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Abstract. Acute lung injury (ALI) and its more serious form 
[acute respiratory distress syndrome (ARDS)] are devastating 
diseases that lead to high morbidity and mortality rates in 
patients in intensive care units. ALI is caused by numerous 
direct or indirect factors, including trauma and sepsis. 
However, the underlying mechanism associated with the patho‑
physiological process of ALI has yet to be fully elucidated. 
As our understanding of mitochondrial biology continuously 
progresses, mitochondria have been largely considered as 
biosynthetic, bioenergetic and signaling organelles that have 
a critical role in the processes of cellular development, prolif‑
eration and death, and novel insights into how mitochondrial 
dysfunction affects the pathogenesis of different diseases 
have been garnered. According to current research models, 
functional characteristics of mitochondria are recognized to 
affect the function of cells and organs in ALI. The aim of the 
present review is therefore to discuss mitochondria and their 
role in ALI, and to consider how they may serve as potential 
therapeutic targets for this disease.
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1. Introduction

Acute lung injury (ALI), a common and devastating respiratory 
disease, is characterized by trans‑epithelial neutrophil migra‑
tion, an uncontrolled inflammatory response, damage caused 
to lung epithelial and endothelial cells, and destruction of the 
associated cell barrier (1,2). According to the newer Berlin defi‑
nition (3,4), the concept of ‘acute lung injury’ that was used for 
the milder form of acute respiratory distress syndrome (ARDS; 
the definition of ARDS/ALI is provided in Table I) (4,5) in the 
former definition has been discarded, although the term ‘ALI’ 
is still used for the milder form in the present review. Among 
the pathophysiological features of ALI, the destruction of lung 
vascular integrity is one of the most important, as this leads 
to the flow of protein‑rich fluid into the alveoli, the accumula‑
tion of neutrophils in the pulmonary microvasculature, and 
the release of toxic mediators from activated neutrophils (e.g., 
proinflammatory cytokines and proteases) (2,6‑8). ALI may 
be induced by direct causes (such as inhalation injury, serious 
pneumonia and drowning) or indirect causes (such as trauma, 
sepsis and drug overdose) (9). Clinically, ALI is mainly respon‑
sible for causing hypoxemia, pulmonary edema, bilateral lung 
infiltration and decreased lung compliance, which leads to the 
high morbidity and mortality rates observed in intensive care 
units (ICU) (10,11). Several biomarkers have been shown to be 
closely associated with the high morbidity and mortality rates 
that are due to ALI. To date, a number of studies have demon‑
strated that tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6, 
IL‑8 and IL‑18 are the most closely associated with the outcome 
of ALI (12,13). In addition to these cytokines, alveolar epithe‑
lial biomarkers (including surfactant D and the receptor for 
advanced glycation end‑products), protein C and plasminogen 
activator inhibitor‑1 have been shown to be associated with the 
prognosis of the disease (14‑16).

Although ALI continues to garner increasing levels 
of attention, few useful clinical therapeutic methods are 
available for the treatment of this disease. Lung‑protective 
mechanical ventilation, the main clinical treatment method 
available, is used to improve the breathing condition of 
patients, thereby increasing their survival rate, although the 
mortality rate due to ALI/ARDS remains high (17,18). In 
addition, neither anti‑inflammatory drugs (such as corticoste‑
roids) nor β‑adrenoceptor agonists have been demonstrated 
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to effectively reduce the mortality rate of patients with 
ALI (19,20). Table II (21‑32) offers a summary of the research 
that has been conducted on the pharmacological treatment of 
ALI to date. Current research studies have indicated that stem 
cell‑based therapies may potentially provide an important 
means of treating ALI due to their regenerative potential, 
stability and safety (33). Furthermore, microRNAs (miRNAs) 
have been shown to function as potential biomarkers, are a 
therapeutic target in animal models of ALI, and may ulti‑
mately serve as putative biopharmaceuticals based on studies 
that have been performed from the bench to the clinic (34,35). 
However, there remain limitations and issues that need to be 
explored and resolved. Essentially, it is necessary to further 
understand the mechanisms underlying the pathophysiological 
process of ALI, and to identify novel therapeutic approaches 
to improve the survival rate and prognosis of patients with 
ALI (36). As a dynamic organelle, the mitochondrion provides 
an important intracellular component that allows cells to adapt 
to the environment, also participating in stress sensing. The 
functions of mitochondria include bioenergetic, biosynthetic 
and signaling aspects (37). For example, mitochondria produce 
adenosine triphosphate (ATP) via oxidative phosphorylation 
(OXPHOS). They also take up intracellular Ca2+ and relieve 
the effects of toxicity associated with reactive oxygen species 
(ROS) (38,39). Mitochondrial dysfunction usually results 
in cell death, and even tissue damage (Fig. 1). In addition, 
mitochondrial dynamics comprises one of the most critical 
features of mitochondrial biology, being crucially involved 
in the establishment and development of multiple types of 
lung disease (40). Mitochondrial dynamics is a quick and 
transient process involved in apoptosis, immunity, cellular 
signaling, and the cell cycle (41). This process comprises a 
coordinated cycle of fission and fusion of mitochondria that 
operates in order to maintain their intracellular shape, size 
and distribution, although this process differs according 
to the types of cells involved, and the underlying molecular 
mechanism is known to be associated with the pathogenesis 
of human diseases (42,43). Therefore, deciphering the under‑
lying mechanisms of mitochondrial biology and mitophagy 
will help to strengthen our understanding of these processes, 
leading to the development of possible new treatments. To 
complete this review, the literature containing keywords such 
as ‘mitochondria’ and ‘ALI’ was searched in PubMed; most of 
the papers used were published in the last 5 years. The present 
review will consequently first provide an outline of the mito‑
chondrial structure and the processes of mitochondrial biology 
and mitophagy, and subsequently will summarize the current 
state of play with research on the association of mitochondria 
with ALI, also discussing the role of mitochondria in ALI.

