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coherent control of optical limiting 
in atomic systems
Mohsen Ghaderi Goran Abad, Mahsa Mahdieh, Mohadeseh Veisi, Hamid nadjari & 
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Generation and control of the reverse saturable absorption (RSA) and optical limiting (oL) are 
investigated in a four-level Y-type quantum system. It is demonstrated that the applied laser fields 
induce the RSA and it can be coherently controlled by either intensity or frequency of the applied laser 
fields. The effect of the static magnetic field on the induced RSA is studied and we obtain that it has 
a constructive role in determining the intensity range in which the OL is established in the system. 
In addition, we find that the transmission of the suggested optical limiter can be decreased either 
by increasing the length of the medium or by getting the atomic system denser. finally, the Z-scan 
technique is presented to confirm our theoretical results. The proposed scheme can be used in designing 
the coherent optical limiters with controllable threshold and intensity range of the OL.

Atomic coherence offers a systematic basis for the fundamental concepts of the coherent control. Optical devices 
are generally based on manipulation of the phase, polarization, propagation direction and also the intensity of 
the optical light, which can be done by atomic coherence due to the applied laser fields. Intensity manipulation of 
the light is a major basis of designing all-optical switches1,2 and optical limiters2,3. Optical limiters have received 
much attention for the increasing demand in protection of optical components in optically based devices. All 
optical sensors involved in the optical devices may be vulnerable for their sensitivity to the light intensity. In fact, 
human eye, sensors and other optical sensitive elements have an intensity threshold above which laser-induced 
damage happens. In optical limiters, the transmission of the light reduces or even becomes constant for the input 
intensities higher than the threshold intensity. Thus, the presence of optical limiters to restrict the intensity of the 
incident laser beam is completely requisite prior to the sensors and direct viewing devices. Optical limiters protect 
the sensors from the damages due to the higher intensity laser pulse by extending their intensity range to operate 
under rougher conditions.

Various techniques, i.e., two photon absorption4–6, nonlinear scattering7,8 have been reported for generating 
the optical limiting (OL). The basic mechanism to establish the OL is the reverse saturable absorption (RSA)9–11 
in which, unlike the saturable absorption (SA), the absorption increases by increasing the incident intensity. In 
general, the RSA can occur when the absorption of the excited state is large compared to the absorption of the 
ground state. On the contrary, SA is the dominant phenomenon in the system. Note that in SA materials, the 
absorption reduces with increasing the intensity due to depletion of the ground state, leading the materials to 
be more transparent. The RSA and OL have been observed in numerous compounds such as organic materi-
als3,12, C60 solution13,14, complicated molecular structure15–17 and semiconductors18. Different investigations on 
the various molecules have demonstrated that the OL behavior is dependent on the density and concentration of 
the molecules19,20, so that Azzam et al. suggested thinner films with larger density in OLs device engineering20. 
Moreover, dependence of OL behavior on light wavelength has been previously shown21,22. OL features of metal 
nanowires have been widely investigated because of their applications22–26. Pan et al.22 have explored various metal 
nanowires and showed that the OL threshold is different for different metal nanowires. Note that all the materials 
used for generating OL in the previous works are nonlinear materials, which naturally show the RSA. Moreover, 
for protecting the various optical devices with different OL threshold, one should change the material or its con-
centration. Here, we induce the nonlinear properties to the medium by applying the laser fields. It leads to design 
a simpler optical limiter, which the optical limiting properties can be coherently controlled by the applied fields.

In this paper, unlike the previous reported works, we introduce a coherently controllable optical limiter using 
the atomic systems in a four-level Y-type configuration. It is demonstrated that the RSA is coherently induced by 
the laser fields and the conditions are provided for preparing the OL in the system. It is shown that all characteris-
tics of the induced OL such as the intensity range, the threshold intensity and the transmission can be controlled 
by either intensity or frequency of the laser fields. Moreover, the effect of the static magnetic field on the OL is 
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studied and it is illustrated that the RSA and the OL regions are extended by increasing the magnitude of the 
static magnetic field. In addition, we show that the transmission of the suggested optical limiter decreases either 
by increasing the length of the medium or by getting the atomic medium denser. Finally, the Z-scan technique is 
presented to confirm our theoretical results.

