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Chronic pain remains an intractable condition in millions of patients worldwide. Spontaneous ongoing pain is a major clinical problem of
chronic pain and is extremely challenging to diagnose and treat compared to stimulus-evoked pain. Although extensive efforts have been
made in preclinical studies, there still exists a mismatch in pain type between the animal model and humans (i.e., evoked vs. spontaneous),
which obstructs the translation of knowledge from preclinical animal models into objective diagnosis and effective new treatments. Here,
we developed a deep learning algorithm, designated AI-bRNN (Average training, Individual test-bidirectional Recurrent Neural Network), to
detect spontaneous pain information from brain cellular Ca2+ activity recorded by two-photon microscopy imaging in awake, head-fixed
mice. AI-bRNN robustly determines the intensity and time points of spontaneous pain even in chronic pain models and evaluates the
efficacy of analgesics in real time. Furthermore, AI-bRNN can be applied to various cell types (neurons and glia), brain areas (cerebral cortex
and cerebellum) and forms of somatosensory input (itch and pain), proving its versatile performance. These results suggest that our
approach offers a clinically relevant, quantitative, real-time preclinical evaluation platform for pain medicine, thereby accelerating the
development of new methods for diagnosing and treating human patients with chronic pain.
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INTRODUCTION
Spontaneous ongoing pain is a primary complaint in patients
with chronic intractable pain1. It leads to a heavy financial
burden on society, affects the daily life of patients, and increases
their suicide rates2. Conventional analgesics for chronic pain are
frequently associated with severe side effects3. For example,
opioids, a widely prescribed class of drugs for chronic pain, are
most commonly used in the United States, where they have
caused health crises such as addiction, overdose, and even
death4,5. Recently, opioids have been an inevitable component of
pain treatment in COVID-19 patients, raising concerns about side
effects6.
Numerous non-opioid analgesics and diagnostic methods have

been suggested based on a growing understanding of the
mechanisms of pain in animal models. However, few have been
successfully translated into clinical interventions7–9. A mismatch in
pain type between humans and animals (i.e., spontaneous versus
stimulus-evoked pain) has been claimed to be a major reason for
these failures10. Many challenges exist in the objective assessment
of spontaneous pain in animal models as well as human patients,
and researchers have typically measured stimulus-evoked pain
instead of spontaneous pain due to this restriction11. The lack of
quantitative measurement techniques for spontaneous pain has
impeded the translation of a vast amount of preclinical knowledge
into clinical diagnosis and treatment.

Although several methods have been developed in preclinical
contexts to overcome this issue, they have inevitable limitations. The
grimace scale (GS) identified spontaneous pain in rodents based on
their facial expressions12. However, the GS could not be applied to
animal models of subchronic or chronic pain, including persistent
inflammatory or neuropathic pain. Another method, the conditioned
place preference (CPP) paradigm, can assess the presence of
spontaneous neuropathic pain and analgesic effects by associating
pain relief with a place that has a specific environmental cue13.
However, this method is time consuming and requires the
pharmacokinetics and administration route of the drug to be
considered. In addition, drugs that have an impact on learning and
memory or reward systems are limited with CPP14. Thus, there is an
unmet need for a new methodology to objectively quantify
spontaneous pain and the effects of painkillers.
The neuronal processing of pain information involves multiple

brain areas. Among these, the primary somatosensory cortex (S1)
plays a key role in the perception and discrimination of pain
sensation by encoding its intensity, location, and temporal
course15–17. This led us to hypothesize that neuronal activity
patterns in the mouse S1 differ between spontaneous pain and
non-pain conditions and that spontaneous pain can be measured
quantitatively based on this discrepancy. Neurons in the S1
receive and discriminate various forms of somatosensory input,
including touch, itch and pain17–20. This complexity makes it
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difficult to extract pain-specific information from neuronal activity
patterns. Hence, to detect spontaneous pain information from
noise-polluted signals in S1, we employed a bidirectional recurrent
neural network (bRNN), a deep learning method specialized in
time-series data analysis21. Furthermore, we optimized the
preprocessing steps (Average training and Individual test, AI) for
supervised learning from biology-driven data. The consequent
deep learning model, designated AI-bRNN, successfully classified
spontaneous pain in various pain models with different prognoses
and evaluated the effects of various analgesics. Additionally, we
demonstrated that AI-bRNN is versatile, performing well for other
brain areas and cell types as well as other types of
somatosensation.

MATERIALS AND METHODS
Experimental animals
All mice were C57BL/6 males aged 5–6 weeks old at the start of the
experiments. The mice were housed in groups of two to minimize stress.
The vivarium was controlled with a 12/12-h light/dark cycle, and all
experiments were performed during daylight hours. All experimental
procedures were approved by the Seoul National University Institutional
Animal Care and Use Committee and performed in accordance with the
guidelines of the National Institutes of Health.