2. Structure and function of mitochondria

Mitochondria are double‑membrane organelles that not 
only have complex and special structures, but also perform 
numerous functions. They exist in eukaryotic organisms and 
are located around the cellular nuclei (44). According to the 
current prevailing theory, it is considered that mitochondria 
were derived from bacteria that formed new symbiotic cells 
in combination with proto‑eukaryotic cells, a fact that would 
explain how the structure of a mitochondrion is similar to that 

of a bacterium (45). A mitochondrion is composed of an inner 
membrane, an outer membrane, the intermembranous space, 
the aqueous spaces and the mitochondrial matrix (46,47). The 
mitochondrial outer membrane is permeable to molecules 
<5,000 Da in size that are able to enter the mitochondrion 
through the channel proteins (48), whereas the mitochondrial 
inner membrane is only minimally permeable to molecules and 
ions, and OXPHOS is localized to the inner membrane (49,50). 
Over 1,000 different types of protein reside in the spaces of 
the mitochondrion, including the protein complexes from 
eukaryotic organisms or bacteria, and approximately 500 of 
them are localized in the human mitochondrial matrix (51‑53). 
In cells, most proteins are translated in the cytoplasm, and are 
subsequently transported into the mitochondria via the trans‑
locase of the outer membrane and the inner membrane (54,55). 
In addition to proteins, the mitochondrion contains its own 
genome in the mitochondrial DNA (mtDNA), which is a 
16‑kb circular molecule that encodes associated electron 
transport chain (ETC) proteins, rRNAs and tRNAs (56). The 
ETC comprises the enzyme complexes I‑IV, cytochrome 
c and coenzyme Q (57) (Fig. 2). The status of mtDNA and 
the associated nuclear‑encoded proteins exert an influence 
on the health, fertility and lifetime of organisms (58‑61). 
Furthermore, the level of compatibility between mtDNA 
and nuclear genes has been shown to influence the genetic 
divergence (62,63). The main function of the mitochondrion is 
to produce ATP via OXPHOS, and to provide energy for the 
cells (64). Mitochondria can also function as a protein‑protein 
signaling platform that helps to maintain the balance among 
several metabolic pathways, including the tricarboxylic acid 
cycle (58,65,66). Metabolites (ROS, cytochrome c and succi‑
nate) produced by mitochondria are essential for cellular 
signal transduction, and mitochondrion‑associated signaling 
significantly contributes towards the maintenance of cellular 
and body health (67,68).

