.666 0.63

Lighter 19 3,478,658 0.42 99.639 0.61

k column shows k-mer size selected for each tool. First ‘Increase’ column shows percentage increase in reads aligned. Second ‘Increase’ column shows percentage
increase in the fraction of aligned bases that match the reference genome. The original row is before error correction and the other rows are after error correction.

ranging from about 18 to 30 when the error rate is
1%. But the recall drops gradually when the error rate
is 3%.

Real datasets
Escherichia coli
Next we benchmarked the same error correction tools
using a real sequencing dataset, [EMBL-SRA ERR022075].
This is a deep DNA sequencing dataset of the the K-12
strain of the E. coli genome. To obtain a level of coverage
more reflective of other projects, we randomly subsam-
pled the reads in the dataset to obtain roughly 75× cov-
erage (approximately 3.5 million reads) of the E. coli K-12
reference genome. The reads are 100 × 102 bp paired-
end reads. Because BLESS cannot handle paired-end reads
where the ends have different lengths, we truncated the
last two bases from the 102-bp end before running our
experiments. We again ran BLESS with the -notrim
option.

These data are not simulated, so we cannot mea-
sure accuracy directly. But we can measure it indirectly,
as other studies have [15], by measuring read align-
ment statistics before and after error correction. We use
Bowtie2 [26] v2.2.2 with default parameters to align the
original reads and the corrected reads to the E. coli K-12
reference genome. For each error corrector, we tested dif-
ferent k-mer sizes (17, 19, 23, 27 and 31) and chose the size
that yielded the greatest total number of matching aligned
nucleotides. For Quake and BLESS, we use only the reads

(and partial reads) that remained after trimming and dis-
carding for this evaluation. Results are shown in Table 3.
Lighter yields the greatest improvement in fraction of
reads aligned, whereas Quake and BLESS yield the great-
est improvement in fraction of aligned bases that match
the reference, with Lighter very close behind. As before,
Quake is hard to compare to the other tools because it
trims and discards many reads.

We repeated this experiment using a less sensitive set-
ting for Bowtie 2 (Additional file 1: Table S4) and using
BWA-MEM [27] v0.7.9a-r786 to align the reads instead of
Bowtie 2 (Additional file 1: Table S5) and found that the
error correction tools performed similarly relative to each
other.

To assess accuracy further, we assembled the reads
before and after error correction and measured relevant
assembly statistics using Quast [28]. The corrected reads
are those reported in Table 3. We used Velvet 1.2.10 [29]
for assembly. Velvet is a De Bruijn graph-based assembler
designed for second-generation sequencing reads. A key
parameter of Velvet is the De Bruijn graph’s k-mer length.
For each tool we tested different k-mer sizes for Velvet (43,
47, 49, 51, 53, 55, 57, 63 and 67) and chose the one that
yielded the greatest NG50. We set the k-mer sizes of the
error correctors to match those selected in the alignment
experiment of Table 3. As before, we used only the reads
(and partial reads) that remained after trimming and dis-
carding for Quake and BLESS. For each assembly, we then
evaluated the assembly’s quality using Quast, which was

Table 4 De novo assembly statistics for the Escherichia coli dataset

N50 NG50 Edits/100 kbp Misassemblies Coverage (%)

Original 94,879 94,879 3.41 0 97.496

Quake 89,470 88,209 11.62 4 97.515

SOAPec 98,111 94,879 3.49 1 97.473

Musket 86,421 86,421 6.45 0 97.53

BLESS 85,486 85,486 3.58 1 97.302

Lighter 105,460 105,460 3.71 1 97.477
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Table 5 Alignment statistics for the GAGE chromosome 14 dataset

Read level Base level

k Mapped reads Increase (%) Matches/aligned base (%) Increase (%)

Original – 35,993,147 – 98.507 –

Quake 19 32,547,091 −9.57 99.845 1.36

SOAPec 19 36,116,405 0.34 98.768 0.26

Musket 19 36,316,699 0.90 99.109 0.61

BLESS 27 36,301,816 0.86 99.411 0.92

Lighter 19 36,320,688 0.91 99.235 0.74

configured to discard contigs shorter than 100 bp before
calculating statistics. Results are shown in Table 4.

N50 is the length such that the total length of the contigs
no shorter than the N50 cover at least half the assem-
bled genome. NG50 is similar, but with the requirement
that contigs cover half the reference genome rather than
half the assembled genome. Edits per 100 kbp is the num-
ber of mismatches or indels per 100 kbp when aligning
the contigs to the reference genome. A misassembly is
an instance where two adjacent stretches of bases in the
assembly align either to two very distant or to two highly
overlapping stretches of the reference genome. The Quast
study defines these metrics in more detail [28].

Assemblies produced from reads corrected with the
four programs are very similar according to these mea-
sures, with Quake and Lighter yielding the longest contigs
and the greatest genome coverage. Surprisingly, the post-
correction assemblies have more differences at nucleotide
level compared to the pre-correction assemblies, perhaps
due to spurious corrections.

