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A B S T R A C T   

Coronavirus Disease 2019 [COVID-19], caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV- 
2], has rapidly evolved into a global health emergency. Neopterin [NPT], produced by macrophages when 
stimulated with interferon [IFN-]gamma, is an essential cytokine in the antiviral immune response. NPT has been 
used as a marker for the early assessment of disease severity in different diseases. The leading cause of NPT 
production is the pro-inflammatory cytokine IFN-. Macrophage activation has also been revealed to be linked 
with disease severity in SARS-CoV-2 patients. We demonstrate the importance of NPT in the pathogenesis of 
SARS-CoV-2 and suggest that targeting NPT in SARS-CoV-2 infection may be critical in the early prediction of 
disease progression and provision of timely management of infected individuals.   

1. Introduction 

Severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2] 
infection has spread rapidly worldwide since it’s first appeared in China 
in late 2019. The data show that approximately percent 80 of COVID-19 
patients have mild disease, percent 20 require hospitalization, and about 
percent 5 need intensive care admission [1]. COVID-19 has a poor 
prognosis in elderly, male patients and, in patients with comorbidities 
such as diabetes, cardiovascular disease, or chronic obstructive pulmo-
nary disease [COPD] [2–5]. In patients infected with SARS-CoV-2, 
hyper-inflammation and coagulopathy are associated with disease 
severity and death [6]. Elevated levels of inflammatory markers, 
including C-reactive protein, ferritin, D-dimer, inflammatory cytokines, 

and chemokines, and elevated neutrophil to lymphocyte ratios are 
associated with disease severity and mortality from COVID-19 [6]. High 
levels of circulating cytokines, profound lymphopenia, substantial 
mononuclear cell infiltration in the lungs and other organs have been 
reported in severe cases compared to mild COVID-19 cases [6]. Previous 
studies have shown that the proportion of mononuclear phagocytes 
increased in extreme cases, and the composition of macrophages 
changed in favor of monocyte-derived macrophages [6]. As a result, 
high levels of cytokines linked to macrophage activation, including 
interferon- [IFN-], have been reported in SARS-CoV-2 patients [7]. 
Neopterin (NPT) is produced by microstimulating-IFN-, a cytokine 
important in the antiviral immune response. Serum NPT levels reflect 
the activation phase of the cellular immune system, which is essential in 
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the pathogenesis and progression of various diseases [8]. Previous 
studies have shown an association between serum NPT levels and 
prognosis in specific viral infections, such as influenza, human immu-
nodeficiency viruses, hepatitis C virus, and dengue fever virus [9–11]. 
High levels of circulating cytokines have been reported in patients with 
severe COVID-19. Therefore, targeting NPT in SARS-CoV-2 infection 
may be necessary for the early prognosis of disease progression and 
timely treatment of infected patients. Serum NPT levels have been 
measured to assess the immune activation in several diseases, but only a 
few studies have been conducted on individuals infected with SARS- 
CoV-2. Therefore, this review is intended to elucidate the importance 
of NPT as a diagnostic and prognostic marker in COVID-19 patients. 

2. Overview of Neopterin: biosynthesis, mechanisms of 
tryptophan and oxidative stress 

NPT [1′, 2′, 3′-D-erythro-trihydroxypropylpterin] belongs to a group 
of pteridine compounds containing 2-amino, 4-oxo, pyrimidine- 
pyrazine [pteridine ring], with a 3-carbon side-chain on carbon-6 [12] 
and is involved in several redox reactions in the body. NPT is biosyn-
thetically derived in vivo from guanosine triphosphate [GTP], as shown 
in Graphical abstract. Inactivated monocytes, macrophages, dendritic 
cells, and endothelial cells, the reaction is released by macrophages in 
response to cytokines released by T lymphocytes and catalyzed by the 
enzyme GTP-cyclohydrolase-I [GTP-CH] mainly upon IFN- stimulation 
[13,14]. The GTP-CH first cleaves GTP to synthesize 7, 8-dihydroneop-
terin triphosphate [DHNTP]. This intermediate is then converted by 6- 
pyruvoyl-tetrahydrobiopterin synthase [PTPS] to produce dihy- dro-
biopterin by biosynthesis 5,6,7,8-tetrahydrobiopterin. Because humans 
and primates are the only species lacking the PTPS enzyme, the DHNTP 
accumulates in the form of NPT [13,14]. NPT is also produced by 
monocyte-derived dendritic cells, and its production is increased by IFN- 
stimulation [15] and lipopolysaccharide induction [15,16]. After stim-
ulation, dendritic cells degrade tryptophan in the tryptophan- 
kynurenine pathway, where N-formyl-kynurenine is the first interme-
diate formed by reaction with the enzyme indoleamine [2,3]-dioxyge-
nase enzyme [IDO] [17]. IDO is produced by vascular endothelial cells 
and activated via IFN- released by dendritic cells and T cells [18,19]. 
IDO regulates the pathway of tryptophan kynurenine by tryptophan 
degradation. It has been shown that kynurenine may have a physio-
logical role in suppressing the immune function of T cells and NK cells. 
NPT formation is associated with tryptophan catabolism, considering 
that both are stimulated by IFN-[20]. Thus, the NPT accumulation and 
tryptophan reduction could reflect IFN- induced macrophage activation. 
The accretion of NPT can be an indicator of systemic immune activation, 
particularly cell-mediated immunity [21]. On the other hand, increased 
serum NPT regulates reactive oxygen species [ROS]-mediated processes 
by regulating intracellular signaling cascades and activating ROS- sen-
sitive transcription factor nuclear factor B [NF-B], which induces pro- 
inflammatory genes such as inducible nitric oxide synthase [iNOS] 
and further enhances inflammatory processes [22,23]. NPT promotes 
the cytotoxic capacity of immune cells by stimulating iNOS gene 
expression at the mRNA level and subsequent nitric oxide [NO] pro-
duction [24]. It has been shown that GTP-CH is inhibited during 
oxidative stress and was shown to inhibit NPT biosynthesis significantly. 
That is why NPT may also be used as an indicator of oxidative stress [25] 
(See Fig. 1). 