3. Pathophysiology of mitochondria

Mitochondrial dynamics. Mitochondrial dynamics refers to 
the reshaping, rebuilding and recycling process of mitochon‑
dria, which is mainly divided into mitochondrial fusion and 
mitochondrial fission (69). The mitochondrial fusion process 
mainly occurs in the early S and G1 phases of the cell cycle, 
in order to ensure the normal functioning of cellular respira‑
tion and ATP production for the synthesis of proteins (70). 
By contrast, the process of mitochondrial fusion ensures that 
material exchange in the mitochondrion and the removal of 
damaged intra‑mitochondrial molecules can occur, which 
helps to repair defective mitochondria and further protect 
the mitochondrion from the process of engulfment during 
mitophagy in the cell (71,72). This fusion process includes 
the respective fusion events of both the outer mitochondrial 
membrane (OMM) and the inner mitochondrial membrane 
(IMM) (73), and the sequence of events in the predominant 
molecular mechanism are as follows. First, trans‑complexes 
of mitofusins are formed through dimerization of the 
transmembrane dynamin‑like GTPases mitofusin 1 and 
mitofusin 2 (Mfn‑1 and Mfn‑2, respectively; the functions of 
these proteins are determined by their tissue‑specific mRNA 
and protein expression), which is promoted via disulfide‑bond 
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formation, causing OMMs to come into proximity with 
each other and to be tethered, subsequently leading to 
fusion (74‑77). Secondly, fusion of the IMM is then facilitated 
by OXPHOS, which accelerates the proteolytic action of the 
dynamin‑associated GTPase optic atropy‑1 (Opa‑1), and this 
process cleaves long Opa‑1 into a short and soluble form. 
Only the long Opa‑1 (L‑Opa‑1) form is a component of the 
IMM, which facilitates fusion of the IMM (78,79). NM23‑H4 
is a type of nucleotide diphosphate kinase that promotes the 
GTP loading of Opa‑1 in the presence of ATP (80). Opa‑1 
GTP loading/hydrolysis and S‑S‑proteolytic processing 
are two necessary steps in the process of IMM fusion (80). 
Opa‑1 also has a key role in various mitochondria‑associated 
cellular functions, such as participating in the respiratory 
chain and apoptosis (81). Thirdly, under conditions of meta‑
bolic stress, such as that which occurs during membrane 
potential dissipation, the metallopeptidase Oma‑1 (an inner 
membrane ATP‑independent protease) exerts its function 
via inducing Opa‑1 to ultimately degrade into the short form 

of Opa‑1 (S‑Opa‑1), which leads to damaged mitochondria 
being selected for mitophagy (82). Mitochondrial fission 
occurs mainly during the S‑, G2‑ and M‑phases of the cell 
cycle in order to ensure that the mitochondria are distributed 
equally in the daughter cells (83). Mitochondrial fission is 
a complex and multistep process that serves a crucial role 
in the regulatory mechanisms of cellular proliferation, 
differentiation, apoptosis, mitochondrial quality control and 
ROS production (84‑87). For example, mitochondrial fission 
has been demonstrated to accelerate the segregation and 
autophagy of damaged mitochondria under stress conditions, 
which effectively reduces the accumulation of dysfunctional 
mitochondria and subsequently ameliorates the cellular 
stress conditions (88). The GTPase dynamin‑related protein 
1 (Drp1/DNM1L) is the primary driving factor of mitochon‑
drial fission (89). The site of mitochondrial fission is marked 
by an initial constriction at the OMM that is generated by 
endoplasmic reticulum (ER) and actin filaments, which helps 
the recruitment of Drp1 at the fission site (90). In mammals, 

Table II. Research on pharmacological treatment of acute lung injury.

Treatment Results (Refs.)

Glucocorticoids No benefit (acute or late phase) (21,22)
Surfactant No benefit (23)
N‑acetylcysteine No benefit (24)
Inhaled nitric oxide No benefit (25)
Liposomal PGE 1 No benefit (low dose);   (26,27)
 Improved survival trend (high dose)
Ketoconazole No benefit (28)
Lisofylline Terminated due to futility (29)
Salbutamol IV Improved survival trend (30)
Procysteine Terminated due to futility (31)
Activated protein C Terminated due to futility (32)

Table I. Definition of ARDS (4).

Parameters Pathophysiological features

Timing of the onset Within 1 week of a known clinical insult or new or worsening respiratory symptoms 
 (most patients are identified within 72 h) (5)
Chest imaging (chest radiograph Bilateral opacities (cannot totally be explained by effusions, lobar/lung collapse, or
or computed tomography scan) nodules), more extensive opacities may be considered as more severe ARDS
Origin of edema Respiratory failure cannot totally be explained by cardiac failure or fluid overload
 Requires objective evaluation (e.g., echocardiography) to exclude hydrostatic edema if no 
 risk factor for ARDS is present 
Oxygenation  
  Mild 200 mm Hg <PaO2/FIO2 ≤300 mm Hg with PEEP or CPAP ≥5 cm H2O (definition of ‘acute 
 lung injury’ in this review)
  Moderate 100 mm <Hg PaO2/FIO2 ≤200 mm Hg with PEEP ≥5 cm H2O
  Severe PaO2/FIO2 ≤100 mm Hg with PEEP ≥5 cm H2O