Behavior test
The formalin test was performed in mice that had been individually exposed
to the observation chamber. Before the test, the mice were acclimated to the
chamber for 1 h on 3 consecutive days. Ten microliters of 5% or 1% formalin
solution was injected into the right hind paw; the mouse was then
immediately put back into the chamber. We recorded the time spent in
nociceptive behavior (licking and biting of the injected paw) every 5min. In
the experiments involving analgesic drugs, ketoprofen (100mg/kg, 50 μl, i.p.)
or 2% lidocaine (10 μl, subplantar, s.c.) was administered 20min before the
formalin injection. To quantify the relieving effect of gabapentin/venlafaxine
(GB/VX) on partial sciatic nerve ligation (PSL)-induced neuropathic mechan-
ical allodynia, the mice were placed in a 12 (d) × 8 (w) × 6 (h) cm clear plastic
cage on a metal mesh. Behavioral tests were performed 30, 60, and 120min
after GB (100mg/kg) and VX (50mg/kg) administration. Mechanical allodynia
was assessed using the von Frey filament (Linton Instrumentation, Norfolk,
UK). Specifically, von Frey filaments delivering different bending forces (2.36,
2.44, 2.83, 3.22, 3.61, 3.84, 4.08, and 4.31 expressed as the log of the bending
force in mg) were applied to the right hind paw using the up-down method,
and the threshold force corresponding to 50% withdrawal was determined22.
The experimenters were blinded to the treatments that the animals had
received.

Surgical preparation for imaging in awake mice
All surgical procedures were performed under isoflurane anesthesia
(1–1.5%). To minimize edema and related inflammation, dexamethasone
(0.2 mg/kg) and meloxicam (20 mg/kg) were administered by subcuta-
neous injection. A cranial window was made above the area of the left S1
corresponding to the hind paw (size: 2 × 2 mm; center relative to
bregma: lateral, 1.5 mm, posterior, 0.5 mm)23,24. A small craniotomy was
carefully performed using a #11 surgical blade. The exposed cortex was
perfused with artificial cerebrospinal fluid, and an adeno-associated virus
expressing GCaMP6s (AV-1-PV2824; produced by the University of
Pennsylvania Gene Therapy Program Vector Core) was injected into S1
(30–50 nl per site; 200–300 μm from the surface) using a broken glass
electrode (20–40 μm tip diameter). After virus injection, the exposed
cortex was covered with a thin cover glass (Matsunami, Japan), and the
margin between the skull and the cover glass was tightly sealed using
Vetbond (3 M) and dental cement. For imaging of the ipsilateral
cerebellar Bergmann glia, a small craniotomy was performed over
lobule IV/V of the cerebellar vermis. AAV5.GfaABC1d.Lck-GCaMP6f was
delivered to the cerebellum (100–300 μm beneath the surface) as
described above.

Two-photon Ca2+ imaging in awake mice
For awake imaging, mice were habituated to the treadmill under head-
fixed conditions for 40 min per day over 2 weeks. Ca2+ imaging was
performed using a two-photon microscope (Zeiss LSM 7 MP, Carl Zeiss,

Jena, Germany) equipped with a water immersion objective lens
(Apochromat 20, NA= 1.0, Carl Zeiss). Two-photon excitation at
900 nm for GCaMP6s imaging was carried out using a mode-locked
Ti:sapphire laser system (Chameleon, Coherent, USA). Data were
acquired using ZEN software (Zeiss Efficient Navigation, Carl Zeiss) at
4.4 Hz for imaging of S1 and 32 Hz for imaging of the cerebellar
Bergmann glia.

Motion tracking during Ca2+ imaging
Mouse locomotion was recorded using a video camera. Motion tracking
was performed by a custom program written in LabVIEW (National
Instruments, USA) and was synchronized with two-photon imaging by a
trigger generated in the program. Mouse locomotion was recorded at a
rate of 64 Hz using a high-speed CCD camera (IPX-VGA210, IMPERX, USA)
with infrared illumination (DR4-56R-IR85, LVS, S. Korea). The recorded video
had 64 frames per second, with a frame size of 720 × 480 pixels. To assess
the level of locomotion, the difference in intensity of each pixel between
frames was calculated and summarized across all the pixels. If the
summarized value of a frame exceeded an arbitrary threshold determined
by an experimenter blinded to the treatment information, the frame was
scored as a locomotion-positive frame.