2.1. Neopterin in diseases 

NPT, a sensitive marker of cell-mediated immune system activation, 
has been potentially studied as a disease marker and a nonspecific 
screening tool to facilitate conscious pathogen analysis [26]. As seen in 
Table 1, NPT concentration increased in various diseases through 
different mechanisms. It has been defined that NPT, which is measured 
in many immune disorders, shows a significant increase in the amount of 

NPT in rheumatoid arthritis [RA] compared to healthy patients and is a 
marker that defines immune activation [27]. Although the relationship 
of NPT, a diagnostic or prognostic marker, with diabetes and hyper-
tension remains unclear, Asci et al. In their research, the NPT level in 
hemodialysis patients caused by diabetes and hypertension was found to 
be higher than in healthy and control patients. It has been shown that 
NPT may be an early critical marker for the progression of nephropathy 
in the early stages in diabetic and hypertensive patients [28]. Since NPT 
is associated with tryptophan and kynurenine, a vital amino acid for 
growth, it is also related to many diseases in which this pathway is 
practical. The cytokine IFN- stimulates macrophages and monocytes to 
secrete NPT and induces Indoleamine 2,3-dioxygenase [IDO], which 
degrades tryptophan via kynurenine. Therefore, impaired tryptophan 
mechanism is directly related to depression and neuropsychiatric 

Fig. 1. Biosynthesis of neopterin: IFN-γ activates GTP cyclo-hydrolase that 
further cleaves GTP to 7,8-dihydro-neopterin triphosphate, and phosphatases, 
in turn, change this intermediate to neopterin. Since humans lack PTPS, an 
enzyme that converts DHNTP into 5,6,7,8-tetra hydrobiopetrin, the DHNTP is 
only biosynthesized to neopterin. On the other hand, IFN-γ initiates tryptophan 
degradation to kynurenine by activating the IDO enzyme. Thus, there is a direct 
correlation between increased neopterin and tryptophan degradation. 

Table 1 
The concentration of neopterin levels in some diseases.  

Disease Neopterin 
concentration in 
the patient 

Neopterin 
concentration in 
the healthy/mild 

P- 
value 

Reference 

Behcet ’S Disease 111.27 ± 37.49 
nmol/L 

76.77 ± 38.27 
nmol/L 

P <
0.001 

[35] 

Psoriasis Vulgaris 2.26 ± 1.92 ng/ 
ml 

1.19 ± 0.18 ng/ 
ml 

P =
0.001 

[36] 

Dermatomyositis  IQR 13⋅9–35⋅2 
nmol/l 

IQR 2⋅9–5⋅6 
nmol/l 

P <
0⋅001 

[31] 

Prostat Cancer 0.71 AUC 0.75 AUC P <
0.001 

[33] 

Lung Cancer 2.66–13.54 
nmol/L 

3.36–51.70 
nmol/L 

P =
0.004 

[34] 

Brucellosis 79.07 ± 34.9 
nmol/l 

39.71 ± 23.4 
nmol/l 

P =
0.002 

[37] 

Polycystic Ovary 
Syndrome 

7.5–49.5 nmol/ 
L 

6.5–12.9 nmol/L p <
0.05 

[38] 

Breast Cancer 1.2–12.0 nmol/ 
L 

0–23.6 nmol/L P <
0.05 

[39] 

