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Inflammation has a crucial role in protection against various pathogens. The
inflammasome is an intracellular multiprotein signaling complex that is linked to pathogen
sensing and initiation of the inflammatory response in physiological and pathological
conditions. The most characterized inflammasome is the NLRP3 inflammasome,
which is a known sensor of cell stress and is tightly regulated in resting cells.
However, altered regulation of the NLRP3 inflammasome is found in several pathological
conditions, including autoimmune disease and cancer. NLRP3 expression was shown
to be post-transcriptionally regulated and multiple miRNA have been implicated in
post-transcriptional regulation of the inflammasome. Therefore, in recent years, miRNA
based post-transcriptional control of NLRP3 has become a focus of much research,
especially as a potential therapeutic approach. In this review, we provide a summary
of the recent investigations on the role of miRNA in the post-transcriptional control of
the NLRP3 inflammasome, a key regulator of pro-inflammatory IL-1β and IL-18 cytokine
production. Current approaches to targeting the inflammasome product were shown to
be an effective treatment for diseases linked to NLRP3 overexpression. Although utilizing
NLRP3 targeting miRNAs was shown to be a successful therapeutic approach in several
animal models, their therapeutic application in patients remains to be determined.
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INFLAMMASOME

Structure
In 2002, the ground breaking work published by Martinon et al. (2002) has demonstrated the role
of the inflammasome, a multi-protein complex, in the activation of pro-inflammatory caspases.
The authors described the multistep process of the inflammasome assembly which is initiated by
the detection of pathogen-associated molecular patterns (PAMPs) or danger signals released by
damaged cells (Duncan et al., 2009; Ichinohe et al., 2010; Costa et al., 2012). Several inflammasome
sensors were later identified including the nucleotide-binding oligomerization domain (NOD) like
receptors (NLRs), the absent in melanoma-2 like receptors (ALRs) and pyrin (Ting et al., 2008).
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In the past decade our understanding of NLR containing
inflammasomes structure and assembly mechanisms has
advanced considerably, largely due to their potential involvement
in pathogenesis of several diseases (Hoffman et al., 2001;
Alexander So and Borbála Pazár, 2010; Song et al., 2017). NLRs
contain three domains, an N-terminal domain, a NOD, and a
C-terminal leucine-rich repeat (LRR) (Inohara and Nunez, 2003).
The N-terminal domain contains a caspase recruitment domain
(CARD) or pyrin domain (PYD), which function to interact with
downstream molecules, such as apoptosis-associated speck-like
protein containing (ASC) (Inohara and Nunez, 2003; Schroder
and Tschopp, 2010). The NOD domain is linked to LRR detecting
PAMPs (Boekhout et al., 2011). Upon sensing PAMPs, the NLRs
polymerize followed by the interaction between the PYD or
CARD domains of LLR and ASC (Stutz et al., 2013). Once
activated the inflammasome adopts a wheel-like structure (Hu
et al., 2015), where CARD–CARD interactions are essential
for recruiting pro-caspase 1 (PC1) into close proximity with
the complex (Faustin et al., 2007). PC1 becomes proteolytically
cleaved by the CARD domain releasing an active caspase 1 (AC1)
p10/p20 tetramer (Martinon et al., 2002; Kanneganti et al., 2006;
Boucher et al., 2018).

NLR Inflammasomes
This family of inflammasomes includes two subgroups based
on the presence of CARD or pyrin in the N terminus. Only
nucleotide-binding domain leucine-rich repeats proteins
(NLRP)1, NLRP3, and NLRC4 were shown to form
inflammasomes that produce AC1 (Mao et al., 2014). In
contrast, NLRP6, NLRP9b, and NLRP12 are believed to form
inflammasomes, but their roles as inflammasome sensors are
less recognized (Anand et al., 2012; Vladimer et al., 2012;
Zhu et al., 2017).

NLRP1
NLRP1 was the first identified cytosolic receptor capable of
forming active inflammasomes (Martinon et al., 2002). PYD,
NBD, and LRR domains, a ‘function-to find’ domain (FIIND)
and a C-terminal CARD are the structural components of NLRP1
(Jin et al., 2013b). Our knowledge of NLRP1 function comes
largely from studying animal models. It appears that NLRP1
senses and protects against microbial pathogens, as was shown
using a mouse model of Bacillus anthracis and Shigella flexneri
infection (Boyden and Dietrich, 2006; Sandstrom et al., 2019).
Additionally, NLRP1 inflammasomes facilitate parasite clearance
and protection as demonstrated in Toxoplasma gondii infection
in mouse and rat models (Cirelli et al., 2014; Gorfu et al.,
2014). The clinical relevance of NLRP1 inflammasomes against
Toxoplasma gondii is also evident in individuals with specific
single-nucleotide polymorphisms in the NLRP1 gene, which are
linked to congenital toxoplasmosis (Witola et al., 2011).

Aberrant activation of NLRP1 is linked to a pathogenesis
of inflammatory diseases. Polymorphisms in the NLRP1 gene
are linked to Crohn’s disease, rheumatoid arthritis (RA) and
systemic sclerosis (Finger et al., 2012). Although the mechanism
of NLRP1 activation remains largely unknown, recently, the
failure of inflammasome inhibition by dipeptidyl dipeptidase 9

(DDP9), linked to antigen processing (Zhong et al., 2018), was
demonstrated to play role in pathogenesis of an autoimmune
diseases (Zhong et al., 2018). The authors identified that a single
mutation in the FIIND domain of NLRP1 abrogates binding
to DPP9, triggering over activation of the inflammasome in
autoinflammatory disease AIADK.

NLRC4
Similar to NLRP1, NLRC4 establishes protection against
infectious pathogens (Mariathasan et al., 2004; Franchi et al.,
2006; Zhao et al., 2011). In the absence of stimulus, NLRC4
remains inactive, where its NBD domain retains a closed
conformation by binding to the winged helix domain (Tenthorey
et al., 2014). NLRC4 activation is indirect, and it requires
NLR family apoptosis inhibitory proteins (NAIPs) for the initial
sensing of the microbial ligand (Rayamajhi et al., 2013; Yang
et al., 2013; Kortmann et al., 2015). NAIPs trigger NLRC4
oligomerization, which is essential for inflammasome activation
(Hu et al., 2015). Loss of the control over NLRC4 expression
and subsequent production of AC1 and release of IL-1β by
macrophages was suggested to play role in the pathogenesis of
inflammasome linked autoinflammation (von Moltke et al., 2012;
Canna et al., 2014). Also, a missense mutation in the NLRC4
gene was found in familial cold autoinflammatory syndrome
(Kitamura et al., 2014). Multiple mutations in NLRC4 were
identified in several autoinflammatory diseases including atopic
dermatitis, periodic fever, and fatal or near-fatal episodes of
autoinflammation (Nakamura et al., 2010; Canna et al., 2014;
Bonora et al., 2015). These data suggest that NLRC4 plays role in
protection against microbial pathogens and autoinflammation.

NLRP6
NLRP6 is an inflammasome which plays a role in gut health
and maintaining mucosal response to pathogens (Elinav
et al., 2011; Anand et al., 2012). A microbial metabolite,
taurine, was identified as an NLRP6 activator (Levy et al.,
2015). The NLRP6-taurite axis appears to be essential for the
health of the gut mucosa and microbiome. Taurite produced
by the normal microbiota activates NLRP6 which prevents
dysbacteriosis by promoting production of antimicrobial
peptides (Levy et al., 2015).

NLRP12
NLRP12 is intracellular protein expressed in cells of myeloid
lineages (Arthur et al., 2010). NLRP12 inflammasome expression
can be downregulated by microbial ligands (Williams et al., 2005;
Lich et al., 2007) via canonical and non-canonical inhibition
of NF-κB (Zaki et al., 2011; Allen et al., 2012). Several
ligands were identified as NLRP12 activators including microbes
(Allen et al., 2012; Vladimer et al., 2012).