Experimental models of spontaneous pain
For the formalin-induced pain model, 10 μl of formalin (5% or 1%) or
vehicle solution was injected into the right hind paw. For the capsaicin
model, 10 μl of capsaicin (0.01%) was delivered to the right hind paw.
For the Complete freund’s adjuvant (CFA) model, 10 μl of CFA was
injected subcutaneously into the plantar surface of the right hind paw.
For the chemotherapy-induced peripheral neuropathy model, oxaliplatin
(6 mg/kg) or 5% glucose was administered intraperitoneally. For the
neuropathic pain model, PSL surgery was performed on the right hind
paw under isoflurane anesthesia. The right sciatic nerve was exposed at
the upper thigh of the mouse, and the nerve was ligated to a diameter of
one-third to one-half of the original value with a 9–0 suture. In the
assessment of analgesic effects, GB (100 mg/kg) and VX (50 mg/kg) were
coadministered to the PSL animals 3 and 10 d after surgery. Imaging and
behavioral tests were performed 30 min after the intraperitoneal
injection of the drugs. For the itch model, chloroquine (100 μg/10 μl)
was delivered to the right hind paw. Imaging was performed 1–5 min
after chloroquine administration.

Extracting Ca2+ traces and event detection
The imaging data were motion corrected using the Turboreg algorithm
(Biomedical Imaging Group, Swiss Federal Institute of Technology,
Lausanne, Switzerland). Regions of interest (ROIs) were detected using
the CNMF-E algorithm25 and then manually reviewed. Spatial information
on the ROIs was imported into ImageJ (https://imagej.nih.gov/ij/), and the
average fluorescence in each ROI was calculated along with the frame. The
events were detected from the extracted Ca2+ traces using MLSpike26, an
open-source algorithm. The hyperparameters for MLSpike were set as
follows: a= 0.3, tau= 1, saturation= 0.1, finetune.sigma= 0.02, and
drift.parameter= 0.1. The drift signal from MLSpike was used to calculate
the amplitude and frequency of the events.

Ca2+ activity normalization
A Gaussian window27 was applied to reduce the noise of the extracted
Ca2+ traces. The average value of the activity below the 70th percentile
in each ROI was used as the baseline fluorescence activity (F0). All activity
signals were transformed to dF/F0 in each ROI to normalize the scale
range. The length of the data sequence was fixed at 497 frames. When
the length of the sequence exceeded 497 frames, the data were divided
using the window slicing method (window size of 497 frames, step size
of 10 frames).

Preprocessing for deep learning and deep learning
architecture
The Ca2+ imaging data obtained in one imaging session had a size of
n ×m, where n was the number of ROIs and m was the number of frames
(typically 497 frames for 2 min). The deep learning model was trained to
have an output of [1, 0] for the non-pain condition or [0, 1] for the pain
condition. The neural network was implemented using Keras28. The input
data had dimensions of (k, 497, 1), where k is the number of input data
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sequences in the training set, 497 is the length of each data sequence, and
1 is the number of features. This input was forwarded to bidirectional long
short-term memory recurrent neural networks29 activated by a hyperbolic
tangent function. Then, the data were fed to two dense layers that had
dropout rates of 0.2 and 0.1. These two dense layers were activated
according to rectified linear unit (ReLU)30 and sigmoid activation functions,
respectively. Finally, the data were fed to a dense layer that was activated
by the softmax function, which is defined as follows:

S yið Þ ¼ eyi

Pn

i
eyi

(1)

where y is the activated value, i is each node (i.e., class), and n is the total
number of nodes or classes. The loss function was defined as follows:

� 1
N

XN

i

yi log ŷi þ 1� yið Þ log 1� ŷið Þ½ � (2)

where y-hat is the estimated value that was activated by the softmax
function, y is the label [1,0] for non-pain or [0, 1] for pain, and N is the
total number of samples. The Adam optimizer31 was used, and the
hyperparameters were set to the default values (lr= 0.01, decay= 1e-8,
β1= 0.9, β2= 0.999). The L2 regularizer was applied to each dense
layer to prevent overfitting. Thus, the loss function was redefined as
follows:

� 1
N

XN

i

yi log ŷi þ 1� yið Þ log 1� ŷið Þ½ � þ λ
XN

i

W2i (3)

where W is the summation of the weight values of dense layers and λ is the
arbitrary weight of the L2 regularizer. The initial weights of all layers were
set based on the He uniform variance scaling initializer with a fixed
random seed to ensure reproducibility.

Pain classification deep learning model based on S1 activity
Ca2+ activity of the S1 in formalin-induced pain states was used as ground-
truth data for pain. All baseline data were used as ground-truth data for
non-pain. The quantity of pain data for deep learning training was less
than the quantity of non-pain data. To balance the class sizes, the pain
data were duplicated. To validate the deep learning model, we used the
leave-one-subject-out (LOSO) cross-validation (CV) method. All data
obtained from one mouse (subject) were isolated and assigned to the
test session. Non-formalin data (i.e., capsaicin-, CFA-, PSL-, and oxaliplatin-
induced pain data) were used in the test session directly because these
data were never used in the training session.