Graves’ Disease 5.7 ± 2.4 4.1 ± 1.7 p <
0.01 

[40] 
4.0 ± 1.5 

Gastrointestinal 
Cancer 

4.84 ± 0.74 1.57 ± 0.13 p <
0.001 

[41] 

Thyroid Diseases 7.14 ± 5.95 
nmol/l 

4 0.10 ± 1.70 
nmol/l 

p < O. 
OOl 

[42] 

Renal Carcinoma 7.09 ± 1.99 
nmol/litre 

2.87 + 0.59 
nmol/litre 

P <
0.05 

[43] 

Crohn’s Disease 302 ± 15 nmol/ 
mol 

163 ± 8 nmol/ 
mol 

P <
0.001 

[44] 

Rheumatoid 
Arthritis 

11.46 ± 3.56 
nmol/L 

4.74 ± 1.98 
nmol/L 

P <
0.0001 

[27]  
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anomalies [29]. Increased NPT formation and increased tryptophan 
degradation have also been shown to affect the immune response in a 
group of patients with advanced Parkinson’s disease [30]. In a study, 
when serum NPT concentrations of patients with dermatomyositis [DM] 
were examined, it was revealed that serum NPT levels increased 
significantly in DM patients compared to healthy controls and were 
closely related to disease severity [Table 1] [31]. Because NPT and 
fibrinogen play a role in inflammation-related diseases, the predictive 
effects of biomarkers in individuals with stable coronary artery disease 
[SCAD] have been investigated. They are associated with mortality [32]. 
When the risk of a diagnosis of prostate cancer [PCa] in a transrectal 
biopsy, the histopathological features of radical prostatectomy [RP] 
samples, and the effects of biomarkers on cancer-specific survival [CSS] 
after biochemical recurrence [BCR] were investigated, it was supported 
that NPT helps categorize it into prognostic groups [Table 1] [33]. In 
addition to many cancer studies, Yalcın et al. demonstrated that high 
NPT levels increase the risk of death in patients with lung cancer, 
whether it is possible to use these biomarkers in predicting tumor 
prognosis [Table 1] [34]. As can be seen, it has been proven by many 
studies that NPT is associated with many disease sources, regardless of 
disease, and provides information about the preliminary diagnosis and 
severity of infections. 

2.2. Neopterin in virus infection 

NPT has been a marker of the disease by showing concentration 
changes in serum and urine in the early phase of many virus infections. 
Therefore, NPT levels are directly related to the disease and its activity. 
Thanks to this relationship, which is a sensitive indicator, it is balanced 
with the critical role played by NPT in virus infections [45–47]. The 
problems in immune response and regulation underlying the patho-
genesis have been supported by many necessary pieces of evidence 
[46–48]. Cytokine-producing macrophages are the most critical targets 
in virus infection [27,40–51]. During virus infection, cytokines are 
released by interacting with immunocompetent cells such as T lym-
phocytes. It is produced in increased amounts by NPT macrophages in 
the immune response triggered by a viral infection. Therefore, by 
determining the concentration of NPT in body fluid, the disease can be 
detected early in various conditions such as infections and autoimmune 
diseases, thanks to the activational changes in the immune response 
[51–54]. NPT concentration in blood and urine samples is an early and 
sensitive marker of the presence of many viral infectious diseases, 
including human immunodeficiency virus type 1 [HIV-1] [55]. 

In infections caused by many human immunodeficiency viruses such 
as hepatitis C virus and dengue virus, a predictive relationship has been 
demonstrated by looking at the serum level of NPT. It has been reported 
that it is a beneficial biomarker for the early diagnosis of the severity of 
the disease in patients with severe acute respiratory syndrome, called 
SARS [10,11,56,57]. Reibnegger et al., when they examined high NPT 
levels in blood or urine in patients with viral hepatitis, found that NPT 
levels were higher in infected patients[58]. In another study, NPT levels 
in dengue fever disease were examined, and healthy individuals, sick 
individuals, and controllers were compared in NPT concentrations. As a 
result, they stated that NPT levels were significantly higher in DF pa-
tients [59]. 

Similarly, in HIV-1 infection that causes AIDS, NPT levels in blood 
and serum were higher than in control and healthy individuals [60,61]. 
The SARS COV-2 virus, which causes COVID-19, has also been associ-
ated with elevated cytokine levels, organ damage, increased phagocytes, 
and macrophage activation. NPT, which plays a role in viral infections 
and immune response and is produced by macrophages, can therefore be 
used in the early diagnosis of disease severity in cases of COVID-19 
[62–64]. 