ALR Family Inflammasomes
ALR family inflammasomes contain an N-terminal PYD and a
C-terminal hematopoietic interferon-inducible nuclear protein
with 200-amino acid repeat (HIN200) domain (Cridland et al.,
2012). ALR inflammasomes sense cytosolic double stranded DNA
(dsDNA) (Burckstummer et al., 2009; Ferreri et al., 2010). Absent
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in melanoma 2 (AIM2) is the best characterized member of ALR
inflammasomes. Similar to other ALR family members, AIM2
senses dsDNA; however, it appears that dsDNA recognition
is independent of nucleic acid sequence as it could bind to
both, microbial and host genomic material (Jin et al., 2012).
dsDNA binding to HIN200 causes its dissociation from the PYD
domain (Jin et al., 2012), allowing the freed PYD domain to
interact with ASC, and inflammasome assembly (Jin et al., 2013c).
AIM2 was implicated in the recognition of microbial, host and
tumor derived dsDNA (Davis B.K. et al., 2011; Choubey, 2012;
Dihlmann et al., 2014).

Pyrin
Pyrin is an inflammasome sensor complex, which contains a
N-terminal PYD, central B-box and coiled-coil domain, and a
C-terminal B30.2/SPRY domain (Heilig and Broz, 2018). Pyrin
was proposed to sense the changes in actin cytoskeletal dynamics
as it was found co-localized with stress actin filaments (Xu
et al., 2014). Microtubules promote ASC recruitment and the
oligomerization (Gao et al., 2016); however, the physiological
relevance of this interaction remains largely unknown. Also,
microbial toxins which cause impairment of Rho GTPase activity
were identified as strong activators of the pyrin inflammasome
(Dumas et al., 2014; Xu et al., 2014).

Several monogenic autoinflammatory syndromes were
linked to pyrin inflammasome dysregulation including familial
Mediterranean fever (FMF), pyrin-associated autoinflammation
with neutrophilic dermatosis, pyogenic arthritis, pyoderma
gangrenosum, acne, etc. (Jamilloux et al., 2018). FMF is the
most investigated pyrin inflammasome disease, characterized by
repeating, self-limited, episodes of fever and polyserositis (Bernot
et al., 1998). FMF is linked to a mutation in the Mediterranean
Fever (MEFV) gene in a region encoding the B30.2 domain of
pyrin (Omenetti et al., 2014). Also, the high prevalence of FMF
within certain populations could indicate a selective pressure to
preserve this mutation (Schaner et al., 2001).

Pyroptosis
Pyroptosis is an inflammatory form of programmed cell
death linked exclusively to PC1 activation (Hilbi et al.,
1998). AC1 is a product of several inflammasomes: NLRP1,
NLRP3, NLRC4, and AIM2. Therefore, pyroptosis is
often associated with inflammasome activation. Pyroptosis
differs from apoptosis in many respects including lack of
DNA fragmentation (Watson et al., 2000) and sustained
structural integrity of the nucleus (Zychlinsky et al., 1992).
Also, pyroptosis is characterized by cell membrane pore
formation, which causes cell swelling in contrast to apoptosis,
where cells shrink (Fink and Cookson, 2006). Additionally,
an increased intracellular osmotic pressure generates large
spherical protrusions of the membrane in pyroptotic cells,
which coalescence and rupture (Ona et al., 1999). Multiple
studies revealed the role of pyroptosis in clearance of
microbial pathogens (Sansonetti et al., 2000; Tsuji et al.,
2004; Lara-Tejero et al., 2006). However, over activation
of AC1 could lead to pyroptosis associated tissue damage

and autoimmunity (Ona et al., 1999; Siegmund et al., 2001;
Frantz et al., 2003).

NLRP3 INFLAMMASOMES

Molecular Mechanism of Activation
NLRP3 is the most characterized inflammasome, and its
expression is tightly regulated in resting cells (Bauernfeind
et al., 2009). While NLRP3 levels in unstimulated cells are
insufficient to trigger assembly of an active inflammasome
complex, sensing of pathogen ligands or danger signals, triggers
complex formation and pro-inflammatory cytokine production.
There are multiple stimuli shown to activate NLRP3 including
ATP, toxins, K+ efflux, reactive oxygen species and mitochondrial
dysfunction (Dostert et al., 2008; Piccini et al., 2008). Upon
sensing the stimulus, the nucleotide binding domain (NBD)
polymerizes initiating PYD–PYD oligomerization with ASC (Lu
A. et al., 2014). The CARD of ASC recruits PC1, which becomes
cleaved liberating AC1 (Boucher et al., 2018). It appears that
within the large family of inflammasomes, NLRP3 is the main
PC1 activator (Agostini et al., 2004; Davis E.E. et al., 2011).
Inflammatory AC1 liberates functional IL-1β and IL-18 (Afonina
et al., 2015), pleotropic cytokines regulating inflammation and
innate immune response (Garlanda et al., 2013).

The classic pathway of NLRP3 activation requires two steps:
priming and activation (Figure 1). Toll-like receptor (TLR),
FAS-associated death domain protein and IL-1R ligands were
identified as NLRP3 priming stimuli (Allam et al., 2014;
Gurung et al., 2014; He Y. et al., 2016). The priming step
includes transcriptional activation of NLRP3 via NF-κB signaling
(Bauernfeind et al., 2009; Costa et al., 2012); however, it fails
to initiate functional inflammasome formation, which requires
a second stimulus (Jo et al., 2016). The second signal can be
provided by multiple pathogen and danger associated ligands
(Franchi et al., 2012; Koizumi et al., 2012), promoting the
assembly of an adaptor (ASC) and PC1. The formed complex
cleaves the PC1, which subsequently processes and releases
functional IL-1β and IL-18 (Alnemri et al., 1996).

EPIGENETIC FACTORS AND
POST-TRANSCRIPTIONAL
MECHANISMS REGULATING NLRP3
INFLAMMASOME ACTIVATION

The term “epigenetic” was originally presented by Waddington
(1956) to describe regulation of gene expression during
the embryogenesis. Since then, definition of “epigenetic” has
changed, and now refers to a stably heritable modulation of gene
expression without altering DNA sequence (Berger et al., 2009).
Epigenetic factors include DNA methylation at cytosine followed
by guanine (CpGs) nucleotide and histone posttranslational
modifications (Peschansky and Wahlestedt, 2014). Initially,
epigenetic control was demonstrated in normal development
and differentiation; however, its role in pathogenesis of acute
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FIGURE 1 | NLRP3 inflammasome activation. There are two signals required for NLRP3 inflammasome activation. Signal 1 is a priming trigger (microbial ligands,
cytokines, etc.) required for the upregulation of NLRP3 and pro-IL-1β transcription and protein synthesis. Signal 2 is an activation trigger (ATP, toxins, viral RNA, etc.)
which is essential for formation of an active NLRP3 inflammasome. The second stimulus promotes NLRP3, PC1, pro-IL-1β, and pro-IL-18 protein synthesis. The
N-terminal NBD of NLRP3 polymerizes initiating PYD–PYD oligomerization with ASC. The CARD of ASC recruits PC1, which become cleaved liberating AC1.
Inflammatory AC1 liberates functional IL-1β and IL-18, pleotropic cytokines regulating inflammation and innate immune response.

and chronic inflammation has become increasingly recognized
(Bayarsaihan, 2011).

DNA Methylation
DNA methylation is dynamic and changes during the embryonic
development and differentiation (Berger, 2007). It was shown
that DNA methylation silences genes to ensure monoallelic
expression, prevent endogenous retrovirus expression and
transposon actions (Walsh et al., 1998; Bourc’his et al., 2001;
Bourc’his and Bestor, 2004). DNA methylation is essential for
normal cell function; however, its role in the pathogenesis of
several diseases has also been confirmed (Wei et al., 2016;
Vento-Tormo et al., 2017). DNA demethylation is often detected
near promoters, suggesting that gene overexpression could
play role in pathogenesis of many pathologies (Ryan et al.,
2010; Bierne et al., 2012). NLRP3 inflammasome expression
can also be regulated by changes in gene methylation status.
For example, NLRP3 gene expression is silenced in health
which appears to be essential for inhibiting inflammation
(Ryan et al., 2010; Bierne et al., 2012; Wei et al., 2016).

However, demethylation and, subsequent, overexpression of
NLRP3 was linked to pathogenesis of cryopyrin-associated
periodic syndromes (CAPS) (Vento-Tormo et al., 2017) and
Mycobacterium tuberculosis infection (Wei et al., 2016).

