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Abstract: Ischemic strokes are associated with significant morbidity and mortality, but currently
there are no reliable prognostic or diagnostic blood biomarkers. MicroRNAs (miRNAs) regulate
various molecular pathways and may be used as biomarkers. Using RNA-Seq, we conducted
comprehensive circulating miRNA profiling in patients with ischemic stroke compared with healthy
controls. Samples were collected within 24 h of clinical diagnosis. Stringent analysis criteria of
discovery (46 cases and 95 controls) and validation (47 cases and 96 controls) cohorts led to the
identification of 10 differentially regulated miRNAs, including 5 novel miRNAs, with potential
diagnostic significance. Hsa-miR-451a was the most significantly upregulated miRNA (FC; 4.8, FDR;
3.78 × 10−85), while downregulated miRNAs included hsa-miR-574-5p and hsa-miR-142-3p, among
others. Importantly, we computed a multivariate classifier based on the identified miRNA panel to
differentiate between ischemic stroke patients and healthy controls, which showed remarkably high
sensitivity (0.94) and specificity (0.99). The area under the ROC curve was 0.97 and it is superior to
other current available biomarkers. Moreover, in samples collected one month following stroke, we
found sustained upregulation of hsa-miR-451a and downregulation of another 5 miRNAs. Lastly,
we report 3 miRNAs that were significantly associated with poor clinical outcomes of stroke, as
defined by the modified Rankin scores. The clinical translation of the identified miRNA panel may
be explored further.
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1. Introduction

Stroke is the second highest cause of death by disease and the leading cause of disabil-
ity globally [1]. It is recognized as a neurological disorder associated with cerebrovascular
anomalies, which lead to cell death in the brain via disruption in blood supply (ischemic
stroke) or rupture/abnormal vasculature (hemorrhagic stroke) [2]. Importantly, cerebral
injury in stroke involves neuronal cell loss and damage to astrocytes and white matter,
which may cause devastating immediate and long-term effects [3]. Ischemic strokes account
for around 80% of all stroke cases and comprise large-artery atherosclerosis, cardioembolic,
small-vessel occlusion, and strokes of other determined or undetermined etiologies [4].
Deciphering the dynamic gene expression changes during stroke has the potential for
improving disease management.

MicroRNAs (miRNAs) comprise small noncoding RNAs, which can regulate a mul-
titude of cellular and molecular pathways and may be used as diagnostic or prognostic
biomarkers for various human pathologies due to their high stability in peripheral blood [5].
Stroke diagnosis and treatment selection is predominantly dependent on clinical diagnosis
and neuroimaging. However, the biochemical and molecular changes induced by stroke
provide opportunities to explore and identify novel circulating blood biomarkers for diag-
nosing, differentiating between stroke subtypes, characterizing occlusions, and treatment
selection for reperfusion therapies. While proteins such as brain natriuretic peptide (BNP),
matrix metalloproteinase-9 (MMP9), and glial proteins, including GFAP and S100β, have
been identified as potential biomarkers for stroke [6,7], accumulating data have explored
circulating miRNAs as biomarkers for acute stroke. Notably, studies have shown variations
in multiple circulating miRNAs in patients with acute ischemic stroke [8]. However, identi-
fying specific miRNAs in clinical samples and probing their potential molecular targets
may identify the pathways affected by stroke. In addition, the risk of stroke is significantly
increased within 48 h of transient ischemic attack (TIA), which may not be predictable
by clinicopathologic factors [9], and miRNA changes may be helpful in the prediction of
patients at high risk of stroke in the early days following an acute stroke.

In the present study, we performed comprehensive circulating miRNA profiling of
patients with ischemic stroke and compared their levels with healthy controls. Importantly,
we also collected follow-up samples from the same patients to identify sustained dysregu-
lation of circulating miRNAs. The most significant miRNA found was hsa-miR-451, which
was upregulated in stroke patients compared with healthy controls, whereas 9 other miR-
NAs were significantly downregulated. Moreover, the upregulation of hsa-miR-451a and
the downregulation of 5 other miRNAs was sustained in follow-up patients, indicating the
persistence of their impact. Notably, our panel of dysregulated miRNAs in stroke patients
showed remarkably high discriminatory performance between stroke patients and healthy
controls. We also explored the potential targets of these miRNAs and found associations
with previously reported stroke-related pathways. Lastly, we identified 3 miRNAs that
were associated with poor clinical outcomes of stroke as assessed by the modified Rankin
scale (mRS). Overall, findings of this study highlight unique circulating miRNAs in patients
with ischemic stroke that could be used as diagnostic biomarkers for disease onset and may
be exploited further to restore normal physiological pathways for therapeutic benefits.