2.3. NF-B signaling and neopterin in COVID-19 infection 

Results of some studies proved that During a COVID-19 infection, 
overexpression of NF-B leads to cytokine storm, abnormal production of 
reactive oxygen species [ROS] and adhesion molecules [e.g., intracel-
lular adhesion molecule-1; ICAM, vascular cell adhesion molecule-1; 
VCAM, and E- selectin], resulting in organ damage [65,66]. On the 
other hand, it has been shown that the NOD-, LRR-, and pyrin domain- 
containing protein 3 [NLRP3] inflammasome is activated by COVID-19 
infection and contributes to tissue injury, for example, lung injury and 
ARDS [67]. Considering the previous results, it is found that NPT can 
attenuate inflammation by suppressing NF-B signaling and NLRP3 
inflammasomes [68]. Furthermore, it should be noted that NPT plays a 
vital role in the modulation of monocyte chemoattractant protein [MCP- 
1], [ICAM-1], and [VCAM-1] [69]. Given the above, it seems that NPT 
probably relieves inflammation in patients with COVID-19 infection, 
and it is proposed that agonists of NPT may be hopeful in the treatment 
of COVID-19 [69]. Recent studies showed that inflammatory markers, e. 
g., C-reactive protein [CRP], procalcitonin, erythrocyte sedimentation 
rate [ESR], are positively associated with severity of COVID- 19 [70]. 
According to the evidence, increasing NPT level is regarded as macro-
phage activation in several diseases, such as; COVID-19 [71]. In Table 2, 
detail of some study is summarized (See Table 3). 

Zinc [Zn] is categorized as a trace element [74]. Numerous aspects of 
cellular metabolism such as development, growth, activation of enzymes 
[superoxide dismutase; SOD], and neurobehavioral are zinc-dependent 
[75,76]. Current evidence suggests that zinc maintains a balanced im-
mune system and oxidative stress status in the cell [77,78]. It seems that 
there is a close relationship between Cu, Zn-superoxide dismutase, and 
NF-B. Indeed, overexpression of NF-B suppresses SOD-leading antioxi-
dant defense [79]. Furthermore, Zinc deficiency probably affects 
phagocytosis of macrophages and inhibition of Natural Killer cells’ ac-
tivity [80]. It is shown that Zn acts as an antiviral mineral against several 
viruses, for example, COVID-19, via different mechanisms [Fig. 2]. 

Also, Zn can suppress Replication of virus genomic and Translation 
of virus protein. 

An experimental study suggests that Zn supplementation in Wistar 
rats affects the length of cilia and impresses several epithelial cells in the 
lung [81]. On the other hand, it is proved that Zn can inhibit replication 
by inactivation RNA-dependent RNA polymerase [RdRp] [82]. Some 
studies reported sirtuin1 is associated with ACE2 expression, and it is 
believed that sirtuin1 is reduced by zinc. Subsequently, ACE2 expression 
is inhibited [83,84]. 

In the present pandemic, it is frequently observed that cytokine 
storm occurs in patients with COVID-19 infection. When respiratory 
epithelial tissue is infected by COVID-19 disease, inflammatory cyto-
kines such as IL-1, IL-6, IL-8, IL-12, TNF- and other chemokines are 
locally realized. Subsequently, monocytes, macrophages, neutrophils, 
DCs, and NK cells are recruited by cytokines, resulting in the activation 
of CD4 + and CD8 + T cells to synthesize IFN- and TNF-, which induce 
lung injury. Furthermore, high IL-2, IFN-, GM-CSF, and TNF- leads to 

Table 2 
Some studies on neopterin.  

Year References Number of 
patients 

Finding 

2021 [71] 34 [mild 
diseases, N =
15] 
[Sever diseases, 
N = 19] 

All severe cases had elevated neopterin 
concentrations [>9.1 nmol/L]. 

2020 [72] 115 Elevated neopterin levels were 
significantly associated with disease 
severity. 

2021 [73] 6 CSF neopterin [median 43.0 nmol/L] 
was increased in all patients.  
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anemia by macrophage activation and erythro-phagocytosis [94,95]. 
IFN- is considered a glycosylated protein of 25 kDa [96]. It is well 
established that IFNs are categorized into three categories: type I [IFN], 
type II [IFN], and type III [IFN] [97]. 