Histone Modifications
The effect of epigenetic modification of histones was studied
using several inflammatory models (Bayarsaihan, 2011).
Histone acetylation is essential for initiation of an activation
phase of inflammation, which is characterized by the release
of pro-inflammatory cytokines via CREB, mitogen-activated
protein kinases (MAPKs), nuclear factor-κB (NF-κB) and
signal transducer and activator of transcription (STAT) factors
(Escobar et al., 2012). In contrast, histone deacetylations regulate
the late, an attenuation phase of inflammation (Villagra et al.,
2010). It appears that inflammasome activation can also be
regulated by affecting the acetylation status of histones, as
it was recently shown by Liu C.C. et al. (2018). The authors
demonstrated upregulation of NLRP3 in patients diagnosed with
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painful neuropathy, which could be prevented by inhibition of
histone acetylation.

Non-coding RNAs
In addition to epigenetic modulation non-coding RNAs are
also involved in NLRP3 regulation (Bayarsaihan, 2011), as
was demonstrated in the setting of inflammation caused by
microbial and viral infection (Li et al., 2010; Ryan et al.,
2010; Bierne et al., 2012; Jin et al., 2013a; Chen and Ichinohe,
2015). This inflammation is post-transcriptionally regulated
via non-coding RNAs targeting inflammasome components,
where mRNA stability and inhibition of translation were most
commonly affected (Bayarsaihan, 2011).

Post-transcriptional Regulation of
NLRP3 Inflammasomes: MicroRNA
(miRNA)
MicroRNAs are endogenous conservative, single-stranded
non-coding RNAs which are 19–24 nucleotides long. Usually,

miRNAs are derived from transcripts with a hairpin structure
and are loaded into the Argonaute protein within a silencing
complex (Hutvagner and Zamore, 2002; Mourelatos et al., 2002;
Bartel, 2004). The inhibitory effect of miRNAs is explained by
their binding to the untranslated regions (UTRs) of transcripts
which modulates the stability and translation of the target
mRNA (Figure 2) (Ruvkun, 2001; Filipowicz et al., 2008; Bartel,
2009; Coll and O’Neill, 2010). miRNAs can modulate the
expression of histone modifies including histone deacetylases
and DNA methyltransferases resulting in modulation of histone
modifications and DNA methylation (Tuddenham et al., 2006;
Fabbri et al., 2007).

NLRP3 activation is tightly regulated where two signals
are required to initiate functional inflammasome formation.
The first signal includes cell priming with TLR ligands
(Bauernfeind et al., 2009; Franchi et al., 2009). Therefore, it
could be suggested that targeting TLR expression will impact
the inflammasome activity. Indirect regulation of TLR expression
includes modulation of the downstream pathways molecules,
which has been shown in injuries, inflammation and cancer

FIGURE 2 | miRNA regulation of NLRP3 inflammasome expression. (A) Priming signal triggers NLRP3, PC1, IL-1β, and IL-18 transcription and protein synthesis.
Activation signal initiates inflammasome formation and release of AC1. AC1 proteolytically cleaves pro-IL-1β and pro-IL-18, liberating active cytokines.
(B) Suppression of NLRP3 protein translation and inflammasome formation by miRNA. Priming stimulus triggers NLRP3 transcription; however, miR-223, miR-22,
miR-30e, and miR-7 bind to the UTR region of NLRP3 mRNA and interrupt protein translation. Absence of NLRP3 protein leads failure of the inflammasome protein
complex formation, when the second stimulus present.
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(Coll and O’Neill, 2010; Sheedy et al., 2010; Nahid et al.,
2011; Anzola et al., 2018; Tan et al., 2018; Zhi et al., 2018).
TLR4 ligands are the most studied priming signals of NLRP3
activation (Groslambert and Py, 2018). It was shown that the TLR
ligand binding increases the level of several miRNAs, including
miR-155, miR-146a, miR-21, and miR-132, which were linked to
inhibition of TLR4/MyD88/NF-κB signaling (Coll and O’Neill,
2010; Sheedy et al., 2010; Nahid et al., 2011; Anzola et al., 2018;
Tan et al., 2018; Zhi et al., 2018). It appears that upregulation
of miRNAs is a component of a negative feedback mechanism
designed to down-modulate inflammatory cytokine production
after response to microbial stimuli (Ceppi et al., 2009).

A direct inhibitory effect of let-7 family miRNAs on TLR4
mRNA has been demonstrated (Chen et al., 2007). Let-7 miRNA
regulation of TLR4 was shown to occur via post-transcriptional
suppression (Androulidaki et al., 2009). It was suggested that
let-7 miRNA downregulation of TLR4 could have detrimental
effect on host defense against microbes, promoting microbial
survival and propagation (Chen et al., 2005; Muxel et al., 2018).
Post-transcriptional regulation of TLR signaling and its impact
on diseases are reviewed by Nahid et al. (2011).

Active inflammasome complex formation requires a second
signal, initiating substantial NLRP3 transcription (Dostert et al.,
2008; Piccini et al., 2008). During this transcriptionally active
phase, NLRP3 mRNA could be regulated by miRNA, as was
shown by miR-223 (Bauernfeind et al., 2012). According to
an in silico analysis, miR-223 can bind to a highly conserved
region of the 3′UTR of NLRP3 mRNA and subsequently interfere
with protein translation (Lewis et al., 2005). Interestingly,
miR-223 appears to be an important NLRP3 regulator in

leukocytes (Bauernfeind et al., 2012; Haneklaus et al., 2012),
where the miRNA levels have been shown to vary in different
leukocyte subsets. For example, this miRNA was found absent
in T and B lymphocytes (Bauernfeind et al., 2012; Haneklaus
et al., 2012). In contrast, the miR-223 was demonstrated in
myeloid cells, where it was highest in neutrophils, followed
by macrophages and dendritic cells (Bauernfeind et al.,
2012). It has been suggested that this miRNA plays role
in granulocyte production and regulation of inflammation
(Johnnidis et al., 2008; Neudecker et al., 2017). Decreased
production of pro-inflammatory cytokines such as IL-1β and
IL-18 was demonstrated in cells treated with miR-223 or its
mimics (Neudecker et al., 2017; Ding Q. et al., 2018). These
data suggest that miR-223 could be a potential target for
regulation of NLRP3 expression, where increased miRNA could
reduce inflammasome activation and, subsequently, abrogate the
inflammation (Bauernfeind et al., 2012; Haneklaus et al., 2012).

Since several miRNAs could regulate expression of a single
transcript (Krek et al., 2005), it is likely that in addition to miR-
223, other miRNAs can alter NLRP3 transcription (Figure 3).

Numerous studies have identified that pathogens, trauma and
cancer can cause abnormal expression of miRNAs which impair
NLPR3 inflammasome function disrupt the functional complex
formation and its signaling (Table 1).

miRNA in Regulation of Inflammasome in Infections
Inflammasome activation is an important component of
infectious pathogens surveillance and antimicrobial immune
and inflammatory responses. This inflammasome was shown
to be activated by several bacterial pathogens including

FIGURE 3 | UTR binding sites of NLRP3 for miRNAs responsible for the regulation of inflammation.
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TABLE 1 | Aberrant miRNA expressions linked to inflammasome related diseases.

Disease miRNA Regulation of
miRNA

Target cell Target gene References

Inflammatory bowel diseases miR-223 ↑ Intestinal biopsies NLRP3 Neudecker et al., 2017

↑ Circulating
monocytes,
neutrophils

Johnnidis et al., 2008;
Bauernfeind et al., 2012;
Neudecker et al., 2017

↓ Macrophages

Rheumatoid arthritis miR-33 ↑ Macrophages PGC1-α Karunakaran et al., 2015; Xie
Q. et al., 2018

Type 1 diabetes miR-146a ↓ Macrophages TLR2, TLR4 Bhatt et al., 2016; Xie Z. et al.,
2018