2. Results
2.1. Study Design

Serum samples from patients with stroke (base line and follow-up) and healthy con-
trols were analyzed for circulating miRNAs for identifying differentially regulated miRNAs.
An overview of the study design is depicted in Figure 1. The workflow involved random
allocation of each study population into discovery and validation cohorts, with comparable
distribution of covariates (age and gender). The circulating miRNA profiles of stroke
patients and healthy controls were first compared between discovery cohorts considering
age and gender as covariates, and the analysis then replicated in validation cohorts. The
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overlapping differentially regulated miRNA transcripts between discovery and validation
cohorts were reported as validated miRNAs in each comparison.
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Cohorts 

We compared the circulating miRNA profiles of serum samples from stroke baseline 
(BL) patients with healthy controls. We first compared the miRNA profiles of stroke BL 
patients with healthy controls in the discovery cohorts (Figure 2A–C) and found 195 dif-
ferentially regulated miRNAs (fold change; FC > 2 and false discovery rate; FDR < 0.05). 
Using a more stringent criteria of log fold change ≥ 2 (Log2FC ≥ 2) revealed upregulation 
of 3 miRNAs and downregulation of 25 miRNAs in stroke BL patients compared with 
healthy controls in the discovery cohort (Figure 2A–C). Next, we repeated the analysis in 
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> 2 and FDR < 0.05), of which 11 miRNAs showed differential expression at a more strin-
gent cutoff of Log2FC ≥ 2 (Figure 2D–F).  

Figure 1. Study design. (A) Serum samples from stroke patients and healthy controls were collected
to isolate circulating miRNAs and generate libraries for RNA-Seq. Multiple bioinformatics tools
were utilized for analyses and visualization of sequencing data. (B) Study populations included
healthy controls, stroke baseline (BL), and stroke follow-up (FU) patients. Each study population was
randomly divided into discovery and validation (replication) cohorts for downstream analyses for
the identification of differentially regulated miRNAs.

2.2. Identification of Differentially Regulated Circulating miRNAs in Discovery and Validation
Cohorts

We compared the circulating miRNA profiles of serum samples from stroke baseline
(BL) patients with healthy controls. We first compared the miRNA profiles of stroke
BL patients with healthy controls in the discovery cohorts (Figure 2A–C) and found
195 differentially regulated miRNAs (fold change; FC > 2 and false discovery rate; FDR < 0.05).
Using a more stringent criteria of log fold change ≥ 2 (Log2FC ≥ 2) revealed upregulation
of 3 miRNAs and downregulation of 25 miRNAs in stroke BL patients compared with
healthy controls in the discovery cohort (Figure 2A–C). Next, we repeated the analysis in
the validation cohort (Figure 2D–F) and found 138 differentially expressed miRNAs (FC > 2
and FDR < 0.05), of which 11 miRNAs showed differential expression at a more stringent
cutoff of Log2FC ≥ 2 (Figure 2D–F).

2.3. Validated Differentially Regulated Circulating miRNAs in Stroke BL Patients Compared with
Healthy Controls

For robust identification of differentially regulated miRNAs between stroke BL patients
and healthy controls, we investigated the overlapping miRNAs between discovery and
validation cohorts. Combined, 123 miRNAs showed overlap between discovery and
validation datasets (FC > 2 and FDR < 0.05, Supplementary Table S1). However, using a
more stringent cutoff of Log2FC ≥ 2, results revealed upregulation of 1 and downregulation
of 9 miRNAs (Figure 3A,B). hsa-miR-451a was the sole miRNA validated as upregulated in
stroke BL patients compared with healthy controls, whereas the 9 downregulated miRNAs
included hsa-miR-574-5p, hsa-miR-142-3p, hsa-miR-6721-5p, hsa-miR-4446-3p, hsa-miR-
485-3p, hsa-miR-676-3p, hsa-miR-379-5p, hsa-miR-149-5p, and hsa-miR-411-5p. We also
compared the counts per million (CPM) values of the 10 validated miRNAs to disclose
the significant differences between stroke BL patients and healthy controls (Figure 3C).
Reassuringly, data from discovery, validation, or combined cohorts showed consistent
and comparable significance (FDR) and direction of effect (Table 1). Of note, although we
adjusted for differences in age and gender between stroke patients and healthy controls
by including them as covariates in our analysis model, we also performed the analysis
in males only from the 2 cohorts, which resulted in the identification of the same panel
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of 10 differentially expressed miRNAs (Supplementary Table S2). We did not perform
analysis on females only due to the small number of female patients in our study cohorts.
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Figure 2. Circulating miRNA profiling of stroke baseline patients compared with healthy controls.
(A) Volcano plot shows overall differentially regulated miRNAs in stroke baseline patients from
the discovery cohort; red dots represent upregulated, blue represent downregulated, and gray dots
represent unchanged miRNAs based on significance (FDR < 0.05) and log2FC > 2 (dotted vertical
lines). (B) Bar plot represents the number of upregulated (red bar) and downregulated (blue bar)
miRNAs using the specified cutoffs. (C) Column graph shows the Log2FC + standard error of the
mean (SEM) of the 3 upregulated and 25 downregulated miRNAs in the discovery cohort. (D) Volcano
plot, (E) bar plot, and (F) column graph show the 1 upregulated and 10 downregulated miRNAs in
the validation cohort.