IFN is produced mainly by natural killer [NK] cells, natural killer T 
cells [NKT], activated lymphocytes such as CD4 T helper type 1 [Th1] 
cells, and CD8 cytotoxic T cells, B cells, and professional antigen- 
presenting cells [APCs] [98–103]. It is now apparent that Janus acti-
vated kinases [JAKs] and binding IFN triggers STAT1 signal to IFNAR1 
and IFNAR2 receptors. Attaching of IFN to IFNARs result in activation of 
tyrosine kinases JAK1 and JAK2 phosphorylating the transcription fac-
tor STAT1 to form dimer then dimers translocate to the nucleus and bind 

GAS to stimulate the transcription of these genes; for example, IFN 
stimulates the expression of immunoglobulin Fc receptors on phagocytes 
and improve the expression of MHC antigens facilitating antigen pre-
sentation to T lymphocytes [104,105]. TNF is classified as a non- 
glycosylated protein with 157 residues [106] secreted by macro-
phages/monocytes. TNF gene is located on chromosome 6 [47]. TNF 
plays various roles in cells, for example, viral replication, cell growth 
modulation, tumorigenesis, and inflammation process [107,108]. 

The expression of the TNF gene is controlled by nuclear factor kappa 
b [NFB] and nuclear factor activated T cells [NF-AT] [107–110]. TNF 
signals through TNF receptor 1 [TNFR1] and TNF receptor 2 [TNFR2] 
[111]. Both pro-inflammatory and pro-apoptotic pathways are triggered 
by binding the soluble ligand TNF- and transmembrane to the TNF re-
ceptor [TNFR1] and TRAF2, respectively. TNFR1 stimulates NFB, 
MAPK, and Caspase-8, inducing inflammation, tissue degeneration, 
apoptosis. On the other hand, TRAF2 can activate MKLK leading to 
necroptosis [112,113]. Interleukin: Interleukin [IL] refers to a class of 
cytokine prominently secreted by leukocytes [114]. ILs regulate 
numerous functions such as stimulation and differentiation of immune 
cells, proliferation, maturation. IL acts as a pro-inflammatory agent and 
has anti-inflammatory properties [114]. Mature IL-6 has 185 amino 
acids. The gene of IL-6 is located at chromosome 7p21. This pleiotropic 
cytokine exerts numerous functions such as inflammation, immune 
response, and hematopoiesis produced from T cells, macrophages, 
endothelial cells, fibroblasts, and monocytes [115]. The binding of IL-6 
to its receptor initiates cascades of signaling through JAK/STAT3 stim-
ulating the transcription of several factors such as other cytokines and 
adaptor proteins [116]. Taken together, Interleukins, TNF, and IFN play 
an inseparable role in a cytokine storm. 

3. Association of neopterin with the severity of COVID-19 

Statins, one of the best-selling prescription drug class HMG-CoA 
reductase enzyme inhibitors in the US, is known to have a favorable 
safety profile; They contain the world’s bestselling prescription drug 
atorvastatin. When looking at their biochemical effects, the uncommon 
effects of statins extend far beyond the lipid profile and components 
such as LDL-C, HDL-C, and triglycerides ranging from nitric oxide and 
inflammatory markers to polyunsaturated fatty acids [117]. Since 

Table 3 
Some studies evaluate the effect of Zn supplementation on people in different 
condition.  

Year References Number of 
patients 

Finding 

2004 [85] 214 Taking Zn did not significantly affect the 
duration of symptoms versus the control 
group. 

2016 [86] 191 
Zinc group 1 
[n = 96] 
Without zinc 
group [n = 95] 

Zinc supplements did not improve the 
clinical efficacy of hydroxychloroquine. 

2008 [87] 91 Zinc treatment did not attenuate the total 
symptom score. 

2011 [88] 153 Zinc supplementation significantly 
reduces the duration of fever and very ill 
status in boys, but not in girls. 

2013 [89] 53 Zinc treatment was able to increase the 
number of functional T. 

2019 [90] 50 Zinc supplementation decreased both the 
production of inflammatory cytokines and 
oxidative stress markers: 

2018 [91] 108 Zinc, selenium, and vitamin C treatment 
may alleviate symptoms in COPD. 

2006 [92] 301 Zinc amino acid chelate had a better effect 
on the acute respiratory. 

2014 [93] 64 Zinc supplementation reduced the number 
of days of ALRI in Thai children and their 
stay in hospital.  

Fig. 2. Zn can inhibit ACE2 expression by reducing sirtuin1.  
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statins in the lipid-lowering drug class are inhibitors of 3-hydroxy-3- 
methylglutaryl coenzyme A reductase [118], many are at risk [119], 
including young/old, male/female individuals. It has well-documented 
benefits for moderate to high cardiovascular disease [117]. 