Type 2 diabetes miR-146a ↓ Macrophages TLR2, TLR4 Balasubramanyam et al., 2011

Systemic lupus erythematosus miR-23b ↓ Inflammatory
lesions

TAB2, TAB3, IKK-α Zhu et al., 2012

Parkinson’s disease miR-7 ↓ Microglia NLRP3 Zhou Y. et al., 2016

miR-30e ↓ NLRP3 Li D. et al., 2018

Atherosclerosis miR-22 ↓ Monocytes,
macrophages

NLRP3 Huang W.Q. et al., 2017

miR-9 ↓ JAK1 Wang F. et al., 2017

miR-30e-3p ↓ FOXO3 Li P. et al., 2018

Acute lung injury/acute
respiratory distress syndrome

miR-223 ↑ Ly6G+ neutrophils NLRP3 Feng et al., 2017

Hepatocellular carcinoma miR-223 ↑ Tumor cell line NLRP3, EPB41L3, FOXO1 Li X. et al., 2011; Kim et al.,
2017

miR-223 ↓ Patient’s sera NLRP3 Bhattacharya et al., 2016

miR-30e ↓ NLRP3 Bhattacharya et al., 2016

Colorectal cancer miR-223 Tumor type specific Tumor tissue,
tumor cell line

NLRP3, FoxO3a Ju et al., 2018

miR-22 ↓ SP-1 Xia et al., 2017

Gastric cancer miR-223 ↑ Tumor tissue NLRP3 Haneklaus et al., 2012

miR-22 ↓ Macrophages NLRP3 Li S. et al., 2018

Oral squamous cell carcinoma miR-223 ↑ Tumor tissue RHOB Manikandan et al., 2016

miR-22 ↓ NLRP3 Feng et al., 2018

Cervical cancer miR-223 ↓ Tumor tissue,
tumor cell line

FOXO1 Wu et al., 2012

miR-22 ↓ HDAC6 Wongjampa et al., 2018

Glioblastoma miR-223 Controversial Tumor tissue,
tumor cell line

NFIA, PAX6 Fazi et al., 2005; Glasgow
et al., 2013; Cheng et al., 2017;
Ding Q. et al., 2018

miR-22 ↓ SIRT1 Li W.B. et al., 2013

Staphylococcus aureus, Salmonella typhimurium, Listeria
monocytogenes, Mycobacterium, Streptococcus pyogenes, Neisseria
gonorrhoeae as well as fungi such as Candida albicans and
Aspergillus fumigatus (Franchi et al., 2006; Mariathasan et al.,
2006; Miao et al., 2006; Craven et al., 2009; Duncan et al.,
2009; Harder et al., 2009; Hise et al., 2009; Joly et al., 2009;
Munoz-Planillo et al., 2009; Broz et al., 2010; Carlsson et al.,
2010; McElvania Tekippe et al., 2010; Said-Sadier et al., 2010).
NAIP/NLRC4 inflammasome can protect against Salmonella
Typhimurium and C. rodentium invasion by bacteria expulsion
from intestinal epithelial cells together with IL-18 and eicosanoid
lipid mediators release (Nordlander et al., 2014; Sellin et al.,
2014; Rauch et al., 2017). It appears that NLRP3 activation
is essential for establishing the inflammatory milieu in the
target tissue and augmenting the phagocytic capacity of

the local macrophages (Master et al., 2008; Melehani and
Duncan, 2016; Cohen et al., 2018). Enhanced macrophage
bactericidal activity is the most commonly identified mechanism
of inflammasome antimicrobial effect (Master et al., 2008;
Cohen et al., 2018). Additionally, NLRP3 activation induced
death of macrophages was described as an effort to prevent
microbial propagation and spread (Miao et al., 2010; Sagulenko
et al., 2013). However, there is a growing body of evidence
suggesting that there is a threshold of NLRP3 activity, which
acts as a safeguard mechanism to prevent inflammasome
over-activation. It appears that aberrant NLRP3 activation
could have a detrimental effect on tissues homeostasis and
compromise barrier integrity (Bortolotti et al., 2018; McKenzie
et al., 2018). It is this detrimental effect of the inflammasome
over-activation that is often employed by microbes to ensure
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spread and propagation (Duncan et al., 2009; Harder et al., 2009;
Carlsson et al., 2010).

Microbial virulence factors often act as NLRP3 activators.
For example, it was shown that the detrimental (to the host)
role of Esx1, a membrane lysis factor of Mycobacterium (Stanley
et al., 2003), is linked to inflammasome activation (Carlsson
et al., 2010). Two virulence factors of group A Streptococcus
(GAS), M protein and streptolysin O, were also identified
as contributing into NLRP3 activation and IL-1β production
(Harder et al., 2009; Valderrama et al., 2017). Both virulence
factors are commonly detected in association with invasive
GAS infections, including necrotizing fasciitis and toxic shock
syndrome. Therefore, NLRP3 activation by virulent factors
could promote microbe propagation and aid their escape from
immune clearance.

Restoring the NLRP3 activation threshold could be a novel
therapeutic approach for treatment of invasive infections. In
this respect, miRNA may be a tool to regain control over
NLRP3. It has been shown that miR-223 expression is consistently
high in NLRP3 responsive cells, suggesting the high efficacy
of this miRNA in prevention of inflammasome over-activation
(Bauernfeind et al., 2012). Dorhoi et al. (2013) demonstrated that
miR-223 is upregulated in the blood and lung parenchyma of
patients diagnosed with tuberculosis. Also, data collected using
animal models confirmed the link between deletion of miR-223
and increased susceptibility to Mycobacterium tuberculosum
infection (Dorhoi et al., 2013). Similarly, a protective role of
miR-223 in Staphylococcus aureus infection was demonstrated
by Fang et al. (2016). Additionally, the effect of targeting
TLR4 for NLRP3 regulation in Listeria monocytogenes infection
was demonstrated by Schnitger et al. (2011). The authors
identified that, miR-146a can directly inhibit TLR4 receptor
expression, which can downregulate inflammasome activity
(Schnitger et al., 2011).

Many viruses can activate inflammasomes, including
Influenza virus, Hepatitis C virus, Herpes simplex virus-1,
etc. (Delaloye et al., 2009; Ichinohe et al., 2010; Ito
et al., 2012; Kaushik et al., 2012; Negash et al., 2013;
Triantafilou et al., 2013a,b; Wu et al., 2013; Ermler et al.,
2014; Chen and Ichinohe, 2015). Inflammasome activation
appears to be essential for anti-viral protection, serving as
viral genome sensors and triggering innate immune response
(Muruve et al., 2008; Lupfer et al., 2015). The protective role
of inflammasomes was shown in influenza virus infection as an
increased viral clearance was NLRP3 dependent (Allen et al.,
2009). Also, inflammasome activation improved the survival
rate in an animal model of influenza (Ichinohe et al., 2009).
Thomas et al. (2009) demonstrated that, the innate immune
response activation by NLRP3 inflammasomes is essential
for animal protection. However, our understanding of the
mechanisms of inflammasome antiviral defense remains limited
(Anand et al., 2011).

Some viruses were shown to post-transcriptionally regulate
inflammasome expression to benefit self-replication and
propagation (Kieff and Rickinson, 2007; Rickinson and Kieff,
2007). For example, miRNA suppression of inflammasomes was
shown in Epstein Barr Virus (EBV) infected cells (Kieff and

Rickinson, 2007; Rickinson and Kieff, 2007). It appears that,
EBV can avert NLRP3 inflammasome activation by expressing
miRNAs encoded by three BHRF1-regions and 40 BART-regions
of the viral genome (Albanese et al., 2016; Tagawa et al., 2016;
Farrell, 2018). Additionally, two miRNAs encoded by EBV,
miR-BART11-5p and miR-BART15, were identified by Haneklaus
et al. (2012), which could bind to the 3′-UTR of NLRP3, the
same site targeted by miR-223, and inhibit the inflammasome. It
remains to be determined whether these viral miRNA could be
used as therapeutic targets.

miRNA Regulation of Inflammasome in Autoimmune
Diseases
Autoimmune diseases are often the result of a dysregulated
immune response, characterized by inflammation and organ
damage (Chang, 2013; Yang and Chiang, 2015). Chronic
inflammation is frequently identified as a predisposing factor
for an autoimmune reaction (Yang and Chiang, 2015).
Multiple mechanisms were suggested to explain prolonged
inflammation leading to autoimmunity; where failure to control
inflammasome activation was recently identified in some
autoimmune conditions (Yang and Chiang, 2015). It has been
established that in addition to inflammation, an increased
secretion of IL-1β and IL-18, can stimulate proliferation and
organ distribution of the effector T cells, which can cause tissue
damage (Oyanguren-Desez et al., 2011; Celhar et al., 2012).
Therefore, targeting the inflammasome could be suggested to
restore control over the inflammatory and immune response.
Therapeutic potentials of several NLRP3 targeting miRNAs
were investigated in autoimmune diseases such as inflammatory
bowel diseases (IBDs) (Neudecker et al., 2017), RA (Xie Z. et al.,
2018), type 1 diabetes (T1D) (Yang and Chiang, 2015), type 2
diabetes (T2D) (Yang and Chiang, 2015), and systemic lupus
erythematosus (SLE) (Zhu et al., 2012).