Model and equations
The proposed realistic atomic system is a four-level Y-type quantum system, which can be established in 5S1∕2, 
5P1∕2 and 5D3∕2 lines of 87Rb atoms as shown in Fig.  1. Two states S F m1 5 , ( 1, 0)F1/2= = =  and 

P F m2 5 , ( 2, 0)F1/2= = = , separated by 377 THz, are defined as ground state and intermediate state. Two 
degenerate states = = = −′

′D F m3 5 , ( 2, 1)F3/2  and = = =′
′D F m4 5 , ( 2, 1)F3/2  are chosen as the 

higher excited states. Here, F and ′F  are the quantum numbers of the total angular momentum and ′mF F( ) denotes 
magnet ic  quantum number  of  the  corresponding  s tates .  A weak l inear ly  probe  f ie ld , 

ε
→

= → + . .ω− −( )E z t z e c c( , ) ( )p p
i t k zp p , with wave vector kp and polarization in x direction drives the transition 

↔1 2  with the Rabi frequency /p p21µ εΩ = → . → . The transition ↔2 3  ( ↔2 4 ) is coupled by the strong 
left (right) circularly polarized coupling field with the Rabi frequency µ εΩ = → . −E /s s32 

 ( µ εΩ = → . +E /c c42 ). εp 
and Ei(i = s, c) are the amplitude of the probe and coupling fields, respectively. ε± stands for the polarization unit 
vectors of the coupling fields. A static magnetic field is also employed to remove the degeneracy of the higher 
excited states 3  and 4  by 2ℏΔB = 2mFgsμBB where μB is Bohr magneton and gs is Landé factor. This system can 
make it possible that the intermediate state 2  to be depleted by applying two strong coupling fields to the higher 
excited states in the presence of a static magnetic field. Thus the necessary condition is provided for the RSA.

The Hamiltonian of the considered system in the dipole and rotating wave approximations can be written as 
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 where Δp = ωp − ω21, Δs = ωs − ω32 and Δc = ωc − ω42 are the detunings. ωp, ωs and ωc are the frequencies of 
the probe and coupling fields, respectively. Also, ω21, ω32 and ω42 are the central frequencies of the corresponding 
transitions. The density matrix equations of motion can be written as follows 
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where Γ1 = γ31 + γ32 and Γ2 = γ41 + γ42. The parameter γi1(γi2)(i = 3, 4) denotes the spontaneous decay rate from 
the excited state i  to the lower states 1  ( 2 ). The polarization vector in the atomic medium is given by 

χ ε
→

= → + . .ω− −( )P z t e c c( , ) (3)p p
i t k zp p

 Here, χp is the susceptibility representing the response of the medium to the probe field.
Let us now solve the wave equation for the probe field, which can be written as 
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 Inserting equation 3 into equation 4 and using slowly varying approximation, we simplify the equation 4 as 


ε

πω µ ε χ
∂

∂
= .

z
i2 ( )

(5)
p

p p p0 0
1/2

 Thus, the solution of the equation 4 by substituting μ=c 1/ 0 0  and kp = ωp/c leads the output probe field ampli-
tude to become as 
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ε ε= = .π χz l e( ) (0) (6)p p
i k l2 p p

χp can be related to the probe transition coherence ρ21 defined as 

χ
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 where n is density of atoms and ρ21 is calculated from equation (2). Therefore, the equation 6 reduces to 
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 where l n k l4 /p21
2α π µ γ=  is the resonant absorption. By introducing the normalized susceptibility Sp = ρ21γ/Ωp, 

the output probe field amplitude takes the form 

ε ε= = .
α

z l e( ) (0) (9)p p
i l S2 p

 Finally, the normalized transmission of the probe field is given by 
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 The normalized susceptibility Sp is clearly a complex quantity that its imaginary part stands for the absorption 
of the probe field. The intensity region in which the imaginary part of Sp increases with the increase of the input 
intensity denotes the RSA region. Equation 10 displays the transmission behavior of the light, which is going to 
be based on the study of the OL properties of the quantum system.