SARS-CoV-2 patients with a compromised cardiovascular system and 
comorbidities, including various cardiovascular diseases and hyperten-
sion, may suffer from acute respiratory distress syndrome and increased 
mortality. Statin can be given to the patient in the manufacturing field 
and office, where AR is “tiny and needs little in intensive care. In 
addition, in another study, the continued use of statins in patients with 
COPD had to be cautious about intubation. In addition to its benefits in 
existing techniques in the technology used in practice, it can also prove 
new roles that can benefit and can be achieved from technologies 
derived from anti-inflammatory, anti-thrombodultic, immuno- 
thrombodultic, and immuno-thrombodulatory and methods of sam-
pling science. Still not explicitly applicable to the conversation, some 
hospital statins are included in education from COVID-19 [2]. In addi-
tion, an analysis of in-hospital deaths in 8910 COVID-19 patients from 
Asia, Europe, and North America demonstrated a favorable prognosis for 
statin use. At the same time, statins positively affect the endothelium 
under stress since viral use increases the endothelial damage, rendering 
thrombotic value [4]. If one person has something else across the U.S. 
due to COVID-19, more than 10,000, from admission to use, other prior 
use, comorbid conditions, hospital, and bear controlled more than 40% 
in the next and severely over 40. The result was associated with a greater 
than 25% risk of developing severe symptoms. The observations and 
teaching that statins were not considered ingredients still indicate pre-
liminary information [120]. 

Some research results show that the statin effect is not significant for 
COVID-19 when the comparative data of users and non-users are 
examined. This is mainly because statin users with COVID-19 disease are 
shown to have a greater baseline risk driven by older age and a higher 
cardiovascular comorbidity burden. This could, in theory, hide the po-
tential protective effect of statins in this subset of patients [121]. For this 
reason, multivariate analyzes can give more positive results than uni-
variate analyzes. While it is known that there is a 30% reduction in fatal 
or severe COVID-19 infection according to multivariate meta-analyses, it 
does not confirm a significant lack of protection in the data reported in 
the univariate meta-analysis among statin users [122]. 

Low-density lipoprotein (LDL); ApoB is a large particulate molecule 
with a molecular weight of 2,000 kDa, consisting of triacylglycerol, free 
cholesterol, cholesteryl ester, and phospholipid molecules. LDL, which 
contains 1600 cholesterol esters and 170 molecules of triglycerides in its 
core, consists of 700 phospholipid molecules and 600 cholesterol mol-
ecules in the surrounding layer. In its outer layer, there is an apo B100 
molecule. Half of LDL fatty acids consist of polyunsaturated fatty acids 
(PUFA). PUFAs are protected from oxidation by antioxidants. Oxidized 
LDL (ox-LDL) is exposed to oxidative stress and inflammation in various 
diseases, resulting in oxidative stress and reactive oxygen derivatives. A 
high concentration of ox-LDL initiates cellular changes resulting in cell 
death, ROS formation, caspase, protein kinase activation, calcium ho-
meostasis, and pro-apoptotic/antiapoptotic gene expression change 
[123]. NPT, a pyrazinopyrimidine compound, is a popular biomarker, 
especially in essential pathologies that activate cellular immune mech-
anisms [13]. Since high NPT production is associated with increased 
reactive oxygen species (ROS) production and low serum antioxidant 
concentrations such as alpha-tocopherol, NPT can also be considered a 
marker of ROS generated by the active cellular immune system. 
Therefore, NPT measurements can predict not only the extent of cellular 
immune activation but also the extent of oxidative stress [6,124]. 

Hypochlorous acid (HOCl), an essential inorganic bactericidal com-
pound of innate immunity, is effective against many microorganisms 
[125]. Stabilized at pH 3.5–5.5, HOCl is a weak acid that interacts with 
structural proteins or viral material to inactivate microorganisms [126]. 
HOCl is the most potent oxidant produced by neutrophils and is a 
powerful microbicidal agent within these cells. Because of its chemical 

nature, HOCl has never been used to treat an infection. A remarkable 
feature of the immune system is its ability to initiate an effective 
response against invading pathogens by deploying a group of highly 
reactive chemicals, including oxidized halogens, oxidizing radicals, and 
single oxygen (Fig. 3) [125]. HOCl is currently a disinfectant approved 
under different brands by the US Environmental Protection Agency for 
SARS-CoV-2. HOCl, which interacts with structural proteins such as the 
capsid or surface compounds of viruses, lipid envelope, and DNA/RNA 
materials, HOCl with concentrations as low as 20 ppm is effective in 
disinfecting surfaces, including porous rayon. In addition, it is not toxic 
to humans and is a disinfectant 80–200 times more effective than 
standard disinfection procedures [126]. 

The current data show that HOCl oxidizes NH2 to form NPT. NH2 is 
described as an antioxidant and a potent radical scavenger. NPT remains 
stable at neutral pH, while NH2 is oxidized to 7,8-dihydroxyantopterine 
in an oxygen-saturated solution. Oxidizing agents in acidic solution, for 
example, MnO2 or I2, leave the NH2 side-chain unaffected and selec-
tively oxidize the 7,8-dihydro structure of NH2 to form NPT. 