Pain classification deep learning model based on cerebellar
glial cell activity
The Ca2+ activity of the cerebellar Bergmann glia in the capsaicin-induced
pain state was used as ground truth data for pain. All baseline data were
used as ground-truth data for non-pain. The Ca2+ imaging data of the
cerebellum Bergmann glia (19200 frames per subject) were downsampled
to 1/40 (479 frames). The locomotor information was used as a second
feature, such that the input to the neural network had the shape of (k, 479,
2). For the test, the LOSO-CV method was applied.

Itch classification deep learning model based on S1 activity
The Ca2+ activity of S1 in the chloroquine-induced itch state was used as
ground truth data for itch. All baseline data were used as ground truth data
for non-itch. The validation of the itch classification model was performed
with the CV method. To compare itch and pain signals in S1, we used itch
data as a test set for the pain classification deep learning model trained
with formalin-induced pain signals.

Statistics
Statistical analyses were performed using GraphPad Prism 7 (GraphPad
Software, Inc.) or Python (SciPy library32). Two-factor repeated-measures
ANOVA and Student–Newman–Keuls post hoc tests were used in
Supplementary Fig. 6a, b. Pearson correlation analysis was used in
Supplementary Fig. 3b and Supplementary Fig. 4c. The Wilcoxon test
was used in Fig. 1f. The Mann–Whitney U test was used in other analyses.
All values are represented as the means ± SEM.

RESULTS
AI-bRNN detects information on formalin-induced
spontaneous pain and the efficacy of painkillers from S1
neuronal Ca2+

To identify a prototype of neuronal activity patterns in sponta-
neous pain, we recorded S1 neuronal Ca2+ activity during
formalin-induced spontaneous pain in awake, head-fixed mice
(see Methods for details). Using in vivo two-photon microscopy
and the genetically encoded Ca2+ indicator GCaMP6s, we imaged
the Ca2+ activity of layer II/III neurons in the left S1 of head-fixed
mice while tracking their motion using an infrared camera (Fig.
1a). Consistent with previous reports33, pain behaviors (i.e., licking
and biting) were most prominent at 0–5min after a formalin
injection (5%, 10 μl, s.c.) into the right hind paw in freely moving
mice. Only the Ca2+ activity signals recorded 1–3min after the
formalin injection were used as ‘pain’ condition signals (Fig. 1b).
We extracted raw Ca2+ traces from each region of interest (ROI)
(Fig. 1c) and matched the heatmap-visualized Ca2+ traces (Fig. 1d,
top) and the averaged trace (Fig. 1d bottom) with the motion
tracking data (blue background, Fig. 1d, bottom).
However, using conventional Ca2+ analyses26, we could not

collect pain-specific information from S1 neurons. The amplitude
and frequency of Ca2+ events showed no differences between the
pain and non-pain conditions (Supplementary Fig. 1a, b), and the
receiver operating characteristic (ROC) curve showed poor AUC
scores of 0.61 and 0.55, respectively (Supplementary Fig. 1c).
These negative results may not be surprising, considering that S1
neurons process touch and proprioception as well as pain16,19.
Hence, we developed a deep learning algorithm to detect distinct
features of Ca2+ activity that represent spontaneous pain.
Given the complexity of biology-driven data, adequate pre-

processing steps are critical for the performance of deep learning
model algorithms34. Indeed, when data were fed to the deep
learning model without configuration of data preparation, the
results showed poor performance (i.e., training and testing with
individual ROI activity signals) (Supplementary Fig. 2a–c). Thus, we
developed optimized preprocessing steps through trial and error
and decided to use simplified data (sequential averaged activity
signals across the ROIs) for the training session and individual data
(sequential activity signals from each ROI) for the test session (Fig.
1e and Supplementary Fig. 2a–c). Since the formalin pain model
exhibits clear, strong, and measurable pain behaviors35, we
utilized S1 neuronal Ca2+ activity signals recorded at 1-3 min
following formalin injection as supervisory signals for AI-bRNN.
After training the AI-bRNN, we tested its classification performance
with the LOSO-CV method. AI-bRNN predicted spontaneous pain
conditions depending on the formalin concentration (5%, 1% and
saline; Fig. 1f, g). Mild (ketoprofen, 100 mg/kg, i.p.) and strong (2%
lidocaine, s.c.) painkillers reduced the estimated pain values in the
5% formalin group to the levels of the 1% formalin group and a
saline-treated non-pain group (Fig. 1f). All of these pain values
estimated by AI-bRNN in head-fixed mice were similar to the pain
behaviors measured in freely moving mice (Supplementary Fig.
3a), with a highly positive correlation between the two (r= 0.97;
Supplementary Fig. 3b). Along with the early phase of pain after
formalin injection, we examined the late phase of pain. The results
showed a late phase of pain that was distinct from the preceding
period, and the estimated pain level was reduced to zero by
injection of ketoprofen (Supplementary Fig. 4a, b). To compare the
analgesic effects of ketoprofen between the early and late phases,
we normalized the pain level to 1 for each phase. Ketoprofen
showed a significantly stronger analgesic effect in the late phase
than in the early phase (Supplementary Fig. 4c). The early phase of
formalin pain is the result of a direct effect on nociceptors, and the
late phase is an inflammatory response36. Therefore, the observa-
tion that ketoprofen, an anti-inflammatory drug, had a stronger
analgesic effect in the late phase than in the early phase is
consistent with a previous report. Together, these results indicate