Table 1. Circulating miRNAs in stroke baseline patients versus healthy controls.

Discovery Validation Combined
miRNA Log2FC 1 FDR 2 Log2FC 1 FDR 2 Log2FC 1 FDR 2

hsa-miR-451a 2.4 1.28 × 10−46 2.3 1.36 × 10−35 2.3 3.78 × 10−85

hsa-miR-574-5p −2.2 5.17 × 10−21 −2.0 5.15 × 10−23 −2.1 7.25 × 10−53

hsa-miR-142-3p −2.5 2.69 × 10−53 −2.1 1.54 × 10−42 −2.3 2.34 × 10−110

hsa-miR-6721-5p −2.7 2.08 × 10−13 −2.2 4.17 × 10−11 −2.5 9.05 × 10−34

hsa-miR-4446-3p −2.1 1.67 × 10−13 −2.2 3.09 × 10−13 −2.0 1.13 × 10−26

hsa-miR-485-3p −2.9 1.71 × 10−17 −2.5 2.82 × 10−15 −2.4 1.33 × 10−30

hsa-miR-676-3p −2.5 4.34 × 10−08 −2.5 8.88 × 10−08 −2.5 3.76 × 10−21

hsa-miR-379-5p −2.7 4.76 × 10−26 −2.5 2.01 × 10−27 −2.5 1.67 × 10−50

hsa-miR-149-5p −3.6 3.57 × 10−04 −2.9 7.29 × 10−04 −3.3 4.24 × 10−16

hsa-miR-411-5p −3.1 8.11 × 10−18 −3.0 8.78 × 10−17 −3.0 1.11 × 10−40

1 Log2 fold change; 2 false discovery rate.
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Figure 3. Validated differentially regulated circulating miRNAs between stroke baseline patients
and healthy controls. (A) Venn diagram shows the total number of overlapping downregulated and
upregulated miRNAs in the stroke baseline versus healthy control comparison between discovery
(gray) and validation (light blue) cohorts. (B) Column graph shows the Log2FC + standard error of the
mean (SEM) of 1 upregulated and 9 downregulated validated miRNAs. (C) Box and whiskers plots
show the difference in counts per million (CPM) in stroke baseline (BL) and healthy controls (HC)
in discovery (gray) and validation (light blue) cohorts of the 10 differentially regulated, validated
miRNAs in stroke BL versus healthy controls. Mean with minimum and maximum values, and upper
and lower quartiles are depicted for each data set with significant comparisons annotated by an
asterisk (*) on top (p < 0.0001).

In addition, we used the miRDB database [10] to explore the molecular targets of the
validated 10 miRNAs in stroke patients in order to highlight their potential roles in stroke.
Herein, we reported the top 3 molecular targets of each miRNA with the highest prediction
scores (Table 2).

Table 2. Target genes of 10 differentially regulated circulating miRNAs in stroke baseline patients.

miRNA Target-1 Score Target-2 Score Target-3 Score

hsa-miR-451a OSR1 92 CUX2 90 PSMB8 90
hsa-miR-574-5p CALCOCO1 100 FOXI2 100 C11ORF96 97
hsa-miR-142-3p ZEB2 100 TASOR2 100 RICTOR 99
hsa-miR-6721-5p NECTIN1 100 KIF21B 100 SPRN 100
hsa-miR-4446-3p DR1 98 CBX7 96 MBNL2 96
hsa-miR-485-3p CREBRF 100 ELAVL2 99 PDZD2 99
hsa-miR-676-3p PTPRB 98 SMURF2 97 ANP32B 95
hsa-miR-379-5p TXLNG 98 MTMR2 97 EIF4G2 94
hsa-miR-149-5p CACHD1 98 ELP5 98 VPS53 98
hsa-miR-411-5p MITD1 97 ELFN1 97 RNF149 97

2.4. Prediction Performance of the Identified Circulating miRNAs in Stroke Patients

To determine the potential diagnostic capacity of the identified dysregulated miRNA
panel, we performed orthogonal partial-least-squares-discriminant analysis (OPLS-DA)
in the discovery and validation cohorts (Figure 4A,B). OPLS-DA was first trained using
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the top differentially regulated miRNAs in the discovery cohort data (Log2FC ≥ 2 and
FDR < 0.05, n = 27 miRNAs, Supplementary Table S3) and then tested on the validation
cohort data. The classifier generated a sensitivity of 0.94, a specificity of 0.99, and an area
under the curve (AUC) of 97% (Figure 4C), thereby showing high predictive ability of the
identified gene panel for patients with stroke.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 16 
 

 