The mechanism of oxidation remains unclear. The reaction mixture 
has a balance of hypochlorite and free acid and has oxidizing properties 
of dissolved chlorine (Cl2) resulting from the decomposition of HOCl. 
However, when HOCl content is quantified spectrophotometrically, the 
oxidative potential of Cl is not included. This may explain why NPT 
formed exceeds the amount of HOCl administered. Since the quantifi-
cation of NPT by fluorescence detection is selective and sensitive in one 
study, the rate of formation of NPT was monitored. NH2 is a non- 
fluorescent compound. The UV/Vis signal overlaps NH2 and NPT, and 
apart from electrochemical detection, no suitable HPLC method is 
known to separate these two compounds. It was also concluded that 
alternative quantification of NH2 after iodine oxidation after HOCl 
oxidation is impossible due to additional products formed. NPT is 
thought to act instead as a pro-oxidant, depending on conditions such as 
the nature of the oxidant, pH, or absence/presence of iron ions. Evidence 
is provided for the first time that reactive species can independently act 
on the NPT/NH2 ratio, thereby altering these pteridines’ redox modu-
latory properties. A dynamic balance has been noted in conformity with 
the idea that pteridines are redox modulators rather than a static model 
of stable NPT/NH2 excretion. HOCl has been shown to increase the 
oxidative potential in the local microenvironment by increasing the 
NPT-mediated prooxidative potency and decreasing the antioxidative 
capacity of NH2. A conversion of the NPT/NH2 ratio was also found, 
with NPT concentrations sometimes found higher than NH2 concen-
trations compared to NH2 alone [127]. 

COPD has been defined as an inflammatory disease with systemic 
consequences in recent years. COPD may also predispose individuals to 
the presence of other comorbidities, such as arterial hypertension, dia-
betes, and cardiovascular disease, which can potentially affect the 
outcome and severity of COPD. Therefore, the coexistence of associated 
conditions is common and may affect COPD disease progression and 
prognosis. According to the stated experience, higher NPT levels have 
been found in patients with cardiac and renal diseases, and these can be 
expressed as reflecting attacks of viral etiology [128]. Data support that 
mortality and NPT after pneumonia are risk factors for respiratory tract 
infection and cardiovascular events. The first line of these observations 
may have clinical implications when assessing COPD severity and 
exacerbation [129]. 

NPT can be potentially expressed as a promising inflammatory 
mediator. It has been reported to act as a mediator of cell immunity 
against intracellular pathogens such as viruses, parasites, and intracel-
lular bacteria. It is widely accepted that COPD is associated with an 
increased systemic inflammatory response than controls. This inflam-
matory response is reported in patients with stable COPD at higher levels 
of NPT when compared to control groups [130]. NPT is released from 
monocytic cells after stimulation with interferon-gamma (IFN-γ) as a 
well-established biomarker of cellular activation. IFN-γ also promotes 
tryptophan degradation in the kynurenine pathway, producing several 
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neuroactive metabolites, including quinolinic acid, which may 
contribute to neurological disorders [131]. Briefly, NPT is an oxidized 
form of dihydroneopterin during antioxidant reactions. High levels of 
NPT in serum and other biological fluids are associated with increased 
production of ROS and induction of oxidative stress (OS) during intense 
activation of cellular immunity [69]. According to studies, high con-
centrations of NPT have been reported to be detected in every neuro- 
COVID patient studied. NPT was elevated in cerebrospinal fluid sam-
ples of patients with COVID-19 and neurological abnormalities [131]. 
Also, the serum level of NPT can distinguish viral infection of the lower 
respiratory tract from a bacterial one; it can be noted a twofold higher 
increase in its viral state than a bacterial infection. In brain damage 
caused by COVID-19, NPT levels were elevated in patients’ cerebrospi-
nal fluid (CSF) [69]. 

It is accepted that uveitis patients with comorbidities such as dia-
betes mellitus, hypertension, and cardiovascular disease are at higher 
risk if they develop COVID-19. Asymptomatic retinal complications of 
SARS-CoV-2 infection have also been reported, but the prevalence is 
unknown. Research currently points to studies describing uveitis, reti-
nitis, retinal vasculitis, and optic disc involvement in animals after 
coronavirus infection [132]. No reports of COVID-19-associated uveitis 
have been published to date, but thin retinal microvascular pathology 
and small lesions have been described in the ganglion cell and inner 
plexiform layers [133]. 