H. Yoon et al.

1181

Experimental & Molecular Medicine (2022) 54:1179 – 1187



H. Yoon et al.

1182

Experimental & Molecular Medicine (2022) 54:1179 – 1187



that our deep learning model can quantify the intensity of
spontaneous pain and evaluate the efficacy of analgesics.

AI-bRNN can be applied to other clinically relevant pain
models, including chronic neuropathic pain
Next, we tested whether AI-bRNN trained on S1 neuronal Ca2+

during formalin-induced pain is broadly applicable to various pain
models with different chronicities. Our deep learning algorithm
discriminated acute spontaneous pain induced by capsaicin (0.1%,
s.c.) from the non-pain condition (Fig. 2a). AI-bRNN also
distinguished subchronic spontaneous pain on Days 1 and 3 after
injection of complete Freund’s adjuvant (CFA; 10 μl, s.c.) (Fig. 2b).
We note that this could not be accomplished by the measurement
of facial expression using GS37 or by analyzing locomotor behavior
(Supplementary Fig. 5a, d) or the mean calcium activity of S1
(Supplementary Fig. 5b, e). Additionally, the pain index estimated
by AI-bRNN was not correlated with S1 calcium activity or
movement (Supplementary Fig. 5c), indicating that the deep
learning model detects a feature distinct from body movement
and the simple intensity of S1 calcium activity.
In addition to CFA-induced pain, AI-bRNN detected subchronic

pain conditions in a mouse model of chemotherapy-induced
peripheral neuropathy induced by oxaliplatin treatment (6 mg/kg,
i.p.). The pain value estimated by AI-bRNN was significant at 3 d
but returned to the control level at 10 d after oxaliplatin injection
(Fig. 2c), consistent with the previously known symptomatic time
course of this model38. These results indicate that AI-bRNN can
discriminate capsaicin-, CFA- or oxaliplatin-induced pain from the
non-pain condition, although the model was trained exclusively
with data from mice with formalin-induced pain (Fig. 2d).
The diagnosis and treatment of spontaneous pain in neuro-

pathic pain conditions have been a major challenge for pain
researchers for decades. The previous approach using the GS
could not detect pain in a chronic neuropathic pain model.
Another method, CPP, merely detected the existence of an
aversive state suggestive of spontaneous pain in model animals
using pharmacological intervention that involves the reward
system. Our approach using AI-bRNN could identify the condition
of spontaneous pain in neuropathic pain mice at the early (3 d)
and late (10 d) phases following PSL injury (Fig. 2e–g) without the
use of pharmacological intervention. We also applied a sliding
window method (segmentation of estimated pain values by 2-min
time windows) and tracked the sequential change in the
estimated pain values. Using this technique, we revealed when,
how long, and at what degree of severity PSL group mice felt
spontaneous pain (Fig. 2f, Supplementary Fig. 6a–c). We then
asked whether our method could be used to measure the efficacy
of analgesic drugs against spontaneous neuropathic pain.
Combined treatment using gabapentin (GB; 100mg/kg, i.p.) and
venlafaxine (VX; 50mg/kg, i.p.)39,40, which are clinically utilized
analgesics, attenuated the estimated pain value at 3 d following
PSL (Fig. 2e, f). Interestingly, however, the estimated pain value
was not reduced when the same drugs were injected 10 d after

PSL injury. These results resemble clinical studies that showed that
the effects of these conventional analgesics diminish with the
duration of neuropathic pain symptoms in patients41,42.
We confirmed using a conventional von Frey test that the

treatment could relieve stimulus-evoked pain (mechanical allody-
nia) in both phases (Supplementary Fig. 7a, b). Taken together, our
findings indicate that AI-bRNN has broad applicability to various
animal models of spontaneous pain and emphasize that
painkillers should be assessed separately for different pain types
(i.e., evoked vs. spontaneous).