Inflammatory bowel diseases (IBDs)
Inflammatory bowel diseases are characterized by chronic
inflammation of the intestine and comprise two disorders
Crohn’s disease and ulcerative colitis. It is believed that the
pathogenesis of IBDs is associated with dysregulation of innate
and adaptive immune responses, triggered by microbial antigens.
This could result in chronic inflammation of the digestive
tract and damage to the intestinal mucosa (Fiocchi, 1998).
The role of the inflammasome in intestinal inflammation is
controversial. Zaki et al. (2010) reported that, NLRP3 induced
production of IL-18 in intestinal epithelial cells can be protective,
and contributes to epithelium integrity in experimental colitis.
In contrast, Seo et al. (2015) have demonstrated the role of
inflammasome in exacerbation of an intestinal pathology. The
damaging effect of the inflammasome was also confirmed by
Shouval et al. (2016), who identified that IL-1β inhibition
improves the course of IBDs. It appears that increased IL-1β levels
and tissue damage in IBDs are linked to NLRP3 activation in
myeloid leukocytes infiltrating the gut tissue (Neudecker et al.,
2017). The role of the inflammasome in IBDs pathogenesis
was also confirmed by using a miR-223 deficient animal model
of colitis (Neudecker et al., 2017). miR-223 deficient mice
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develop experimental colitis manifesting with colonic ulceration,
inflammatory leukocyte infiltration and tissue injury which
resembles closely IBDs (Neudecker et al., 2017). Tissue injury
in these mice was linked to an enhanced NLRP3 expression
and elevated IL-1β (Neudecker et al., 2017). Treatment of
animals with miR-223 mimetics alleviated symptoms of the colitis
which coincided with reduced NLRP3 RNA and IL-1β levels
(Neudecker et al., 2017). This data presents miR-223 as a novel
biomarker and therapeutic target in subsets of IBDs and colitis
(Polytarchou et al., 2015).

Rheumatoid arthritis (RA)
Rheumatoid arthritis is a chronic, systemic inflammatory
disease affecting joints as well as skin, eyes, lungs, heart,
and blood vessels (Scott et al., 2010). It was suggested that
RA pathogenesis is related to activation of the NLRP3/IL-1β

axis, where inflammasome activation was linked to worsening
symptoms of the disease (Xie Q. et al., 2018). It was shown
that activation of NLRP3 leads to an abundant expression of
IL-1β (Guo et al., 2018), which can trigger T helper type
17 (Th17) cell differentiations and osteoclasts activation in
RA (Dayer, 2003; McInnes and Schett, 2011; Zhang et al.,
2015b). Th17 cells play a central role in RA pathogenesis, by
maintaining chronic inflammation, recruiting neutrophils and
promoting joint degradation (Cai et al., 2001; Shahrara et al.,
2009; Leipe et al., 2010). Recently, an indirect effect of miR-33 on
NLRP3 activation was demonstrated in RA (Xie Q. et al., 2018),
which could be explained by miRNA controlled dysregulation
of mitochondrial function (Schroder et al., 2010; Zhou et al.,
2011; Miao et al., 2014; Ouimet et al., 2015). Xie Q. et al.
(2018) suggested that miR-33 increases mitochondrial oxygen
consumption and accumulation of reactive oxygen species which
upregulates expression of NLRP3 and PCA1 in RA. Also, both
miR-33 expression and NLRP3 inflammasome activity were
found to be higher in RA monocytes as compared to controls
(Xie Q. et al., 2018). These findings indicate that miR-33 could
play an indirect role in pathogenesis of RA through NLRP3
inflammasome activation. Additional studies will provide more
insight into the miRNA regulation of NLRP3 in RA and its
therapeutic and prognostic implications.

Type 1 diabetes (T1D)
Type 1 diabetes is caused by autoimmune targeted elimination
of pancreatic β cells islet (Kloppel et al., 1985). It was shown
that TLRs play an essential role in the pathogenesis of T1D
(Xie Z. et al., 2018). Upregulated expression of TLR4 as well as
increased activity of the downstream targets was demonstrated in
monocytes from T1D (Devaraj et al., 2008). Increased expression
of activated TLRs was explained as a reaction to a high levels of
circulating ligands in TID (Devaraj et al., 2009). Also, epigenetic
regulation was associated with an aberrant TLR signaling and
an increased IL-1β expression in T1D (Grishman et al., 2012).
Several miRNAs were found altered in pre-TID patients, where
levels of nine miRNAs (miR-146a, miR-561, and miR-548a-3p,
miR-184, and miR-200a) were decreased, and two miRNAs
(miR-30c and miR-487a) were increased (Grieco et al., 2018).
Supporting these results was data published by Wang G. et al.

(2018) demonstrating lower levels of miR-150, miR-146a, and
miR-424 compared to controls. One of the most consistent
findings was the decreased miR-146a levels in T1D. It appears
that miR-146a deficiency could play role in T1D exacerbation
and increased IL-1β and IL-18 expression (Bhatt et al., 2016).
Increased IL-1β levels could indicate inflammasome activation
in T1D, although the role of inflammasome in the disease
pathogenesis remains largely unknown.

Type 2 diabetes (T2D)
Circulating autoantibodies to β cells, self-reactive T cells
and the glucose-lowering efficacy of some immunomodulatory
therapies are suggestive of the autoimmune nature of the T2D
(Itariu and Stulnig, 2014). Interestingly, a role for miRNA
regulation of gene expression was demonstrated in T2D, where
Balasubramanyam et al. (2011) have shown reduced miR-146a
which was associated with increased NF-κB, TNF-α and IL-6
mRNA levels. It is the same miRNA, which was found implicated
to pathogenesis of T1D (Xie Z. et al., 2018), indicating potential
similarities in the pathogenesis of both diseases. Recently
in vivo studies demonstrated that miR-146a deficiency could
increase expression of M1 and suppress expression of M2
markers in macrophages collected from patients with diabetes
(Bhatt et al., 2016). Macrophage polarization occurs in the
presence of IFNγ (M1) or IL-4 (M2) (Nathan et al., 1983;
Stein et al., 1992) and is linked to pro-inflammatory and
anti-inflammatory activities, respectively. M1 macrophages were
shown to support inflammation by producing pro-inflammatory
cytokines, including the inflammasome product IL-1β (Bhatt
et al., 2016). Therefore, a link could be suggested between low
miR-146a levels and inflammasome activation in M1 cells. More
investigation is required to identify the connection between
miR-146a and inflammasome activation and the role of this in
T2D pathogenesis.

Systemic lupus erythematosus (SLE)
Systemic lupus erythematosus is an autoimmune disease caused
by the loss of immune tolerance to ubiquitous autoantigens
(Tsokos, 2011). Inflammation plays essential role in SLE
pathogenesis (Yang et al., 2014; Rose and Dorner, 2017),
where high levels of circulating proinflammatory cytokines are
commonly detected (Yao et al., 2016; Mende et al., 2018).
Inflammasome activation is proposed as one of the mechanisms
underlying increased proinflammatory cytokine level in SLE
(Kahlenberg and Kaplan, 2014). This assumption is supported
by a report where IL-1β deficient mice were found to be
resistant to experimental SLE (Voronov et al., 2006). Also, an
increased expression of NLRP3 and AC1 have been reported
in SLE nephritis biopsies (Kahlenberg et al., 2011). Kahlenberg
and Kaplan (2014) have shown that SLE macrophages are
highly reactive to innate immune stimuli, often leading to
inflammasome activation. Therefore, targeting inflammasome
activity could be a novel approach for SLE treatment. The
expression of several miRNAs targeting the inflammasome and
its products were found differentially expressed in SLE. For
example, Wang et al. (2012) have demonstrated high levels of
circulating miR-223, which was shown to inhibit NLRP3, in SLE.
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Also, reduced levels of circulating miR-146a, which regulates
priming of TLRs, was found in SLE plasma (Wang et al., 2012).
Interestingly, expression of miR-23b, which indirectly inhibits
IL-1β responses, was shown to be downregulated in inflammatory
lesions of SLE patients and animal model (Zhu et al., 2012).
More studies are required to determine the role of miRNAs in
pathogenesis of SLE and their therapeutic potential.