GAGE human chromosome 14
We also evaluated Lighter’s effect on alignment and
assembly using a dataset from the GAGE project [30]. The
dataset consists of real 101 × 101 bp paired-end reads
covering human chromosome 14 to 35× average coverage
(approximately 36.5 million reads). For each error correc-
tor, we tested different k-mer sizes (19, 23, 27 and 31)
and chose the size that yielded the greatest total number
of matching aligned nucleotides. For the assembly exper-
iment, we set the k-mer size for each error corrector to

match that selected in the alignment experiment. Also for
each assembly experiment, we tested different k-mer sizes
for Velvet (47, 53, 57, 63 and 67) and chose the one that
yielded the greatest NG50.

The effect of error correction on Bowtie 2 alignment
statistics are shown in Table 5. We used Bowtie 2 with
default parameters to align the reads to an index of the
human chromosome 14 sequence of the hg19 build of
the human genome. As before, Lighter yields the greatest
improvement in fraction of reads aligned, whereas Quake
and BLESS yield the greatest improvement in fraction of
aligned bases that match the reference, with Lighter very
close behind.

We repeated this experiment using BWA-MEM as the
aligner instead of Bowtie 2 (Additional file 1: Table S6) and
found that the tools performed similarly.

We also tested the effect of error correction on de novo
assembly of this dataset using Velvet for assembly and
Quast to evaluate the quality of the assembly. For each
tool we tested different k-mer sizes (19, 23, 27 and 31)
and chose the one that yielded the greatest NG50. Results
are shown in Table 6. Overall, Lighter’s accuracy on real
data is comparable to other error correction tools, with
Lighter and BLESS achieving the greatest N50, NG50 and
coverage.

Caenorhabditis elegans
Using the same procedure as in the previous section, we
measured the effect of error correction on another large
real dataset using the reads from accession [NCBI-SRA
SRR065390]. Results are shown in Tables 7 and 8. This

Table 6 De novo assembly statistics for the GAGE chromosome 14 dataset

N50 NG50 Edits/100 kbp Misassemblies Coverage (%)

Original 5,290 3,861 139.46 1263 78.778

Quake 4,829 3,520 141.59 1201 78.358

SOAPec 5,653 4,143 127.8 623 79.087

Musket 5,587 4,105 131.17 559 79.175

BLESS 5,898 4,345 128.4 581 79.279

Lighter 5,827 4,280 127.69 618 79.287
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Table 7 Alignment statistics for the Caenorhabditis elegans dataset

Read level Base level

k Mapped reads Increase (%) Matches/aligned base (%) Increase (%)

Original – 63,017,855 – 99.048 –

Quake 19 60,469,150 −4.04 99.834 0.79

SOAPec 19 63,032,768 0.02 99.185 0.14

Musket 23 63,060,601 0.07 99.420 0.38

BLESS 31 64,150,807 1.80 99.744 0.70

Lighter 23 63,081,655 0.10 99.469 0.43

run contains real 100 × 100 bp paired-end reads cover-
ing the C. elegans genome (WBcel235) to 66× average
coverage (approximately 67.6 million reads). k-mer sizes
for the error correctors and for Velvet were selected in
the same way as for the chromosome 14 experiment. The
alignment comparison shows BLESS achieving the great-
est increase in fraction of reads aligned, and BLESS and
Quake achieving the greatest fraction of aligned bases that
match the reference, probably due to their trimming pol-
icy. Lighter does the best of the non-trimming tools in
the alignment comparison. In the assembly comparison,
Lighter and SOAPec achieve the greatest N50, NG50 and
coverage.

Speed, space usage and scalability
We compared Lighter’s peak memory usage, disk usage
and running time with those of Quake, Musket and
BLESS. These experiments were run on a computer run-
ning Red Hat Linux 4.1.2-52 with 48 2.1-GHz AMD
Opteron processors and 512 GB memory. The input
datasets are the same simulated E. coli datasets with 1%
error rate discussed previously, plus the GAGE human
chromosome 14 dataset and C. elegans dataset.

The space usage is shown in Table 9. BLESS and Lighter
achieve constant memory footprint across sequencing
depths. While Musket uses less memory than Quake, it
uses more than either BLESS or Lighter. BLESS achieves
constant memory footprint across sequencing depths,
but consumes more disk space for datasets with deeper
sequencing. Note that BLESS can be configured to trade
off between peak memory footprint and the number of

temporary files it creates. Lighter’s algorithm uses no disk
space. Lighter’s only sizable data structures are the two
Bloom filters, which reside in memory.

To assess scalability, we also compared running times
for Quake, Musket and Lighter using different numbers of
threads. For these experiments we used the simulated E.
coli dataset with 70× coverage and 1% error. Results are
shown in Figure 6. Note that Musket requires at least two
threads due to its master–slave design. BLESS can only be
run with one thread and its running time is 1,812 s, which
is slower than Quake.