ARDS, acute respiratory distress syndrome; CPAP, continuous positive airway pressure; FIO2, fraction of inspired oxygen; PaO2, partial pres‑
sure of arterial oxygen; PEEP, positive end‑expiratory pressure.
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although Drp1 is unable to bind to the phospholipid 
membrane directly due to the loss of a pleckstrin homology 
(PH) domain, Drp1 is nevertheless able to exert this func‑
tion via adaptor proteins [mitochondrial fission factor (Mff) 
and mitochondrial dynamics proteins 51 and 49 (MiD51 and 
MiD49)] (91‑93). Mitochondrial scission mainly occurs at 
the site of ER contact, suggesting that both phospholipids 
[predominantly phosphatidic acid (PA) and cardiolipin (CL)] 
and calcium transfer are indispensable during this scission 
process (94,95). Dynamin 2 (Dnm‑2; a GTPase) is recruited 
at the contact site, where Drp1 recruits and induces the 
membrane constriction, finally leading to mitochondrial 
fission (30). There also exists another mechanism of IMM 
fission which is dependent on calcium instead of Drp1. When 
inverted formin 2 (INF2) proteins are recruited at the contact 
site, more INF‑2‑mediated calcium enters into the mitochon‑
dria, which leads to a decrease in the membrane potential, 
the cleavage of Opa‑1, and the activation of Oma‑1 (96). 
S‑Opa‑1 is an important component of the mitochondrial 
contact site and the intermembrane space bridging (MIB) 
complex. It controls the OMM‑IMM tethering mediated by 
Mic60, promotes the release of IMM tethering and possible 
shrinkage, and ultimately regulates the mitochondrial inner 
compartment (CoMIC) (97). S‑Opa‑1 participates in the 
procedure of cristae morphogenesis and the tethering of the 
OMM along with other associated proteins, such as mitofilin 
(Mic60/Immt), ChchD3, ChchD6 and Sam50 (a type of outer 
membrane protein) (97,98). In addition, there exists other 
mitochondrial‑fission regulatory proteins, including the 
leucine‑rich repeat kinase 2 (LRRK2) and the small GTPase, 
Rab32 (99,100).

Mitophagy. Mitophagy clears damaged or dysfunctional 
mitochondria to control the mitochondrial quality, and the 
dysregulation of mitophagy is associated with a number 
of different diseases (101). There are both canonical and 
non‑canonical modes that mediate the signaling pathway in 
mitophagy. Mitophagy induced by PTEN‑induced putative 
kinase 1 (PINK1) and Parkin is the most common mechanism, 
which is a multistep process of degrading unhealthy mitochon‑
dria via the activation of PINK1, Parkin and other recruited 
proteins (102‑104). In a normal cellular environment, PINK1 
protein at the OMM is constitutively cleaved and degraded by 
mitochondrial processing protease (MPP) and presenilin‑asso‑
ciated rhomboid‑like (PARL) protein. When the mitochondrial 
membrane potential is perturbed, and subsequently the mito‑
chondrial membrane is depolarized, PINK1 is stabilized at 
the OMM since both MPP and PARL are inhibited, which 
could be considered as the signal of mitochondrial dysfunc‑
tion (105). PINK1 is activated via its autophosphorylation, 
which further leads to the phosphorylation of its substrates. 
PINK1 phosphorylates serine‑65 of ubiquitin to activate and 
recruit Parkin, which serves to amplify the PINK1‑initiated 
signal. Subsequently, activated Parkin induces the ubiquiti‑
nylation of mitochondrial fusion‑associated proteins such as 
Mfn‑1 and Mfn‑2, which serves to prevent them from partici‑
pating in the fusion process (106,107). The ubiquitinylation of 
Miro1 protein induced by Parkin weakens the protein ability 
of Miro1 to bind with microtubules, and strengthens the 
ability of this protein to bind with the PINK1‑Parkin complex, 
which causes the isolation of associated damaged mitochon‑
dria (108). Concurrently, the phosphorylation of the ubiquitin 
chain mediated by PINK1 enhances the recruitment and 

Figure 1. Pathophysiological processes of mitochondria in cells. Under normal conditions, the balance among mitochondrial fusion, mitochondrial fission and 
mitophagy maintains the health of mitochondria the number of mitochondria stable. The dysfunction of mitochondria usually occurs in the pathological condi‑
tions of cells, including the imbalance of mitochondrial dynamics, the release of Ca2+, mtDNA and ROS from mitochondria, and the death of mitochondria. 
Mfn‑1, mitofusin1; Mfn‑2, mitofusin 2; Opa‑1, optic atropy‑1; Mff, mitochondrial fission factor; Drp1, dynamin‑related protein 1; Fis 1, mitochondrial fission 1; 
LC3, microtubule‑associated protein 1 light chain 3; mtDNA, mitochondrial DNA; ROS, reactive oxygen species; TLR, Toll‑like receptor; IL, interleukin.
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activation of Parkin. Microtubule‑associated protein 1 light 
chain 3 (LC3) on the autophagosome directly interacts with 
polyubiquitinylated proteins recognized by cargo adaptors, 
leading finally to the formation of a complex that is degraded 
by autophagy (109).