miRNA Regulation of Inflammasome in
Neurodegenerative Disorders
Inflammasome products, IL-1β and IL-18, were shown to be
essential for the health and functional competence of the nervous
system (McAfoose and Baune, 2009; Dinarello et al., 2012).
NLRP3 expression was demonstrated in microglia and astrocytes,
which could explain the constitutive level of these cytokines in
the brain (McAfoose and Baune, 2009; Dinarello et al., 2012;
Savage et al., 2012; Minkiewicz et al., 2013; Cho et al., 2014;
Lu M. et al., 2014). Interestingly, higher than normal levels
of IL-1β and IL-18 were found in several neurodegenerative
disorders, suggesting that over-activation of inflammasomes may
play a role in pathogenesis of these diseases (Cho et al., 2014;
Lu M. et al., 2014; Denes et al., 2015; Mamik and Power,
2017; Song et al., 2017). The significance of miRNA in the
regulation of inflammasome activation in the pathogenesis of
neurodegenerative diseases remains largely unknown. However,
the role of an aberrant miRNA in regulation of NLRP3 expression
was previously demonstrated in Parkinson’s disease (PD).

Parkinson’s disease is a neurodegenerative disease which
is characterized by progressive loss of dopaminergic neurons
in substantia nigra compacta (Gasser, 2009). It is believed
that accumulation of α-Syn fibrillary aggregates in the brain,
most notably in the nigral dopaminergic neurons, induces the
neuroinflammation (Eriksen et al., 2003). According to Zhou
Y. et al. (2016), α-Syn can activate NLRP3 inflammasomes in
microglia leading to an increased production of IL-1β. The
authors also demonstrated that, miR-7 and miR-30e analogs can
inhibit NLRP3 inflammasome mediated neuroinflammation in
the brain and protect dopaminergic neurons (Zhou Y. et al.,
2016). It appears that the anti-inflammatory effects of miR-7 and
miR-30e are associated with their targeting of NLRP3 mRNA
in microglial cells. Interestingly, decreased miR-7 and miR-30e
expression was demonstrated in PD, which could lead to the
loss of the regulatory control of α-Syn induced NLRP3 activation
(Li D. et al., 2018).

miRNA Regulation of the Inflammasome in
Cardiovascular Diseases (CVDs)
The physiological significance of inflammation is confirmed as
it facilitates elimination of destructive stimuli and pathogens.
However, aberrant inflammatory responses could cause tissue
damage, tissue fibrosis and chronic diseases (Liu D. et al., 2018).
Inflammation is recognized as a major risk factor for CVDs (Zhou
et al., 2018), where chronic inflammasome activation was shown
to contribute to the pathogenesis of atherosclerosis, ischemic
and non-ischemic heart diseases (Zhou et al., 2018). Therefore,
regulation of inflammasome activity using miRNA could be
used for treatment and prevention of CVDs. Currently, strong

evidence for the role of NLRP3 activation has been demonstrated
in pathogenesis atherosclerosis.

Atherosclerosis is a form of CVD characterized by
narrowing of the blood vessel lumen due to plaque formation,
continuous dyslipidemia and inflammation (Ross, 1993).
Chronic inflammation is commonly found in and around the
atherosclerotic plaques which has an adverse effect on the
arterial wall structure and function (Bernhagen et al., 2007).
It is believed that atherogenic lipid mediators, involved in the
formation of chronic inflammation in atherosclerotic plaque
(Chen et al., 2006), can trigger peripheral blood monocytes
migration and differentiation into macrophages within the
intima of the arterial wall (Chen et al., 2006). T cells were also
detected in atherosclerotic lesions (Kleemann et al., 2008), where,
together with activated macrophages, they were shown to secrete
proinflammatory mediators such as interferons, interleukins,
and proteases (Østerud and Bjørklid, 2003; Shashkin et al., 2005;
Tabas, 2005; Chen et al., 2006). IL-1β expression was identified
in the early phase of atherosclerotic plaque formation and this
stimulates secretion of additional cytokines and chemokines
(Kleemann et al., 2008). Therefore, inflammasome activation
in macrophages and T cell within the atherosclerotic lesion
contributes to the pathogenesis of chronic inflammation.

miR-22, a miRNA inhibiting NLRP3, is decreased in peripheral
blood mononuclear cells from coronary atherosclerosis (Chen B.
et al., 2016), suggesting that upregulation of this miRNA could
have therapeutic potential in CVD. Supporting this assumption,
Huang W.Q. et al. (2017) investigated the effect of miR-22
on the NLRP3 inflammasome and endothelial cell damage
in an in vivo model of coronary heart disease. The authors
demonstrated that miR-22 mimics could decrease the release of
inflammatory cytokines such as IL-1β and IL-18 by suppressing
NLRP3 expression in monocytes and macrophages (Huang W.Q.
et al., 2017). Two additional miRNAs, miR-9 and mir-30e-5p
were found to indirectly affect inflammasome activation in
atherosclerosis (Wang Y. et al., 2017; Li P. et al., 2018). It appears
that miR-9 could indirectly suppress inflammasome activation
by targeting an atherogenic lipid mediator, oxidized low-density
lipoprotein (oxLDL), in atherosclerosis (Liu W. et al., 2014).
In another report, Wang Y. et al. (2017) reported that miR-
9 inhibits NLRP3 inflammasome activation induced by oxLDL
in human THP-1 derived macrophages and peripheral blood
monocytes in an in vitro atherosclerosis model. miR-9 targets
Janus kinase 1 (JAK1) pathway (Wang Y. et al., 2017) inhibiting
expression of NF-κB p65 which is required for the first step
of NLRP3 inflammasome activation (Wang Y. et al., 2017).
In addition, miR-30c-5p was linked to an indirect regulation
of NLRP3 expression in atherosclerosis (Li P. et al., 2018).
Li P. et al. (2018) reported that miR-30c-5p protects human
aortic endothelial cells (HAECs) from the oxLDL insult by
targeting FOXO3. The authors showed that miR-30c-5p can
suppress FOXO3 expression and, consequently, decrease levels
of NLRP3, AC1, IL-18 and IL-1β in HAECs (Li P. et al.,
2018). As evidence emerges supporting the role of NLRP3 in
the pathogenesis of atherosclerosis, targeting the inflammasome
becomes an attractive therapeutic approach, where miRNAs
could be suitable novel tools.
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miRNA in Regulation of Inflammasome in Cancer
The role of the inflammasome in tumorigenesis remains
controversial. Some reports indicate that NLRP3 inflammasome
activation and IL-18 signaling protect against colorectal cancer
(Karki et al., 2017), whereas progression of breast cancer,
fibrosarcoma, gastric carcinoma, and lung metastasis were
shown to be supported by the inflammasome (Okamoto et al.,
2010; Kolb et al., 2014). Inflammasome regulation is complex,
where multiple factors are implicated, making identification of
the key regulatory elements challenging. As the inflammasome
involvement in pathogenesis of some malignancies becomes
more evident, understanding the regulatory mechanisms
could lead to the discovery of novel therapeutic targets for
cancer treatment.

Hepatocellular carcinoma (HCC)
Hepatocellular carcinoma (HCC) is a frequent sequelae of
hepatitis B and hepatitis C viral infection (Perz et al., 2006). It
is understood that these viruses activate NLRP3 inflammasomes
causing hepatocyte pyroptosis, apoptosis and fibrosis (Kofahi
et al., 2016). However, HCC tissue analysis failed to detect
inflammasome activation; in fact, it was found to be significantly
down-regulated when compared to the adjacent normal tissue
(Zhu et al., 2011; Wei et al., 2014). To explain this inconsistency,
Wei et al. (2014) suggested that NLRP3 expression is dynamic
changing during the progression of HCC. It appears that NLRP3
expression was increased in liver cells at the early stages
of transformation, while inflammasome levels were decreased
in malignant cells when compared to adjacent normal tissue
(Wei et al., 2014). Interestingly, levels of miR-223, a negative
regulator of NLRP3, were found to be increased in Hep3B cells
derived from HCC (Wan et al., 2018). Increased miR-223 was
shown to coincide with tumor growth, suggesting a role in
post-transcriptional mechanisms in malignant progression. In
addition to NLRP3, miR-223 was shown to target erythrocyte
membrane protein band 4.1 like 3 (EPB41L3) and FOXO1 (Li and
Rana, 2014; Kim et al., 2017). FOXO1 transcription factor binds
to the thioredoxin-interacting protein (TXNIP) and regulates
genes involved in cell death as well as the oxidative stress
responses (Kim et al., 2017). TXNIP interacts with the NLRP3
inflammasome and activates AC1 in murine β-cells (Zhou et al.,
2010). In addition, miR-223 appears to be released systemically,
where the level of this miRNA in the plasma was significantly
lower in HCC cases (Giray et al., 2014). In addition to miR-223,
decreased circulating miR-30e, which also targets NLRP3, was
found in HCC cases (Bhattacharya et al., 2016). Therefore, it
could be suggested that analysis of serum levels of miR-223
and miR-30e could be used for diagnosis of HCC as well as an
indicator of the efficacy of anticancer therapeutics.