Versatility of AI-bRNN
We then tested the versatility of AI-bRNN by applying it to a
different brain region (cerebellum) and cell type (glia), as well as to
a different form of somatosensation (itch). Capsaicin-induced
spontaneous pain information is transmitted to the cerebel-
lum43,44, leading to increased neuronal activity and subsequent
Ca2+ elevation in the resident Bergmann glia (unpublished data).
We expressed GCaMP6f in the Bergmann glia of cerebellar cortex
lobule IV/V to image Ca2+ activity during capsaicin-induced pain
(0–10min after injection) or non-pain conditions (Fig. 3a, see
Methods for details). Since the boundaries of individual Bergmann
glia are difficult to discern, we modified our deep learning model
to use average Ca2+ activity from the whole imaging field, rather
than individual Ca2+ traces from ROIs, in the test session as well as
in the training session. Nevertheless, the algorithm robustly
estimated the capsaicin pain condition (Fig. 3b, c).
We also applied AI-bRNN to classify another somatosensation,

itch, which shares common neuroanatomical pathways with pain
while being a clearly distinct sensation18. We acquired S1 neuronal
Ca2+ activity signals during chloroquine (100 μl, s.c.)-induced
spontaneous itch (1–5min after injection) or non-itch conditions
(Fig. 4a) and used these signals as labeling data for the itch
classification model. The results showed that the AI-bRNN
approach could distinguish itch signals from non-itch signals
(Fig. 4b, d). We also developed a deep learning model that
differentiates itch from pain (Fig. 4c). Chloroquine-induced itch
signals were used as labeled itch data (0 at the y-axis), and
formalin-induced pain signals were reused as labeled pain data
(100 at the y-axis); the established AI-bRNN clearly classified itch
and pain (Fig. 4d). These results demonstrate the versatility of AI-
bRNN.

DISCUSSION
Pain researchers and clinicians have long been eager to develop a
real-time, scalable pain indicator. Since spontaneous ongoing pain
is a major clinical problem and extremely difficult to treat,
researchers have tried to develop intervention methods using
various approaches in animal models. However, the successful
translation of these methods into the clinic has yet to be achieved.
In this regard, the lack of objective assessment of spontaneous
pain in preclinical models has been regarded as a critical obstacle

Fig. 1 Conceptual framework and validation of AI-bRNN. a Schematic diagram of the experimental approach. AAV1-hsyn-GCaMP6s was
injected into S1. b Imaging was performed for 2min at each time point (before and 1–3min after formalin injection). The time points for
imaging were selected based on the levels of nociceptive behavior after formalin injection in freely moving animals. c A representative image
of S1 neurons identified by semiautomated ROI analysis (top). Example Ca2+ traces from each ROI (bottom). The scale bar represents 50 μm.
d Heatmaps showing the activity of S1 neurons. The line traces below each heatmap indicate the averaged values of all ROIs. The periods of
mouse locomotion identified by the motion tracking analysis are overlaid on the line traces using sky-blue shading. e Architecture of AI-bRNN.
The Ca2+ traces extracted from each ROI were averaged subject by subject to train the neural network. In the test session, the Ca2+ traces
from individual ROIs were separately applied to the deep learning model for testing. f The predictions of AI-bRNN regarding whether the
subject was experiencing pain. On the x-axis, ‘B’ indicates the time before injection. Saline (s.c.) group (n= 14 mice); formalin 5% (s.c.) group
(n= 13 mice); formalin 1% (s.c.) group (n= 8 mice); formalin 5% (s.c.) + ketoprofen (100mg/kg, i.p.) group (n= 7 mice); formalin 5% (s.c.) + 2%
lidocaine (10 μl, s.c.) group (n= 3 mice). g The classification performance for formalin pain conditions based on the S1 neuronal signals.
Scatter plots indicate individual data. Bars indicate the mean ± SEM; N.S., nonsignificant; ***P < 0.001, *P < 0.05 compared to the pre-injection
period (Wilcoxon test).
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to filling the gap between animal experiments and clinical
practice8,10. Here, we developed AI-bRNN, a deep learning
algorithm for spontaneous pain assessment from brain activity
signals obtained by two-photon microscopy in awake mice. We
demonstrated that AI-bRNN robustly detects detailed information
about spontaneous pain, such as its intensity, time point and
duration, regardless of the phase (from acute to chronic) or the
initiating cause of pain (inflammatory or neuropathic), and
evaluates the analgesic efficacy of drugs. Thus, our unprecedented
approach provides a powerful evaluation platform for sponta-
neous pain that will facilitate the successful translation of pain
experiments into clinical practice.
The performance of our method is vastly superior to that of