Table 2. Target genes of 10 differentially regulated circulating miRNAs in stroke baseline patients. 

miRNA Target-1 Score Target-2 Score Target-3 Score 
hsa-miR-451a OSR1 92 CUX2 90 PSMB8 90 

hsa-miR-574-5p CALCOCO1 100 FOXI2 100 C11ORF96 97 
hsa-miR-142-3p ZEB2 100 TASOR2 100 RICTOR 99 

hsa-miR-6721-5p NECTIN1 100 KIF21B 100 SPRN 100 
hsa-miR-4446-3p DR1 98 CBX7 96 MBNL2 96 
hsa-miR-485-3p CREBRF 100 ELAVL2 99 PDZD2 99 
hsa-miR-676-3p PTPRB 98 SMURF2 97 ANP32B 95 
hsa-miR-379-5p TXLNG 98 MTMR2 97 EIF4G2 94 
hsa-miR-149-5p CACHD1 98 ELP5 98 VPS53 98 
hsa-miR-411-5p MITD1 97 ELFN1 97 RNF149 97 

2.4. Prediction Performance of the Identified Circulating miRNAs in Stroke Patients 
To determine the potential diagnostic capacity of the identified dysregulated miRNA 

panel, we performed orthogonal partial-least-squares-discriminant analysis (OPLS-DA) 
in the discovery and validation cohorts (Figure 4A,B). OPLS-DA was first trained using 
the top differentially regulated miRNAs in the discovery cohort data (Log2FC ≥ 2 and FDR 
< 0.05, n = 27 miRNAs, Supplementary Table S3) and then tested on the validation cohort 
data. The classifier generated a sensitivity of 0.94, a specificity of 0.99, and an area under 
the curve (AUC) of 97% (Figure 4C), thereby showing high predictive ability of the iden-
tified gene panel for patients with stroke. 

 
Figure 4. Diagnostic capacity of differentially regulated circulating miRNAs in stroke patients. The 
orthogonal partial-least-squares-discriminant analysis (OPLS-DA) was performed using the top dif-
ferentially regulated miRNAs (n = 27) in the discovery cohort data. The classifier was trained on 

Figure 4. Diagnostic capacity of differentially regulated circulating miRNAs in stroke patients. The
orthogonal partial-least-squares-discriminant analysis (OPLS-DA) was performed using the top
differentially regulated miRNAs (n = 27) in the discovery cohort data. The classifier was trained
on data from all participants in (A) discovery cohort (n = 142) and tested on the (B) validation
cohort (n = 143). Scatter plots show the predictive component to discriminate stroke cases from
healthy controls (green dots—x-axis) versus the orthogonal component representing a multivariate
confounding effect that is independent of stroke (blue dots—y-axis). (C) ROC curve analysis generated
an overall sensitivity of 0.94, specificity of 0.99, and AUC of 0.97.

2.5. Identification of Sustained Dysregulation of Circulating miRNAs in Stroke Patients

The onset of stroke is a time-dependent event, which lasts for short periods of time
but can have long-term effects on the body. Thus, to investigate the roles of dysregulated
miRNAs in stroke patients over a longer period of time, we collected samples from the
same clinically diagnosed stroke patients one month after diagnosis to see if there was
sustained dysregulation of circulating miRNAs in stroke follow-up (FU) patients. Analysis
of discovery cohort identified 145 miRNAs with FC > 2 and FDR < 0.05. However, using
stringent cutoff of Log2FC ≥ 2, 24 miRNAs were downregulated, and 2 miRNAs were
upregulated (Figure 5A–C) in the FU discovery cohort. Data from the validation cohort
showed 138 miRNAs with FC > 2 and FDR < 0.05, of which 16 miRNAs (10 downregulated
and 6 upregulated) showed Log2FC ≥ 2 (Figure 5D–F). Combined, 88 miRNAs showed
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overlap between discovery and validation datasets (FC > 2 and FDR < 0.05, Supplementary
Table S4). Using stringent Log2FC criteria, 6 downregulated miRNAs and 1 upregulated
miRNA was identified (Figure 5G). Moreover, data from discovery, validation, or combined
cohorts in stroke FU patients also showed consistent and comparable significance (FDR)
and direction of effect (Table 3).
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Figure 5. Circulating miRNA profiling of stroke follow-up patients compared with healthy controls. 
(A) Volcano plot shows overall differentially regulated miRNAs in stroke follow-up patients from 
the discovery cohort; red dots represent upregulated, blue represent downregulated, and gray dots 
represent unchanged miRNAs based on significance (FDR < 0.05) and log2FC > 2 (dotted vertical 
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Figure 5. Circulating miRNA profiling of stroke follow-up patients compared with healthy controls.
(A) Volcano plot shows overall differentially regulated miRNAs in stroke follow-up patients from
the discovery cohort; red dots represent upregulated, blue represent downregulated, and gray dots
represent unchanged miRNAs based on significance (FDR < 0.05) and log2FC > 2 (dotted vertical
lines). (B) Bar plot represents the number of upregulated (red bar) and downregulated (blue bar)
miRNA using the specified cutoffs. (C) Column graph shows the Log2FC + standard error of the mean
(SEM) of the 2 upregulated and 24 downregulated miRNAs in the discovery cohort. (D) Volcano plot,
(E) bar plot, and (F) column graph show the 6 upregulated and 10 downregulated miRNAs in the
validation cohort. (G) Venn diagram shows the total number of overlapping 6 downregulated and 1
upregulated miRNA in the stroke follow up versus healthy control comparison between discovery
(gray) and validation (light blue) cohorts. The 7 validated miRNAs are also listed.