In other canonical mechanisms, both Bcl‑2 homology 3 
(BH3)‑only protein (Nix, also known as Bnip3L) and 
BCL‑2/adenovirus E1‑interacting protein 3 (Bnip3) not only 
interact with LC3, but also exert their function under the regu‑
lation of hypoxia‑associated factors, which serves an important 
role in mitophagy (110,111). FUN14 domain‑containing 
1 (FUNDC1), an OMM protein, is also associated with 
mitophagy through its interaction with LC3, Opa‑1 and 
Drp1 (112,113).

In addition, there are a variety of non‑canonical mitophagy 
pathways. Depolarized mitochondrial CL is able to directly 
interact with GABAA receptor‑associated protein (Gabarap) 
in the OMM, and the oxidation status of CL serves to regulate 
the balance between cytoprotective mitophagy and other mito‑
chondrial death pathways (114). Prohibitin 2, a receptor present 
in the IMM, is able to promote Parkin‑mediated mitophagy 
through interacting with LC3 (115). Furthermore, Beclin‑1 
regulator 1 (AMBRA1) and Bcl‑2‑like protein 13 (BCL‑2L13), 

as mitophagy receptors, have been shown to induce and 
promote mitophagy (116,117). BCL‑2L13 is also involved in 
Parkin‑independent mitophagy (118).

Considering all the evidence, it has been clearly demon‑
strated that dysfunction of mitophagy leads to the accumulation 
of damaged mitochondria, which induces oxidative stress and 
various pathological states.

Dysfunction of the ETC. With the ETC (also called the respira‑
tory chain), a liberation of electrons results from the oxidation 
of NADH and FADH2. The liberated electrons are passed 
along the carrier complexes, and eventually transferred to 
an oxygen molecule (119). ROS derived from mitochondrial 
superoxide are mainly produced by Complex I/III of the ETC 
in mitochondria (120). Heightened ROS production is induced 
by infection, inflammation, air pollution and oxidative stress, 
supporting the notion that ALI may lead to the high levels of 
ROS that are observed (121). Low concentrations of ROS and 
superoxide (such as peroxynitrite and hydrogen peroxide) are 
considered to be important components of a normally func‑
tioning cellular signaling pathway, whereas high levels of these 
molecules are able to induce ETC damage under pathological 
conditions (122). As one of the underlying causes of ALI, sepsis 

Figure 2. Structure of mitochondria and electron transport chain. Mitochondria are organelles having an outer and inner membrane. The components of citric 
acid cycle, mtDNA, protein complexes and ribosomes are all in the inside of the inner membrane. The respiratory chain proteins are located on the inner 
membrane. There are five components of the electron transport chain, including NADH/ubiquinone oxidoreductase, succinate dehydrogenase, cytochrome 
c reductase, cytochrome c oxidase, and mitochondrial ATP synthase. The energy stored by proton pumping is utilized by the electron transport chain to 
phosphorylate ADP to ATP. FMN, flavin mononucleotide; NAD, nicotinamide adenine dinucleotide; NADH, ubiquinone oxidoreductase; Succ., Succinate; 
Fum., Fumarate; FAD, flavin adenine dinucleotide; Cyt c, cytochrome c; ATP, adenosine triphosphate; ADP, adenosine diphosphate.
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also has an impact on the function of the ETC. It has been 
demonstrated that the level of mitochondrial ROS increases in 
numerous organs, which results in abnormalities of the ETC 
in the same organs, as observed in cases of sepsis (123,124). 
It has been shown that the concentrations of ETC proteins 
that are associated with or contain iron‑sulfur centers are 
reduced in sepsis, since Fenton reactions induce the depletion 
of ETC protein constituents (125). When the mitochondrial 
ETC components are damaged or even lost in cases of severe 
disease, the decreased production of ATP may accelerate the 
pathological processes of certain diseases (126‑128).