Colorectal cancer (CRC)
Data on the role of NLRP3 in colorectal cancer (CRC)
pathogenesis is inconsistent, where some evidence suggests
a pro-tumorigenic role for the inflammasome, while others
identified that the inflammasomes protects against tumor (Allen
et al., 2010; Huber et al., 2012; Guo et al., 2014; Wang et al.,
2016). Inflammasome expression analysis also demonstrated

contradicting results where Wang et al. (2016) reported high
NLRP3 in mesenchymal-like colon cancer cells, while Allen
et al. (2010) demonstrated decreased inflammasome expression
in colitis-associated cancer. Inflammasome contribution to
tumorigenesis varies depending on the target cell type in
the intestinal tissue (Lissner and Siegmund, 2011). According
to Lissner and Siegmund (2011), inflammasome activation is
required to maintain integrity of the epithelium. However,
aggravated activation of the inflammasome stimulates intestinal
inflammation, which could have a detrimental effect on
epithelium permeability and increase its leakage (Lissner and
Siegmund, 2011). It was identified that damage to the intestinal
epithelium could trigger NLRP3 activation and secretion of IL-18,
a proinflammatory cytokine (Huber et al., 2012). Subsequently,
it was shown that IL-18 could reduce the expression of IL-22
binding protein (IL-22BP) and increase levels of IL-22 (Huber
et al., 2012). Although IL-22 is protective against malignancies,
aberrant over expression of IL-22 could trigger gut epithelial
cell transformation and CRC development (Huber et al., 2012).
Therefore, it is believed that IL-18, a NLRP3 product, has a
promoting role in CRC development (Huber et al., 2012).

Targeting the inflammasome was suggested as a potential
approach for treatment of CRC (Guo et al., 2014). NLRP3
expression was shown to be regulated by multiple miRNAs
in various diseases (Haneklaus et al., 2012; Feng et al., 2018;
Wan et al., 2018; Xie Q. et al., 2018). However, the role of
miRNAs in cancer pathogenesis is not straight forward. There are
inconsistent results regarding the expression status of miR-223,
a known regulator of NLRP3 expression, in CRC cell lines and
primary tumors. In a clinical study, the expression of miR-223
was found to be significantly higher in stage III/IV patients (Ding
J. et al., 2018). However, levels of miR-223 vary significantly
in colon tumor derived cell lines (Ding J. et al., 2018). Wu
et al. (2012) reported reduced expression of miR-223 in a
HCT116, a CRC cell line. In contrast, several research groups
demonstrated up-regulation of miR-223 in CRC cell lines and
primary tissues (Wang F. et al., 2017; Ju et al., 2018; Wei et al.,
2018). Similar to these results, Ju et al. (2018) demonstrated
up-regulation of miR-223 in SW620, a CRC cell line. It was
identified that high expression of miR-223 suppresses FoxO3a
and enhances cancer cell proliferation (Ju et al., 2018). It appears
that the protumorigenic effect of Foxo3a is via NF-κB activation,
which is essential for upregulation of the inflammasome linked
proinflammatory signaling pathways (Thompson et al., 2015).

Unlike miR-223, data on miR-22 expression status in CRC
consistently demonstrates that miR-22 expression is significantly
lower in CRC tissues and cell lines (Zhang et al., 2012, 2015a; Li
B. et al., 2013; Xia et al., 2017; Liu Y. et al., 2018). Also, absence of
miR-22 was shown to positively correlate with increased cancer
cell proliferation, migration, invasion, and metastasis (Zhang
et al., 2012, 2015a; Li B. et al., 2013; Xia et al., 2017; Liu
Y. et al., 2018). Multiple genes were identified as targets for
miR-22 including TIAM1 (Li B. et al., 2013), BTG1 (Zhang et al.,
2015a), HuR (Liu Y. et al., 2018), and SP-1 (Xia et al., 2017).
Among these genes, only SP-1 gene expression was linked to
inflammasome regulation (Hofmann et al., 2015). According
to Hofmann et al. (2015), Sp-1 protein could contribute to
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NLRP3 inflammasome activation in monocytes in chronic
recurrent multifocal osteomyelitis. However, the role of Sp-1 in
activation of the NLRP3 inflammasome in CRC tumor tissues and
monocytes remains largely unknown. Recent finding revealed
that, in addition to miR-22, another negative regulator of NLRP3,
miR-30e, is absent in CRC tumors as compared to normal colon
tissues (Laudato et al., 2017). However, the role of miR-30e in
CRC pathogenesis remains unknown.

Gastric cancer (GC)
It was shown that NLRP3 inflammasome activation promotes
gastric cancer (GC) cells proliferation (Li S. et al., 2018).
Over expression of miR-223 supports GC invasion and
metastasis in primary GC tumors (Haneklaus et al., 2012).
Additionally, Li S. et al. (2018) reported that increased
NLRP3 expression in GC tumors and macrophages
negatively correlates with miR-22 expression. The authors
also demonstrated that constitutive expression of miR-22
dramatically decreases NLRP3 mRNA expression and IL-1β

secretion in macrophages (Li S. et al., 2018). Therefore,
the effect of targeting NLRP3 expression with miRNAs in
tumors and immune cells may vary depending on tumor
and/or cell type.

Oral squamous cell carcinoma (OSCC)
High NLRP3 expression was found in oral squamous cell
carcinoma (OSCC) cells and tissues (Wang H. et al., 2018).
A role for NLRP3 supporting OSCC proliferation and growth
was demonstrated in several reports. Wang G. et al. (2018)
demonstrated a positive correlation between NLRP3 expression
and tumor size, lymph node status and IL-1β expression in
OSCC tissue specimens and in vivo models of OSCC. Also,
the authors showed that, silencing of NLRP3 in OSCC cell
lines reduced cell proliferation, migration, and invasion in vitro
(Wang H. et al., 2018). Additionally, high expression of the
NLRP3 inflammasome mediates chemoresistance in OSCC (Feng
et al., 2018). Therefore, downregulation of NLRP3 could have a
therapeutic potential in OSCC.

Surprisingly, high expression of miR-223, which targets
NLRP3, was found in primary OSCC tissue (Manikandan
et al., 2016). In silico analysis identified a Ras Homolog Family
Member B (RHOB) as a potential target for miR-223 in OSCC
(Manikandan et al., 2016). It appears that miR-223 could
indirectly suppress NLRP3 and TLR4/NF-κB signaling via RHOB
(Yan et al., 2019). These data provide a novel potential target for
OSCC treatment, where miR-223 inhibition of NLRP3 could be
attained through RHOB.

Overexpression of miR-22 in OSCC was shown to reduce
NLRP3 activation and decrease OSCC malignancy (Feng et al.,
2018). miR-22 levels were shown to be inversely correlated
with NLRP3 expression and miR-22 levels were significantly
lower in OSCC compared to adjacent non-cancerous tissue
(Feng et al., 2018). The inhibitory effect of miR-22 on OSCC
migration was confirmed using a lentiviral expression system. As
expected an inhibitor of miR-22 promoted OSCC spread (Feng
et al., 2018). The 3′-UTR of the NLRP3 gene was identified
as a miR-22 target site (Feng et al., 2018). It appears that

NLRP3 promotes OSCC growth and tumor spread, which makes
miR-22 a potential therapeutic target for cancer treatment. Two
miRNAs, miR-223 and miR-22, were identified as inhibiting the
inflammasome and, subsequently, suppressing tumor growth.
Therefore, the anti-tumor effect of these molecules in OSCC
warrants further investigation.