Table 3. Circulating miRNAs in stroke follow-up patients versus healthy controls.

Discovery Validation Combined
miRNA Log2FC 1 FDR 2 Log2FC 1 FDR 2 Log2FC 1 FDR 2

hsa-miR-451a 2.2 1.09 × 10−19 2.6 4.46 × 10−22 2.3 2.03 × 10−45

hsa-miR-224-5p −2.5 2.68 × 10−17 −2.1 1.17 × 10−08 −2.3 2.04 × 10−27

hsa-miR-6721-5p −2.8 2.07 × 10−08 −2.2 5.38 × 10−05 −2.4 1.98 × 10−15

hsa-miR-142-3p −2.3 2.85 × 10−34 −2.2 2.16 × 10−29 −2.3 6.91 × 10−77

hsa-miR-411-5p −2.9 2.13 × 10−11 −2.5 7.66 × 10−07 −2.8 4.52 × 10−25

hsa-miR-379-5p −2.8 4.15 × 10−22 −2.6 1.43 × 10−13 −2.7 1.17 × 10−44

hsa-miR-149-5p −3.4 5.20 × 10−04 −3.0 2.00 × 10−03 −3.3 1.06 × 10−11

1 Log2 fold change; 2 false discovery rate.
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We then compared data from the base line and the follow-up samples and found
that out of the 10 differentially regulated circulating miRNAs in stroke BL patients (listed
in Table 1), 1 miRNA (hsa-miR-451a) showed sustained upregulation, while 5 miRNAs
(hsa-miR-6721-5p, hsa-miR-142-3p, hsa-miR-411-5p, hsa-miR-379-5p, and hsa-miR-149-5p)
showed sustained downregulation in stroke FU patients compared with healthy controls.
These data indicate the prolonged involvement of these miRNAs in affecting downstream
molecular targets in stroke patients.

2.6. Circulating miRNAs and Clinical Outcomes of Stroke

To identify circulating miRNAs that may be associated with clinical outcomes of stroke,
we divided patients into two groups based on 90-day prognosis as assessed by the modified
Rankin scores (mRS) (Supplementary Table S5); stroke good outcome (stroke GO; mRS = 0
to 2), and stroke poor outcome (stroke PO; mRS = 3 to 6), and compared their miRNA
profiles with healthy controls (Figure 6).
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Figure 6. Associations between circulating miRNAs and clinical outcomes of ischemic stroke. Circu-
lating miRNA profiles of stroke BL patients were compared with healthy controls based on the 90-day
clinical follow up (mRS scores). Stroke BL patients with good outcome (discovery cohort; n = 77
and validation cohort; n = 84) and poor outcome (discovery cohort; n = 18 and validation cohort;
n = 12) were compared with healthy controls (discovery cohort; n = 46 and validation cohort; n = 47).
(A) Venn diagram lists the differentially regulated and overlapping circulating miRNAs in healthy
controls versus stroke good outcome and stroke poor outcome patients. (B) Box and whiskers plots
show the difference in counts per million (CPM) in stroke poor outcome (PO) and healthy controls
(HC) in discovery (gray) and validation (light blue) cohorts of the 3 differentially regulated miRNAs,
which were unique to stroke poor outcome patients. Mean with minimum and maximum values,
and upper and lower quartiles are depicted for each data set with significant comparisons annotated
by an asterisk (*) on top (p < 0.0005).

We found that the 10 differentially regulated miRNAs identified from the comparison
of stroke BL patients with healthy controls (Table 1) were also validated in the analysis
of stroke BL patients with good outcome versus healthy controls (Figure 6A). On the
other hand, we identified 7 differentially regulated miRNAs between poor outcome stroke
patients and healthy controls. Importantly, out of these 7 miRNAs, 3 (hsa-miR-342-5p, hsa-
miR-885-3p and hsa-miR-375-3p) were exclusively downregulated in stroke patients with
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worse prognosis (Figure 6A,B). These data reflect the association between these 3 miRNAs
and poor clinical outcomes of ischemic stroke.