Free radical production. In addition to the direct damage 
caused to ETC proteins, an abnormal expression of ROS 
derived from mitochondria may influence other cellular 
constituents, and the interactions between ROS and these 
constituents subsequently alter their function; this includes 
proteins, DNA, and lipid peroxidation (129,130). Since mtDNA 
lacks protective histones and the expression of bases modified 
by oxidation in mtDNA is several times higher compared 
with that in nuclear DNA, mtDNA is more easily impaired 
by ROS (131,132). It has been shown that superoxide anions 
produced by mitochondria have a limited ability to directly 
pass through the mitochondrial membranes, although they 
exit the mitochondrion more easily by forming new molecular 
species and reacting with cellular components in the cyto‑
plasm (133,134). For example, under conditions in which the 
generation of nitric oxide significantly increases, nitric oxide 
may combine with superoxide forming peroxynitrite, which 
is able to impair proteins and modify lipids (135). Moreover, 
ROS oxidize proteins and alter their activity, promoting the 
release of proteases and inhibiting the activation of antioxidant 
enzymes (136). In ALI, the overproduction of ROS is widely 
derived from parenchymal cells, a high concentration of 
oxygen and oxidant‑generating enzymes, leading to the induc‑
tion of oxidative stress and cell damage (137,138).

Abnormal mitochondrial Ca2+ transport. In quiescent cells, 
excess Ca2+ in the cytoplasm is taken up into mitochondria 
to maintain the low levels of cytosolic Ca2+ (139). There are 
several factors that influence the level of mitochondrial Ca2+, 
including cytosolic Ca2+ that is released from other cellular 
organelles. During the process of mitochondrial Ca2+ trans‑
port, Ca2+ influx is dependent on calcium uniporter activity, 
and to a certain extent the Ca2+ that is released is dependent 
on the mitochondrial sodium/calcium ion channel (140,141). 
Under conditions of there being an increased level of cytosolic 
Ca2+ and an increased level of activity of the uniporter, ATP 
synthase is likewise activated, and the levels of mitochondrial 
calcium are increased (142). Extremely high concentrations 
of mitochondrial Ca2+ may lead to increases in the forma‑
tion of mitochondrial superoxide and ROS, which cause 
mitochondrial‑dependent cellular damage (143). Furthermore, 
the increased levels of mitochondrial Ca2+ are coordinated 
with enhanced mitochondrial ROS to induce opening of the 
membrane permeability transition (MPT) pore, which results 
in cytochrome c being released from mitochondria, subse‑
quently activating the mitochondrial‑dependent cell death 
pathway (144). It has been reported that hypocapnia‑induced 
mitochondrial Ca2+ uptake could increase the production of 

ROS, which ultimately results in the cell death associated with 
ARDS (145).

4. Mitochondrial role in ALI

Mitochondrial dysfunction in lung cells has an important 
role in the pathological process of ALI (146). The main 
pathological feature of ALI is the infiltration of inflamma‑
tory cells, such as macrophages and neutrophils (147,148). 
Mitochondria are involved in the modulation of immune 
cells via different mechanisms. It has been demonstrated 
that mitochondrial ROS can stimulate the activation of 
macrophage‑surface Toll‑like receptors (TLRs), enhancing 
their anti‑pathogenic ability (149). Triggering receptor 
expressed on myeloid cells 1 (TREM‑1) maintains the integ‑
rity of mitochondria to prolong the survival of macrophages 
which plays a key role in ALI (150). Moreover, macrophages 
can be divided into two phenotypes, M1 (proinflammatory) 
and M2 (anti‑inflammatory) respectively, which are associ‑
ated with the bioenergetic function of mitochondria and 
are an essential part in the process of lung infection and 
inflammation (151,152). The mitochondrial ETC is involved 
in the activation of lipopolysaccharide (LPS)‑induced 
nuclear factor‑κB (NF‑κB), suggesting that mitochondria 
alleviate the degree of damage of ALI by regulating neutro‑
phils (153).