Cervical cancer (CC)
Human papillomavirus (HPV) infection and persistent
chronic inflammation were identified as fundamental for the
pathogenesis of cervical cancer (CC) (de Castro-Sobrinho et al.,
2016; Kriek et al., 2016). HPV can cause chronic inflammation
by inducing TLR4 expression and impairing the TLR4-NF-κB
pathway (Wang et al., 2014; He A. et al., 2016).

Wu et al. (2012) reported reduced expression of miR-223,
which targets NLRP3, in the CC cell line HeLa. The authors
also demonstrated that over-expression of miR-223 inhibits
tumor cell proliferation by targeting FOXO1 (Wu et al., 2012).
In addition, another direct post-transcriptional regulator of
NLRP3, miR-22, was found to be down-regulated in CC
cell lines and tissues (Xin et al., 2016; Wongjampa et al.,
2018). Furthermore, Wongjampa et al. (2018) reported an
inverse correlation between histone deacetylase 6 (HDAC6)
and miR-22. It was previously shown that HDAC6 directly
binds to NLRP3 via its ubiquitin-binding domain to regulate
NLRP3 inflammasome expression (Hwang et al., 2015). As
NLRP3 plays a role in the pathogenesis of HPV induced chronic
inflammation, miR-223 and miR-22, both of which regulate
inflammasome activation, could be potential therapeutic tools for
the treatment of CC.

Glioblastoma (GBM)
High NLRP3 inflammasome activation and high levels of
inflammasome products are found in malignant glioblastoma
(GBM) (Basu et al., 2004; Tarassishin et al., 2014). Increased
IL-1β, a major NLRP3 inflammasome product, was linked to
the release of VEGF and MMPs, angiogenic factors, in human
astrocytes and GBM cells (Suh et al., 2013). Therefore, it
could be suggested that inflammasome activation favors GBM
growth and spread.

Several miRNAs were shown to regulate inflammasome
expression, where decreased miRNA levels could promote GBM
growth and invasion. Ding Q. et al. (2018) demonstrated that
miR-223, which is effective at reducing NLRP3 inflammasome
levels in several tumors (Wu et al., 2012), was decreased in GBM
tissues (Ding Q. et al., 2018). However, a conflicting report from
Cheng et al. (2017) indicated that miR-223 is overexpressed in
GBM cell lines. Similar findings were also reported in GBM
stem like cells and GBM tissues (Huang B.S. et al., 2017).
Similarly there are conflicting data regarding miR-223 targets and
phenotypic impacts. A miR-223-3p mimic inhibited tumor cell
proliferation and migration, effects that were due to a reduction
in proinflammatory cytokines IL-1β and IL-18 in GBM cell
lines (Ding Q. et al., 2018). Also, nuclear factor I-A (NFIA)
was a target of miR-223 in GBM cell lines and was found to
decrease tumorigenesis in the CNS (Glasgow et al., 2013). The
pro-tumorigenic effect of miR-223 was linked to suppression
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of the tumor suppressor paired box 6 (PAX6) (Cheng et al.,
2017). By targeting PAX6, miR-223 could promote GBM stem
cell chemotherapy resistance (Huang B.S. et al., 2017). The
mechanism underlying the diverse effects of miR-223 on GBM
growth and metastasis remains largely unknown. However, it
could be suggested that the stage of tumorigenesis plays a role
in the effect of miR-223 in GBM.

Levels of miR-22 and miR-30e, two post-transcriptional
regulators of NLRP3, are low in GBM tissues (Li W.B. et al.,
2013; Chakrabarti et al., 2016; Chen H. et al., 2016). In addition
to targeting NLRP3, miR-22 can also directly target the 3′-UTRs
of SIRT1 (Li W.B. et al., 2013), and miR-22 mimics decrease
the expression of SIRT1 protein in GBM cell lines (Li W.B.
et al., 2013). Interestingly, several studies have demonstrated that
SIRT1 can suppress NLRP3 (Ma et al., 2015; Jiang et al., 2016;
Zhou C.C. et al., 2016). It could be proposed that the decreased
levels of miR-22 could fail to control NLRP3 expression, which
could enable GMB tumorigenesis.

FUTURE ASPECTS FOR CLINICAL
APPROACHES

The role of the NLRP3 inflammasome in the pathogenesis of
several diseases was demonstrated, including CAPS, autoimmune
disorders and cancers (Aganna et al., 2002; Martinon et al.,
2006; Masters et al., 2009; Bauer et al., 2010; Wen et al., 2011).
An increased IL-1β level, commonly found in these diseases,
is a strong indicator of NLRP3 inflammasome activation. Also,
the body of evidence suggests that IL-1β plays a central role
in disease pathogenesis. Therefore, targeting IL-1β, a NLRP3
inflammasome product, appears to be a rational therapeutic
approach. The efficacy of anti-IL-1β therapy was demonstrated
in CAPS, where both the symptoms and severity of the disease
were alleviated using either an IL-1β receptor antagonist or
anti-IL-1β antibodies (Hoffman et al., 2008; Dinarello, 2009;
Lachmann et al., 2009). A similar approach targeting IL-1β was
successfully applied to treat NLRP3 inflammasome associated
autoimmune diseases and cancer (Larsen et al., 2007; Lust et al.,
2009). These data provide compelling evidence for the NLRP3
inflammasome as a potential therapeutic target for treatment of
the diseases associated with an elevated level of IL-1β. In this
respect, miRNAs have therapeutic potentials as they could target
NLRP3 preventing its expression and, consequently, averting
IL-1β production.

miRNA based replacement and silencing therapeutic
approaches were tested in several preclinical and clinical
studies (Li and Rana, 2014). miRNAs and miRNA-targeting
oligonucleotides approaches (mimic and/or anti-miR
technologies) appear to be more effective when compared to
small-molecule drugs due to their ability to effect concurrently
multiple gene targets (Li and Rana, 2014). Anti-miR-122
oligonucleotide, Miravirsen, was the first miRNA-based
therapeutic used to treat hepatitis c infection (Lindow and
Kauppinen, 2012; van der Ree et al., 2016). Currently Miravirsen
is in a phase II clinical trial (van der Ree et al., 2016). Several phase

I clinical trials and pre-clinical studies using miRNA-targeting
oligonucleotide technologies targeted to Let-7, miR-10b, miR-21,
miR-34, miR-155, miR-221, and others, have demonstrated
positive results (Moles, 2017). miRNA-targeting oligonucleotides
are designed to bind to their targeted miRNA (Li and Rana,
2014). miRNAs generally target more than one gene in the
same signaling pathway (Li Z. et al., 2011; Li and Rana, 2014).
This feature of miRNAs makes them valuable as therapeutic
candidates (Li and Rana, 2014).

However, there are still multiple obstacles to overcome,
including target specificity and the potential toxicity of
miRNA-targeting oligonucleotides (Merhautova et al., 2016).
First, the limited specificity, anti-miRs generally target nucleotide
sequences on miRNAs which can be present on multiple
miRNAs within the same family (Hogan et al., 2014).
Chemical modifications of anti-miRs have been suggested
to improve their specificity (Hogan et al., 2014). Second,
when administered without a carrier molecule, their effect
may be limited and they can be cleared by the liver and
kidney (Bennett and Swayze, 2010). Third, anti-miRs can
be sensed and eliminated by receptors of the innate and
adaptive immune responses (Diebold et al., 2004; Heil et al.,
2004). To overcome this limitation, tissue specific antibody
coated chemically engineered polymer-based nanoparticles
and carrier proteins have been developed to improve the
specificity and efficacy of delivery. For example, the therapeutic
efficiency of miR-223 was improved by using nanoparticle lipid
emulsions as a delivery method, in animal model of colitis
(Neudecker et al., 2017). These exciting results demonstrate
great potential for miRNA-based treatments of diseases linked
to NLRP3 dysfunction.

Our understanding of the role of the inflammasome in disease
pathogenesis is still limited and is hampering development of
the miRNA targeting therapeutics against the inflammasome.
However, exciting discoveries in fundamental and preclinical
research in recent years have demonstrated great potential
for miRNA targeting in the treatment of diseases linked to
NLRP3 dysfunction.
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