The Z-scan technique is widely used to study the nonlinear refractive index27 as well as the OL properties 
of various materials21. In experiment, a Z-scan setup includes a laser field with a transverse Gaussian profile 
focused by using a lens. The sample is then moved along the propagation direction of the focused Gaussian field. 
It is clear that the sample experiences maximum intensity at the focal point (z = 0), which gradually decreases 
in either direction from the focus. The Z-scan technique shows the transmission based on the scanning of the 
sample position relative to the focal plane of the lens. The incident probe field is a Gaussian laser field with the 
Rabi frequency Ωp

Ω = = Ω
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 where Ωp0 is the probe Rabi frequency at the focal point (beam waist), w0 = 0.1 mm is the beam waist radius at 
focus, w z w z z( ) [1 ( / ) ]0 0

2 1/2
= +  is the beam radius at z (the distance of the sample from the focal point) and 

Figure 1. A schematic of a four-level Y-type quantum system driven by a weak probe field and two coupling 
fields with Rabi frequencies Ωp, Ωs and Ωc respectively.
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z w /0 0
2π λ=  is the diffraction length of the beam. It should be noted that the Z-scan measurements in our work 

are carried out for the probe field at 800 nm wavelength corresponding to the transition 5S1∕2 ↔ 5P1∕2.
With calculations of equation 11 numerically for a pulsed Gaussian beam, normalized transmission as a func-

tion of position can be obtained as 
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Results and Discussion
Here, we are going to present our numerical results describing the absorption behavior of the system. We are 
interested in investigating the SA and RSA regions in the system to provide the appropriate conditions for induc-
ing the OL. All the parameters are scaled by γ, which is 2π × 5.75 MHz for the transition 5S1∕2 ↔ 5P1∕2 of 87Rb 
atoms. Figure 2 shows the absorption of the probe field versus the incident intensity of the probe field for different 
values of the Ωs. The dotted line is for Ωs = 0, the dot-dashed line for Ωs = 0.5γ, the dashed line for Ωs = γ and 
the solid line for Ωs = 2γ. The other used parameters are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0 
and ΔB = 0. It is seen that when the coupling field Ωs is switched off, the absorption of the probe field decreases 
by increasing the intensity of the input probe field and the SA is dominant in the absence of the Ωs. By switching 
on the Ωs, the RSA is induced and a peak is generated in the absorption of the probe field, leading to separate the 
RSA and SA regions. Moreover, the absorption peak enhances by increasing the Ωs, so it allows us to control the 
RSA phenomenon. Generally, in the RSA region (left side of the peak), the absorption increases by growing the 
intensity of the input laser field. An investigation on Fig. 2 shows that the RSA can switch to the SA for the intense 
input laser field.

The extension of the RSA with respect to the SA region is another scenario that we can do by applying the 
static magnetic field. After inducing the RSA in the system, it is important that the system maintains the RSA 
behavior in wider range of the intensity of the input field. The constructive role of the static magnetic field in 
the RSA is presented in Fig. 3 for ΔB = 0 (dotted), ΔB = γ (dot-dashed), ΔB = 2γ (dashed) and ΔB = 3γ (solid) 
corresponding to the static magnetic field B = 0, B = 2G, B = 4.3G and B = 6.4G, respectively. The other taken 
parameters are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0 and Ωs = 2γ. We result that the RSA region 
is extended by increasing the magnitude of the static magnetic field and the RSA is established in a larger range of 
the input probe field intensity, which promises the extension of the OL range.