Discussion
At Lighter’s core is a method for obtaining a set of correct
k-mers from a large collection of sequencing reads. Unlike
previous methods, Lighter does this without counting k-
mers. By setting its parameters appropriately, its memory
usage and accuracy can be held almost constant with
respect to depth of sequencing. It is also quite fast and
memory-efficient, and requires no temporary disk space.

Though we demonstrate Lighter in the context of
sequencing error correction, Lighter’s counting-free
approach could be applied in other situations where a
collection of solid k-mers is desired. For example, one
tool for scaling metagenome sequence assembly uses a
Bloom filter populated with solid k-mers as a memory-
efficient, probabilistic representation of a De Bruijn graph
[19]. Other tools use counting Bloom filters [31,32] or
the related CountMin sketch [33] to represent De Bruijn
graphs for compression [20] or digital normalization and
related tasks [34]. We expect ideas from Lighter could

Table 8 De novo assembly statistics for the Caenorhabditis elegans dataset

N50 NG50 Edits/100 kbp Misassemblies Coverage (%)

Original 17,330 17,317 27.66 441 94.873

Quake 13,887 13,668 27.19 559 94.320

SOAPec 19,369 19,457 25.71 449 95.308

Musket 18,761 18,917 28.02 438 95.288

BLESS 17,673 17,693 29.24 524 94.968

Lighter 19,222 19,333 26.9 434 95.332
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Table 9 Memory usage (peak resident memory) and disk usage of error correction tools

35× 70× 140× chr14 Caenorhabditis elegans

Mem Disk Mem Disk Mem Disk Mem Disk Mem Disk

Quake 2.8 GB 3.3 GB 7.1 GB 6.0 GB 14 GB 12 GB 48 GB 57 GB 86 GB 99 GB

Musket 119 MB 0 165 MB 0 225 MB 0 1.4 GB 0 2.5 GB 0

BLESS 11 MB 918 MB 11 MB 1.8 GB 13 MB 3.5 GB 138 MB 15 GB 175 MB 36 GB

Lighter 35 MB 0 35 MB 0 35 MB 0 514 MB 0 514 MB 0

chr14, chromosome 14; mem, memory.

be useful in reducing the memory footprint of these and
other tools.

An important question is how Lighter’s performance
can be improved for datasets where coverage is signifi-
cantly non-uniform, and where solid k-mers can there-
fore have widely varying abundance. In practice, datasets
have non-uniform coverage because of ploidy, repeats and
sequencing bias. Also, assays such as exome and RNA
sequencing intentionally sample non-uniformly from the
genome. Even in standard whole-genome DNA sequenc-
ing of a diploid individual, k-mers overlapping heterozy-
gous variants will be about half as abundant as k-mers
overlapping only homozygous variants. Lighter’s ability to
classify the heterozygous k-mers deteriorates as a result,
as shown in the section Effect of ploidy on Bloom filter B
above. Hammer [10] relaxes the uniformity-of-coverage
assumption and favors corrections that increase the mul-
tiplicity of a k-mer, without using a threshold to separate
solid from non-solid k-mers. A question for future work
is whether something similar can be accomplished in

Lighter’s non-counting regime, or whether some count-
ing (e.g. with a counting Bloom filter [31,32] or CountMin
sketch [33]) is necessary.

A related issue is systematically biased sequencing
errors, i.e. errors that correlate with the sequence con-
text. One study demonstrates this bias in data from the
Illumina GA II sequencer [35]. This bias boosts the mul-
tiplicity of some incorrect k-mers, causing problems for
error correction tools. For Lighter, increased multiplic-
ity of incorrect k-mers causes them to appear more
often (and spuriously) in Bloom filters A and/or B, ulti-
mately decreasing accuracy. It has also been shown that
these errors tend to have low base quality and tend to
occur only on one strand or the other [35]. Lighter’s
policy of using a fifth-percentile threshold to classify low-
quality positions as untrusted will help in some cases.
However, because Lighter canonicalizes k-mers (as do
many other error correctors), it loses information about
whether an error tends to occur on one strand or the
other.
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Lighter has three parameters the user must specify: the
k-mer length k, the genome length G and the subsam-
pling fraction α. While the performance of Lighter is not
overly sensitive to these parameters (see Figures 3 and 5),
it is not desirable to leave these settings to the user. In
the future, we plan to extend Lighter to estimate G, along
with appropriate values for k and α, from the input reads.
This could be accomplished with methods proposed in the
KmerGenie [36] and KmerStream [22] studies.

Lighter is free open-source software released under the
GNU GPL license, and has been compiled and tested on
Linux, Mac OS X and Windows computers. The software
and its source are available from [16].

Additional file

Additional file 1: Supplementary material for ‘Lighter: fast and
memory-efficient error correction without counting’.
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