LPS is known to damage alveolar epithelial cells and is 
one of the main causes of ALI. Islam et al found that mito‑
chondria derived from bone marrow‑derived stromal cells 
were released in the microvesicles engulfed by the alveolar 
cells, which increased the concentration of alveolar ATP and 
decreased the mortality of animal models in LPS‑induced 
ALI (154). In current research, the heme oxygenase‑1/carbon 
monoxide system has been revealed to alleviate ALI induced by 
endotoxin via regulating the mitochondrial dynamic equilib‑
rium (155,156). In LPS‑induced ALI rat models, the expression 
of Mfn‑1 is negatively regulated by HO‑1 expression possibly 
related to the PI3K/Akt signaling pathway, which can improve 
the condition of oxidative stress by regulating mitochondrial 
fusion (157). The mitochondrial division inhibitor‑1 (Mdivi‑1) 
has the ability to relieve the activation of mitogen‑activated 
protein kinases (MAPKs), oxidative stress and apoptosis 
induced by LPS and reduce pro‑inflammatory cytokine 
release, which inhibits the mitochondrial fission and mitigates 
the degree of damage by ALI (158). In LPS‑induced ALI, the 
severity of inflammation and lung injury can be restrained 
by regulating the Drp1‑induced mitochondrial fission (159). 
Dexmedetomidine (DEX) affords lung protection and miti‑
gates the damage of ALI by keeping the dynamic balance 
between mitochondrial fusion and fission via the HIF‑1a/HO‑1 
pathway (160). Normal mitophagy maintains the homeostasis of 
cells by cleaving and degrading damaged mitochondria, while 
excessive mitophagy may lead to mitochondrial dysfunction, 
cell damage and death. Sestrin2 (Sesn2), a highly conserved 
protein, protects alveolar macrophages and reduces the release 
of the Nod‑like receptor protein 3 (NLRP3) inflammasome 
by promoting mitophagy, which finally plays a protective role 
in LPS‑induced ALI (161). Transcription factor EB (TFEB) 
negatively regulates mitophagy and decreases mitochondrial 
injury to protect LPS‑induced ALI (162,163). Overexpression 
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of PPARγ coactivator 1α (PGC‑1α) may positively regulate 
the expression of TFEB and then affect mitophagy, which 
in turn alleviates lung edema and decreases inflammation in 
LPS‑induced ALI (164). Zhao et al demonstrated that oxyber‑
berine inhibited the translation of Parkin1 from the cytoplasm 
to mitochondria and Parkin‑mediated mitophagy to ease the 
degree of inflammation in LPS‑induced ALI (165). Moreover, 
overexpression of Bcl‑2 proteins also attenuated LPS‑induced 
ALI via PINK1/Parkin‑mediated mitophagy (166).

The lungs are one of the organs most often affected 
by sepsis, which usually leads to ALI. Damage‑associated 
molecular pattern (DAMP) is the general term for numerous 
endogenous risk molecules, existing in the nucleus, mitochon‑
dria, or cytoplasm (167,168), which are released in response 
to cell death or stress (169,170). The released DAMPs are 
recognized and bond to multiple receptors which include 
pattern recognition receptors (PRRs), and then activate 
downstream pathways to trigger the inflammatory response, 
aggravating the damage of the lungs (171,172). mtDNA, a 
type of cellular toxicity compound, acts as a DAMP and 
contains materials only found in bacteria and induces cellular 
toxicity via two main mechanisms (173,174). The first one 
is to activate and interact with NLRP3 inflammasome, and 
the second one is to recognize the bacteria‑like mtDNA via 
the activation of TLR9 (175,176). For example, the release of 
mtDNA depends on the level of TLR4, and mtDNA induces 
ALI together with TLR9 (177). In addition, mtDNAs, as 
mitochondrial DAMPs, increase the permeability of lung 
endothelial cells in sepsis‑induced ALI (178). The balance 
between mitochondrial fusion and fission is broken when 
massive ROS exist, which accelerate the progression of sepsis 
and are an indirect cause of ALI (179). Chen et al found that 
PINK1/Parkin‑mediated mitophagy played a protective role 
in cecal ligation and puncture (CLP)‑induced ALI (180). It 
has been proven that Nrf2 regulates mitophagy in lung cells 
and exerts a protective function in sepsis (181). MAP kinase 
kinase 3 (MKK3) promotes the activation of mitochon‑
drial biogenesis and mitophagy through the PINK1/Parkin 
pathway and PGC‑1α/Nrf‑1 axis, which in turn increase 
the number of healthy mitochondria and protect against 
sepsis‑induced ALI (182).

Reportedly, hydrochloric acid‑induced ALI may result in 
the direct damage of the alveolar epithelium and then induce 
proinflammatory signaling (183,184). However, the patho‑
physiological mechanisms of hydrochloric acid‑induced ALI 
are still not clear. Hough et al found the mitochondrial func‑
tion of alveolar cells impaired in hydrochloric acid‑induced 
ALI (185). Acute PM2.5 exposure was related to enhanced 
airway inflammation, immune cell infiltration, and the release 
of proinflammatory cytokines and chemokines, inducing 
ALI (186,187). The activation of the TLR4/NF‑κB/p38 MAPK 
and NLRP3/caspase‑1 signaling pathways may inhibit ALI 
and mitochondrial damage by regulating the expression of 
the related mitochondrial fusion and fission proteins, such 
as Opa‑1, Drp1, and Mfn‑2 (188). Ischemia/reperfusion 
injury (IRI) usually includes the release of cytokines and 
inflammatory mediators, extensive oxidative stress, and 
the induction of apoptosis, increasing the dysfunction and 
damage of lungs (189). Tanshinone IIA (TIIA) combined 
with cyclosporine A (CsA) attenuated the apoptosis of the 

lung tissue by improving the mitochondrial dynamics via 
the PI3K/Akt/Bad signaling pathway (190). Prolonged, high 
oxygen concentration promoted the production of ROS and the 
level of proapoptotic proteins, finally inducing ALI. Research 
has shown that thyroid hormone T3 increases mitochondrial 
biogenesis and mitophagy, thus providing effective protection 
in hyperoxia‑induced ALI (191).