In the following, we investigate the effect of the coupling field, Ωs, on the transmission of the probe field. In 
Fig. 4, the transmission of the probe field versus the intensity of the input probe field is shown for αl = 800γ, 
Ωs = 0 (dotted), Ωs = 0.5γ (dot-dashed), Ωs = γ (dashed) and Ωs = 2γ (solid). The other used parameters are 
those taken in Fig. 2. Figure 4 shows that in the absence of the coupling field, the transmission of the probe field 
grows with the increase of the input probe field intensity going the system toward transparency. Thus, the system 
cannot be used as an optical limiter. As proved in Fig. 2, the RSA was induced and intensified by increasing the 
Ωs. In the RSA domain, the transmission of the probe field keeps constant or even reduces wity increasing the 
coupling field intensity. Hence, it is demonstrated that the OL is coherently induced and controlled in the system. 
In addition, a bird’s eye view of Fig. 4 reveals that the increase of the Ωs can lead to decrease the threshold of the 
OL induced in the system.
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Figure 2. Absorption of the probe field versus intensity of the input probe field for different values of Ωs. The 
used parameters are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0, ΔB = 0, Ωs = 0 (dotted), Ωs = 0.5γ 
(dot-dashed), Ωs = γ (dashed) and Ωs = 2γ (solid).
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One of the important features that distinguish an optical limiter from the rest is the intensity range in which 
the optical limiter operates. Here, we show that the applying the static magnetic field can extend the OL range. 
Figure 5 depicts the transmission of the probe field versus input intensity for different values of the static magnetic 
field. The taken parameters are the same used in Fig. 3. Figure 5 shows that the OL range can be controlled by the 
static magnetic field. It is seen that in the absence of the static magnetic field, the OL is even established in a small 
range of the input intensity. Thus, in our suggested atomic optical limiter, applying the static magnetic field makes 
the optical devices and sensors safe from damages in a larger range of input intensity.

Control of the intensity of the transmission is another advantage of the suggested optical limiter. In Fig. 6, the 
effect of the resonant absorption, αl, is studied on the transmission of the probe field plotted versus the intensity 
of the input probe field. Resonance absorption is directly related to the length of the medium and density of 
atoms. It is observed that by increasing αl, the transmission decreases with the same OL thresholds. Decrease of 
the transmission makes it possible that the presented optical limiter can be set to use in optical devices, which 
need the optical limiters with lower transmissions.

In order to gain a deeper insight, the slope of transmission of the probe field, D(T), is displayed in Fig. 7 
as a function of the intensity of the input probe field and the static magnetic field. The used parameters are 
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Figure 3. Absorption behavior of the probe field versus intensity of the input probe field for different values of 
ΔB. The taken parameters are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0, Ωs = 2γ, ΔB = 0 (dotted), 
ΔB = γ (dot-dashed), ΔB = 2γ (dashed) and ΔB = 3γ (solid) corresponding to the static magnetic field B = 0, 
B = 2G, B = 4.3G and B = 6.4G, respectively.
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Figure 4. Transmission of the probe field versus intensity of the input probe field for Ωs = 0 (dotted), Ωs = 0.5γ 
(dot-dashed), Ωs = γ (dashed) and Ωs = 2γ (solid). The other used parameters are the same used in Fig. 2 
accompanied by αl = 800γ.
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Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0, Ωs = 2γ and αl = 800γ. It is worth to note that for the OL 
range, the slope of the transmission is zero and even negative. Otherwise, the slope of the transmission is positive 
for the SA region. Figure 7 delineates the behavior of the RSA and the corresponding OL induced in the system 
as well as the SA for all values of the static magnetic field and intensity of the input field. This figure helps us to 
determine the OL range needed for different optical devices by selecting the appropriate parameters. The OL line, 
shown in the Fig. 7, presents the zero slope of transmission at the end of the RSA region. The left side of the OL 
line specifies the OL range, while the right side determines the SA region.