3. Discussion

In this study, we identified 10 differentially regulated circulating miRNAs in stroke
patients compared with healthy controls, of which miR-451a, miR-574-5p, miR-142-3p, miR-
411-5p, and miR-379-5p were previously associated with stroke, while the other 5 (miR-676-
3p, miR-149-5p, miR-4446-3p, miR-6721-5p, and miR-485-3p) are novel. Notably, hsa-miR-
451a was the most significantly upregulated miRNA in stroke patients (Log2FC: 2.27). In
agreement with our findings, miR-451a has been previously shown to be elevated in patients
with acute ischemic stroke and transient ischemic attack (TIA) patients [11]. In addition,
Kong et al. showed that miR-451a is upregulated in circulating natural killer (NK) cells in
ischemic stroke patients and its inhibition enhances NK cell activation [12]. To elucidate the
role of miR-451a in stroke, we explored its molecular targets. Interestingly, we found that the
top 3 molecular targets of miR-451a (OSR1, CUX2, PSMB8) have been previously associated
with stroke or studied in relation with brain damage. WNK3-SPAK/OSR1 cation-chloride
cotransporter pathway has been reported as a potential therapeutic target in ischemic stroke
as knocking down SPAK/OSR1 improved neuroprotection [13]. CUX2 has been reported
to be associated with atrial fibrillation in Japanese populations [14] and also as a risk factor
for ischemic stroke [15], while PSMB8 is a component of immunoproteasome LMP7, which
is elevated in ischemic stroke and contributes to neuroinflammation [16]. Combined, these
data show the dynamic roles of miR-451a in ischemic stroke and support its utilization as a
biomarker for disease identification. Moreover, the sustained upregulation of miR-451a
in stroke FU patients demonstrates its ongoing and active modulation of stroke-affected
pathways.

Among the downregulated miRNAs in our study, miR-574-5p, miR-142-3p, miR-411-
5p, and miR-379-5p have previously been linked to stroke and cerebral injury. In line with
our results, hsa-miR-574-5p was found to be downregulated in stroke patients and has been
proposed as a biomarker for stroke diagnosis [17], while single nucleotide polymorphisms
(SNPs) in one of its targets, FOXI2, has been identified as a risk factor for large vessel
ischemic stroke [18]. Hsa-miR-142-3p was significantly downregulated in various stroke
subtypes [19], consistent with our data, and expression of its target ZEB2 has been reported
to be significantly increased following ischemic stroke [20]. Moreover, hsa-miR-411-5p
was slightly upregulated in acute ischemic stroke patients receiving recombinant tissue
plasminogen activator therapy compared with untreated patients [21]. However, our data
shows downregulation of miR-411-5p and differences in study design could account for
these discrepancies. Lastly, in accordance with our findings, miR-379-5p was downreg-
ulated in patients with ischemic stroke [22], while its neuroprotective roles in targeting
MAP3K2 and JNK/c-Jun signaling to attenuate neuronal autophagy were also reported
recently [22].

Our analysis identified five novel downregulated miRNAs in stroke patients (miR-
676-3p, miR-149-5p, miR-4446-3p, miR-6721-5p, and miR-485-3p). Although these were
not previously reported to be dysregulated in stroke, some of their molecular targets
have been associated with stroke pathology. For example, the molecular target of hsa-
miR-676-3p, SMURF2, is involved in neurodifferentiation in recovery phase following
ischemic stroke [23], while its other targets, PTPRB [24] and ANP32B [25], have also been
previously investigated in experimental stroke models. Notably, PTPRB encodes the protein
tyrosine phosphatase receptor type B (also known as vascular endothelial protein tyrosine
phosphatase—VE-PTP), which is involved in the maintenance of vascular integrity and is a
potential therapeutic target for vascular diseases, including stroke [26]. Targeting VE-PTP
triggers blood vessel enlargement and averts vascular leakage via Tie-2 signaling, which
may aid drug delivery across the blood–brain barrier and also prevent cerebral leakage and
edema [27]. Additionally, the neuroprotective role of KIF2A, the molecular target of hsa-
miR-149-5p, has been attributed to NF-kB pathway and presented as a therapeutic target
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for cerebral ischemic injury [28]. Moreover, CBX7 [29] (target of miR-4446), SPRN [30] and
STK35 [31] (targets of miR-6721-5p) have also been studied in stroke models. SPRN encodes
the shadow of prion protein, associated with neurodegenerative human prion diseases
including Creutzfeldt–Jakob disease [32], while knockdown of STK35 in endothelial cells
alleviates their migratory ability [33]. Thus, downregulation of these miRNAs in patients
with ischemic stroke may affect important pathways associated with neuroprotective roles
and preservation of adequate vasculature. In addition, while miR-485-3p was significantly
dysregulated in ischemic rat brain [34] and has been potentially associated with the severity
of heart failure [35], its levels and its molecular targets have not been explored in relation
to stroke.