previous pain assessment tools that are based on observation of
behaviors such as facial expressions12, place preference13, daily
activities, food intake45 and ultrasound vocalizations46. First, AI-
bRNN does not depend on behavioral responses; thus, there is no
need to consider the motor function, learning ability, or the
reward system of the animal. This would be an incomparable
advantage in the study of pain symptoms in models of
neurodegenerative diseases, such as Alzheimer’s disease47 or
Parkinson’s disease48. Another advantage of AI-bRNN is that once
the model is trained with pain datasets, testing new data requires

minimal computing power and time. Therefore, real-time pain
detection is entirely feasible (see Supplementary Movie 1) by
applying the established model to the data acquisition step. This
real-time analysis provides an advantage in studying the
pharmacokinetics of drugs, enabling a better understanding of
the intensity and duration of action of painkillers. Finally, AI-bRNN
can be applied not only to neurons in the S1 but also to glia in
other brain regions, such as the cerebellum (Fig. 3b, c). This
multiregional applicability provides an additional benefit: when S1
is unavailable due to damage, signals from alternative brain
regions could be used as pain indicators. These benefits that are
obtainable through AI-bRNN cannot be achieved using existing
methods, such as GS and CPP, which indicates that spontaneous
pain detection based on neural activity has more sensitivity than
behavioral responses.
Using AI-bRNN, the analgesic efficacy of drugs could be

measured as well. The amelioration of pain by each drug
treatment could be assessed in different types of pain models.
Systemic administration of ketoprofen, a nonsteroidal anti-
inflammatory drug, moderately reduced the pain value estimated
by AI-bRNN, while subplantar injection of lidocaine strongly
reduced the pain value in formalin-treated mice. All of these pain
values determined by AI-bRNN in head-fixed mice were highly

Fig. 2 Broad applicability of AI-bRNN to various pain models with different chronicities. Estimated pain values of the a capsaicin-, b CFA-,
and c oxaliplatin-injected animals. The estimated pain values are based on the Ca2+ activity of the neurons in S1. Saline (s.c.) group
(n= 28 sessions from 14 mice); capsaicin (0.01%, 10 μl, s.c.) group (n= 9 mice); CFA (10 μl, s.c.) group (n= 6 mice); oxaliplatin (6 mg/kg, i.p.)
group at 3 d (n= 9 mice); oxaliplatin group at 10 d (n= 7) d Classification performance in the capsaicin-, CFA- and oxaliplatin-induced pain
conditions. e Estimated pain values of the animals subjected to PSL or sham surgery. Sham group (n= 6 mice); PSL group at 3 d (n= 20 mice);
PSL group at 10 d (n= 24 mice); PSL+ GB/VX (GB 100mg/kg, VX 50mg/kg, i.p.) group (n= 8 mice) f Heatmap plots showing changes in
estimated pain values over time with 2-min time resolution. g The classification performance for PSL pain conditions based on the S1
neuronal signals. Scatter plots indicate individual data. Bars indicate the mean ± SEM; N.S., nonsignificant; ***P < 0.001, *P < 0.05 compared to
baseline (Mann–Whitney U test).
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correlated with the pain behaviors measured in freely moving
mice (49,50; see also Fig. 1f and Supplementary Fig. 3a, b). These
results indicate that the values estimated by AI-bRNN can be used
for quantification of pain and analgesic efficacy. This is also
applicable to further experiments conducted in a mouse model of
neuropathic pain. When GB/VX was administered 3 d after nerve
injury, AI-bRNN detected clear analgesic effects of the treatment.
On the other hand, AI-bRNN assessed that GB/VX exerted no
significant analgesic effects when administered 10 d after nerve
injury (Fig. 2e). This result contrasts with previous reports39,40 and
our behavior experiments, which measured the analgesic efficacy
of the drugs using a stimulus-evoked response test and observed
a reduction in responsive behavior in animals (Supplementary Fig.
7a, b). Rather, the results from AI-bRNN resemble clinical studies
reporting that the analgesic effects of the drugs on neuropathic
pain are not reliable51–53, presumably because the drugs could not
exert sufficient analgesic effects when administered to patients
with chronic pain41,42. Based on these findings, we interpreted our
method with AI-bRNN to represent the clinical situation more
relevantly than the conventional stimulus-evoked method, and we
propose that painkillers should be assessed separately for different
pain types (i.e., evoked vs. spontaneous).
In the optimization process to establish pain detection with