Z-scan technique. In Fig. 8, the schematic of experimental setup is displayed including the open aperture 
Z-scan technique. A diode laser at 780 nm passes through the Electro-Optic Modulator (EOM) to generate a 
probe field at 795 mm and coupling field at 762 nm. The generated fields then pass through a high-quality polar-
izer (P1) to have linear polarization. The probe field is sent to organize the open aperture Z-scan part of the 
setup. The coupling field passes through the EOM2 to generate the two linearly polarized coupling fields. These 
two fields then pass through the quarter wave plate 1 (QWP1) and 2 (QWP2) to form the right- (Ec) and left- (Es) 
circularly polarized coupling field, respectively, and are applied to the medium. In addition, a static magnetic 
field is applied to the medium parallel to the coupling fields. The sample is moved around the focal point of the 
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Figure 5. Effect of the static magnetic field as ΔB = 0 (dotted), ΔB = γ (dot-dashed), ΔB = 2γ (dashed) and 
ΔB = 3γ (solid) corresponding to the static magnetic field B = 0, B = 2 G, B = 4.3 G and B = 6.4 G, respectively, 
on the transmission of the probe field versus input intensity of the probe field. The other parameters used are the 
same as those in Fig. 3 accompanied by αl = 800γ.
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Figure 6. Transmission of the probe field versus the input intensity of the probe field for different values of the 
resonance absorption αl = 200γ (dotted), αl = 400γ (dot-dashed), αl = 600γ (dashed) and αl = 800γ (solid). 
The other taken parameters are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0, Ωs = 2γ and ΔB = 3γ.
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focused probe field by a fine micropositioner. Finally the transmission of the probe field in each step is detected 
by the PhotoDiode (PD).

Finally, we employ the Z-scan technique to confirm the validity of the obtained theoretical results. The dip in 
the Z-scan transmission curve corresponds to the OL, while the peak stands for the SA effect. In Fig. 9, Z-scan 
technique measurement is displayed to investigate the z-dependent transmission for different values of input 
intensity chosen from the RSA and the SA region in Figs. 3 and 5. In Fig. 3, it was observed that the RSA was 
induced in the system up to a certain intensity called OL threshold. After the OL threshold, the SA is dominant 
in the system. These results was followed by the Fig. 5 in which it was observed that in the RSA region (Iin < 15γ), 
limited by the OL threshold, the OL appears. These results are demonstrated in the Z-scan technique presented in 
Fig. 9. The parameters that their results are examined in Fig. 9 are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, 
Δs = 0, Ωs = 2γ, ΔB = 3γ and αl = 800γ. It is seen in Fig. 9 that as the sample approaches and then moves away 
from the focal point, which its intensity is chosen from the RSA region in Figs. 3 and 5 (Iin < 15γ), the transmis-
sion curve takes the form of a dip. On the contrary, when the intensity of the focal point is chosen from the SA 
region in Figs. 3 and 5 (Iin > 15γ), the z-scan curve looks like a peak. Thus, the theoretical Z-scan experiment 
results are in good agreement with the results mentioned in Figs. 2–6.

conclusion
In summary, coherent generation and control of the RSA and OL are reported in a four-level Y-type quantum 
system. It was shown that the RSA is coherently induced by applied laser fields. We showed that, consequently, 
the OL is coherently induced through the RSA region so that all characteristics of the induced OL such as the 
intensity range and the threshold intensity can be controlled by either intensity or frequency of the laser fields. 
In addition, we proved that the static magnetic field has a constructive role in extending the RSA region and the 

Figure 7. Slope of the transmission of the probe field versus the static magnetic field and intensity of the 
input probe field. The used parameters are Ωp = 0.01γ, Ωc = 65γ, Δc = 100γ, Δp = 1.5γ, Δs = 0, Ωs = 2γ and 
αl = 800γ.

Figure 8. Schematic of experimental setup including the open aperture Z-scan technique. EOM is an electro-
optical-modulator; P is a high-quality polarizer; QWP is a quarter wave plate; and PD is a photodiode.
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OL range. Besides, it was demonstrated that the transmission of the suggested optical limiter can be controlled by 
either increasing the length of the medium or getting the atomic medium denser. Finally the obtained theoretical 
results was confirmed by the Z-scan technique. Our presented scheme can be used in designing the optical limit-
ers with controllable intensity range and OL threshold.
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Figure 9. Z-scan measurements of the obtained OL using input gaussian probe field at 800 nm wavelength for 
different values of input intensity.
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