Furthermore, some of the miRNAs reported herein have been previously associated
with other pathological conditions. For instance, hsa-miR-451a has been reported as a
tumor suppressor in gastric cancer [36] and hepatocellular carcinoma [37], hsa-miR-574-5p
has been proposed as a biomarker for non-small cell lung cancer [38] and as a metabolic
regulator in gestational diabetes mellitus [39], while dysregulation of hsa-miR-6721-5p,
hsa-miR-142-3p, and hsa-miR-149-5p has been reported in Alzheimer’s disease [40].

Previous studies have predominantly applied quantitative real-time PCR or microarray
analyses on serum samples from stroke patients to identify potential biomarkers. For
instance, investigating circulating miRNA levels in ischemic stroke patients compared with
healthy controls showed downregulation and selective upregulation of certain miRNAs in
other types of ischemic stroke [41]. In addition, selective exosomal miRNAs were shown
to be significantly increased in ischemic stroke, with some miRNAs showing potentials
of differentiating between early acute phase and recovery phase [42,43], while elevated
serum expression levels of certain miRNAs showed correlation with high sensitivity C-
reactive protein (hs-CRP) and MMP-9 in ischemic stroke patients [44]. In addition, some
miRNAs have been reported to potentially differentiate between ischemic stroke and
TIA patients [45]. In contrast, comprehensive miRNA profiling via RNA-Seq to detect
a wider range of miRNA transcripts in stroke patients remains largely unexplored. For
instance, Tiedt et al., performed RNA-Seq on a modest sample size (n = 20) of patients
with ischemic stroke compared with healthy controls (n = 20) and validated their findings
in a larger cohort (n = 200) by RT-PCR and reported 3 miRNAs as potential biomarkers
for acute ischemic stroke with sensitivity and specificity superior to routine imaging
techniques [46]. He et al. investigated the prognostic significance of miRNAs in patients
with acute ischemic stroke receiving reperfusion therapies and exhibiting varying disease
outcomes (n = 10), and reported associations between elevated levels of selective miRNA
levels and adverse outcomes [47]. Recently, Mens et al. analyzed samples from the
Rotterdam study [48], and identified 3 miRNAs that were associated with increased risk of
stroke [49]. However, these miRNAs are not observed in our list of differentially expressed
miRNAs likely due to differences in study design as many of the previously reported
studies were retrospective. In this study, we used strict analysis criteria (cutoffs) and
designed our study (sample collection timepoints and workflow) to ensure identification of
miRNAs with robust diagnostic significance.

While miRNAs are increasingly being explored as drug targets for cardiovascular
conditions [50], accumulating evidences in pharmacogenomics have shown their potential
involvement in drug response [51]. Patients in our study cohort were prescribed anti-
coagulants (~98%), anti-platelet drugs (~90%), statins (~96%), anti-hypertensive drugs
(~69%), and anti-diabetic medication (~44%) for disease management. Although studies
have shown that these classes of drugs can potentially affect selected miRNAs [52–55], the
sustained dysregulation of 6 out of 10 differentially expressed miRNAs in stroke follow-up
patients provided strong evidence that these miRNAs were not affected by these drugs.
However, the remaining 4 miRNAs could be potentially affected by these drugs, but these
observations require further investigation and validation, and may be considered as a
limitation of our study.
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The modified Rankin scale (mRS) is utilized as a common clinical tool for assessing
outcomes for stroke [56] due to its high reliability in evaluating disease outcome [57]. mRS
scores ranging from 0 to 2 indicate good outcomes based on daily activity performance [58].
We found that stroke patients with good outcome showed dysregulation in the same
10 miRNAs as our initial comparison of stroke BL patients with healthy controls. In contrast,
while stroke patients with poor outcome also showed dysregulation of 4 miRNAs out of the
initial 10 dysregulated miRNAs, dysregulation of 3 miRNAs (miR-342-5p, miR-885-3p, and
miR-375-3p) was only observed in stroke patients with poor outcomes. The downregulation
of hsa-miR-342-5p has been previously reported in ischemic stroke [59] and in the recovery
phase of stroke [17]. Moreover, hsa-miR-375-3p has been shown to be downregulated in
ischemic reperfusion injury models and involved in neuroprotective roles [60]. In contrast,
although hsa-miR-885-3p has been shown to be upregulated in a mouse model of cerebral
ischemia treated with valproic acid [61] and increased in induced status epilepticus [62], it
has not been previously reported in ischemic stroke patients. Overall, our findings reflect
the potential roles of these miRNAs in the clinical manifestation/poor outcomes of patients
with ischemic stroke.