deep learning techniques, we considered various approaches in
the configuration of data preparation. Data labeling is a critical
part of the supervised learning process34, and inaccurately labeled
data cause the deep learning model to perform poorly, as shown
in Supplementary Fig. 2a–c. In this study, we injected formalin into
the hind paw of mice to generate severe ongoing pain with a clear
time window. The deep learning model showed high classification
performance on various pain states when average ROI activity
signals were used to train the model. In contrast, the performance
was poor when the Ca2+ activity signals from individual ROIs were
used as the pain label. These results might stem from the
complexity in the S1 neuronal processing of sensory signals54,55.
Considering that S1 neurons process multiple sensory signals,
non-pain signals would be mixed into all the datasets we
obtained. The individual non-pain signals included in the pain-
label datasets would act as false pain data and interfere with the
supervised learning. Averaging the Ca2+ activity of the ROIs would
increase the signal-to-noise ratio, as information representing pain
would be reflected by averaged activity in proportion to the pain
signals included56. Using the averaged Ca2+ activity for training of
the deep learning model would reduce the chance of training the

model with irrelevant signals (false pain data). This explains the
superior classification performance of the model trained with
averaged Ca2+ activity compared to the model trained with
individual Ca2+ activity.
In contrast to the training session, we found that the data

configuration in the testing session was not crucial for the
classification performance of the established model. Although
the use of the AI setting (using the average signal for training
and individual signals for testing) showed the highest
performance among those that we tested (Supplementary
Fig. 2a–c), sufficient classification performance was also
obtained when the averaged signal from ROIs was used in
the testing session (AA setting) (Supplementary Fig. 2a, b).
Even using the average of the signals from the entire imaging
field without ROI detection could achieve satisfactory classifi-
cation performance (Fig. 3c). These results of testing with
various settings provide additional flexibility to our deep
learning approach. We believe that our approach provides a
good example of a suitable optimization process for biology-
driven data in supervised learning.
We adapted the bidirectional long short-term memory (LSTM)

RNN, which is specialized for time-series data analysis, to the
classification model29. bRNN has been reported to outperform
other deep learning models that analyze time-series data57,58. The
Ca2+ imaging data are also time series, and we expect that Ca2+

imaging data contain both forward and backward information.
This deep learning architecture requires minimal field-specific
knowledge because the feature extraction step is automated. For
example, we adopted only the dF/F0 transformation, which is the
procedure commonly applied to Ca2+ imaging. This minimized
manual processing step promotes the versatility of AI-bRNN
because it should be easily applicable to any type of Ca2+ data
regardless of properties (e.g., event intensity, frequency and
decay). We validated this versatility by pain estimation using glial
Ca2+ activity recorded from the cerebellum (Fig. 3b, c). We also
showed that AI-bRNN could be successfully applied to a distinct
type of somatosensation, itch, which shares a neuroanatomical
pathway with pain (Fig. 4b)18, and the model further distinguished
between spontaneous pain and itch (Fig. 4c). Based on the
flexibility, broad applicability and versatility of AI-bRNN, we
strongly expect that our approach will be further extended to
the detection of specific patterns not only from brain cellular Ca2+

activity but also from other forms of sequential data in the entire
field of biology.

Fig. 3 Classification performance of AI-bRNN in different brain regions and cell types. a Schematic drawing of the cerebellar Bergmann glia
and the imaging timeline before and after capsaicin or vehicle injection. b Estimated pain values of capsaicin-injected animals. The estimated
pain values were based on the Ca2+ activity of Bergmann glial cells in the cerebellum of the capsaicin group (n= 7 mice) and the saline group
(n= 14 mice). The data from the baseline non-pain condition (before the capsaicin injection) were pooled with the data from the saline-
injected animals. c The classification performance for the capsaicin-induced pain condition based on the cerebellum Bergmann glia signals.
Scatter plots indicate individual data. Bars indicate the mean ± SEM; *P < 0.05 compared to the matched control group (Mann–Whitney U test).
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Recent technical advances have allowed us to record the
activity of multiple neurons in the brain using electrocorticogra-
phy59,60 or microelectrodes61 in humans. AI-bRNN can analyze the
time-series data obtained with these techniques in real time. Such
clinical applications of AI-bRNN, if combined with brain stimula-
tion62, may enable simultaneous diagnosis and treatment of
chronic pain in human patients, which is expected to reduce drug
abuse, suicide rate and socioeconomic burden. In summary, AI-
bRNN provides a new paradigm for the measurement of
spontaneous ongoing pain and analgesic efficacy. This clinically
relevant, scalable, real-time pain indicator paves the way for the
successful translation of numerous mechanisms and analgesics
discovered in preclinical animal models into pain relief in human
patients.

DATA AVAILABILITY
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