In summary, the dysfunction of mitochondria plays a 
crucial role in ALI. These findings suggest the potential 
of mitochondrial biology and mitophagy as targets for the 
treatment and intervention of ALI.

5. Current therapies and potential regulatory factors

Mitochondria play an indispensable role in the occurrence 
and development of ALI. In addition, in ALI models, cells 
undergo abnormal mitochondrial biological processes or 
mitophagy. Thus, factors associated with mitochondrial 
pathophysiology may be the potential therapeutic targets for 
ALI (Fig. 3) (192). Mitochondrial‑targeted antioxidants can 
protect against the mitochondrial dysfunction and oxida‑
tive stress induced by mechanical ventilation, suggesting 
improvement of the prognosis of ALI treated by mechanical 
ventilation (193). Research has also demonstrated that both 
pioglitazone and rosiglitazone effectively induce mitochon‑
drial biogenesis and prevent the related cell dysfunction 
and damage (194). Mitochondrial transplantation, as an 
important method to replace damaged mitochondria, can 
significantly improve the condition of lungs and reduce the 
lung tissue damage induced by ALI (195). Melatonin can 
effectively inhibit superoxide and nitric oxide and protect 
against the mitochondrial damage (196‑198).

In addition to current therapies, there are also certain 
factors that regulate mitochondrial dynamics, which may aid 
in understanding the role of mitochondria in ALI and may be 
translated into novel therapies in the future. Membrane lipid 
composition and post‑translation modification are two main 
factors that regulate mitochondrial dynamics. CL and PA are 
two minor constituents of phospholipids, but they are both 
involved in the remodeling of the mitochondrial membrane. 
PA, a saturated lipid synthesized in the endoplasmic reticulum 
(ER), is transferred from the ER to the mitochondria and then 
converted into CL at the inner mitochondrial membrane (199). 
The respective microdomain formation of PA and CL deter‑
mines mitochondrial fusion or fission (200‑202). It has been 
shown that Drp1 can interact with these two phospholipids 
to influence mitochondrial fusion or fission (200, 203‑205). 
Drp1 is the core protein of mitochondrial dynamics, and 
how post‑translational modifications of Drp1 regulate mito‑
chondrial dynamics has been widely explored (206‑208). In 
addition to membrane lipid composition and post‑translation 
modification, there are also other proteins that modulate this 
dynamic process, including ganglioside‑induced differentia‑
tion associated protein 1 (GDAP1) (209), mitochondrial fission 
process 1 (MTFP1/MTP18) (210), and reactive oxygen species 
modulator 1 (ROMO1) (211).

To sum up, there is still a long way to go before these thera‑
pies and regulatory factors can be formally used in the clinic, 
because some of these potential treatments are still speculative 
and others have only been verified in animal models.
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6. Conclusion

The present review summarized the structure, function, patho‑
physiology of mitochondria and the role of mitochondria in 
ALI, which could pave the way to provide novel therapeutic 
methods to treat ALI.

ALI is a complex and severe pathological disease with 
high morbidity and mortality in the ICU, which triggers 
the sustaining inflammatory response, lung epithelial and 
endothelial cell death, and alveolar barrier destruction (212). 
Mitochondria are considered to be the powerhouse of cells, 
take part in metabolite biosynthesis and produce ROS (213). 
They have also been proven to be involved in necrosis, 
immunological response, thermoregulation, and intracellular 
calcium regulation (214,215). Generally, the dysfunction 
of mitochondria usually occurs in the pathophysiological 
processes of diseases.

Mitochondria play an important role in ALI. Macrophages 
and neutrophils are essential effector cells that are involved 
in ALI, and mitochondria regulate the polarization of macro‑
phages and the apoptosis and NETosis of neutrophils (216,217). 
In addition, mitochondrial dynamics and mitophagy are 
associated with the outcome of ALI. Collectively, mtDNA, as 
a DAMP, induces ALI, and ROS produced by mitochondria 
affect the process and outcome of ALI.

However, there are some remaining issues that need to be 
addressed. The research on mitochondria‑related elements in 
ALI is still in its infancy, and the changes in mitochondria and 
regulatory factors are complex and interactive. Moreover, the 
research concerning the role of mitochondria in ALI is based 
on animal models, warranting more experiments, in order to 
be brought into clinical practice.
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