The discriminative capacity of the miRNA identified in this study (AUC = 0.97) was
superior to previously reported biomarkers of acute ischemic stroke such as C-reactive
protein (AUC 0.73, [63,64]), interleukin-6 (AUC = 0.82, [65]), and neuron-specific enolase:
(AUC = 0.69, [66]). High accuracy to discriminate stroke from healthy controls based on
miRNA profiling shows promising clinical application. Our study design involved com-
prehensive investigation of circulating miRNA profiles from clinical samples from a larger
cohort and analysis workflow ensured robust identification of differentially expressed
miRNAs in stroke patients compared with healthy controls. To ensure high validity and
efficiency of our findings, our study design involved randomization of samples and di-
vision into discovery and validation cohorts and using stringent cutoffs in our analysis.
However, validation in a larger external dataset is warranted to strengthen our findings.
Importantly, functional studies to examine the biological significance of the identified novel
miRNA panel in the pathogenesis of cardiovascular diseases and to explore the molecular
pathways affected in stroke are required. Moreover, additional data on patients’ clinical
parameters and follow up clinical data would have assisted investigating additional con-
founder effects and in investigating correlations with other disease outcomes. Similarly,
data of brain imaging would also assist in investigating differences and correlations with
other cerebrovascular disorders. Overall, the differentially regulated miRNAs and their
molecular targets presented herein may be explored further to elucidate their influence on
stroke onset and progression.

4. Materials and Methods
4.1. Samples

Study cohorts comprised healthy controls, and clinically diagnosed ischemic stroke
patients admitted to Hamad General Hospital (Doha, Qatar). Serum samples (200 µL) were
collected within 24 hr (stroke baseline; BL, n = 198), 1 month after disease diagnosis (stroke
follow up; FU, n = 84) and healthy controls (n = 94). Hemolyzed samples (stroke BL; n = 7,
healthy controls; n = 1) were removed from the analyses. In addition, 90-day clinical follow
up data for disease outcome via assessment of mRS was retrieved to classify patients with
good and poor outcomes, and details for medication prescribed to stroke patients were also
retrieved.

This study was executed under ethical approvals from Qatar Biomedical Research
Institute (2019-013) and Hamad Medical Corporation (15304/15), and in accordance with
applicable guidelines and regulations. All participants provided written informed consent
prior to sample donation. Key characteristic features of study populations are presented in
Figure 1B.
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4.2. Circulating miRNA Purification, Library Preparation, and Sequencing

Total RNA was purified from serum samples using miRNeasy Serum/Plasma Ad-
vanced Kit (Qiagen, Hilden, Germany) as per the manufacturer’s protocol. RNA con-
centrations were determined using Qubit RNA Broad Range Assay Kits (Invitrogen, CA,
USA). Libraries were generated using QIAseq miRNA NGS Library Kit (Qiagen) according
to manufacturer’s protocol. QIAseq miRNA NGS 96 Index IL kit (Qiagen) was used for
indexing and the resulting libraries were quantified using Qubit dsDNA HS assay kit
(Invitrogen) and its size distribution was determined using the Agilent 2100 Bioanalyzer
DNA1000 chip (Agilent Technologies, Santa Clara, CA, USA). Quality-passed libraries
were pooled, clustered using TruSeq PE Cluster Kit v3-cBot-HS (Illumina, San Diego, CA,
USA) and sequenced using illumina HiSeq 4000 instrument at 10 million reads per sample
utilizing HiSeq 3000/4000 SBS kit (Illumina) as per the manufacturer’s protocol.

4.3. RNA-Seq Data Processing and Analyses

Various bioinformatics tools were utilized for analyses and visualization of RNA-Seq
data. Single reads (at 75 cycles) were mapped to the human miRbase v22 reference genome
in CLC Genomics Workbench 21.0.5 (Qiagen). The levels of expression of transcripts
were reported as the score of counts per million (CPM) of total count mapped mature
miRNA reads. Data were calibrated for RNA spike-in (RNA transcript of known sequence
and quantity) reads. Differential miRNA analyses were performed on RStudio (version
4.1.1; RStudio, Boston, MA, USA) using the DSeq2 method [67], using age and gender
as covariates. Stringent criteria were applied to identify differentially regulated miRNAs
in all comparisons (FC > 2 or Log2FC > 2 and false discovery rate (FDR) p value < 0.05).
Statistical analyses and visualization of RNA-Seq data were performed using GraphPad
Prism 9.1.2 (GraphPad Software, San Diego, CA, USA). miRNA targets were identified
from the miRDB database [10].

4.4. Discriminant Analyses

To determine the capacity of predicted variables (differentially regulated miRNAs)
to discriminate between stroke patients and healthy controls, discriminant analyses were
performed using orthogonal projection to latent structure discriminant analysis (OPLS-DA)
classifier using SIMCA software (version 15; Umetrics, Umeå, Sweden) on the discovery
dataset from the stroke baseline versus healthy control analysis. The model was then
tested on the validation dataset and the performance was assessed by generating receiver
operating characteristic (ROC) curve and determining the area under the curve (AUC)
value. The sensitivity and specificity constants of the test were determined based on similar
classification threshold as the median of the predicted scores by the OPLS-DA classifier.
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