NPT plasma level has been measured in many autoimmune diseases. 
Due to the overstimulation of monocyte/macrophage cells by T lym-
phocytes in patients with RA, NPT may be an indicator of both cellular 
and innate immune activity in these patients. Higher NPT concentra-
tions are associated with increased cardiovascular risk in the general 
population. Cardiovascular disorders are one of the most important 
causes of mortality in patients with RA. Studies have shown that NPT 
levels increase with age in both RA and control groups; In addition, it 
was found that RA patients increased with disease onset age and disease 
duration. The reason for higher NPT levels in male RA patients is not 
apparent. Still, it can be stated here that higher anti-CCP antibody 
contributes to increased inflammation and NPT levels in these patients 
[134,135]. 

4. Association of neopterin with symptoms in COVID-19 patients 

NPT is an independent prognostic factor for COVID-19 severity [53]. 
It appears in the blood before clinical symptoms arise in acute stages of 
viral infection and are linked to severe dyspnea, a more extended hos-
pitalization period, and other complications [69]. While COVID-19 is 
generally identified as pulmonary infection, it brings disturbances to 
various organ systems in the body with their related symptoms. The 
association of non-pulmonary clinical signs and symptoms with NPT in 
patients with COVID-19 has not been thoroughly investigated. Some 
scarce studies reported the probable association of NPT in body fluids 
with gastrointestinal, neurologic, and renal signs and symptoms [69]. 

The pooled prevalence of gastrointestinal (GI) symptoms (including 
nausea, vomiting, diarrhea, abdominal pain, and anorexia) in patients 
with confirmed COVID-19 was 18%, with diarrhea being the most sig-
nificant [136]. Some patients show gastrointestinal symptoms (e.g., 
nausea and diarrhea) as an initial manifestation of the disease [137], 
and patients with a severe form were more likely to experience GI 
symptoms. 

Fecal NPT is assumed as a surrogate of cellular viral immune 
response and may be an indicator of intestinal inflammation in COVID- 
19 patients [10,138]. SARS-CoV-2 can impose injuries to the gut mucosa 
by its ability to infect and replicate in the enterocytes. Intestinal 
epithelial cells simultaneously express two critical proteins for SARS- 
CoV-2 cell entry: ACE2 and transmembrane serine protease [139], 
making the oral-fecal route a potential route for infection [138]. 

In a study on 37 hospitalized COVID-19 patients (Non-ICU setting) 
with a median age of 62 years and a high level of C-reactive protein 
(evidence for systemic inflammation), fecal NPT values were elevated 
(more than 614.7 ng/g) in comparison with control healthy subjects. 
Seventeen patients with GI symptoms (diarrhea and nausea, and vom-
iting) demonstrated even higher NPT values in the stool. This subgroup 
of patients was also found to have elevated serum C-reactive protein 
concentration and body temperature on the day of stool sampling 
compared with the low NPT group, suggesting the presence of systemic 
inflammation. The fecal NPT did not significantly differ according to the 
GI sign or symptoms. The infected cells (including enterocytes) release 
selected cytokines and chemokines that induce intestinal inflammation 
and underlie GI symptoms [138]. 

Fig. 3. HOCI mechanism acting on pathogens.  
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Considering that the results of this study are based on a limited 
sample size, and SARS-COV-2 RNA was confirmed in only 35% of the 
patients, we should sound a note of caution about such findings. As 
SARS-CoV-2 infection is closely related to previous SARS in several as-
pects, it is assumed that SARS-CoV-2 RNA may have an ability to spread 
into the CNS via the membrane-bound ACE2, resulting in clinical 
neurological signs and symptoms [132]. 

NPT is an informative biomarker of central nervous system immune 
activation in various viral infectious settings, including HIV-1 infection 
and influenza [139,140]. NPT level in the serum and cerebrospinal fluid 
(CSF) increased in 6 patients with moderate to severe COVID-19 illness 
who also presented neurological disorders. Neurologic symptoms were 
encephalopathy, extreme fatigue, memory loss, personality changes, 
mild neck stiffness, photophobia, drowsiness, dysgeusia, disorientation 
[132]. High CSF NPT may be inspired by a forceful systemic inflam-
matory response induced by SARS-CoV-2 infection [141]. This obser-
vation may outline the COVID-19-induced CSF inflammation and brain 
injury [69,132]. There is still considerable ambiguity about the patho-
physiological basis of profound elevated CSF NPT in COVID-19 infection 
and its use as a prognostic factor for neurological symptom development 
[141]. 

All we know about the role of NPT in COVID-19-induced acute kid-
ney injury are in the light of studies evaluating NPT in severe COVID-19 
setting. The severe form may be accompanied by acute kidney injury in 
about half of the cases [142]. Even though it is reported that elevated 
serum creatinine and blood urea concentrations are associated with high 
serum NPT, some other studies failed to provide a meaningful correla-
tion in severe COVID-19 cases [71]. Many studies believed that high 
serum NPT concentrations related to the severity of the infection dete-
riorated renal function and higher temperature upon hospital admission 
[53]. Therefore, future studies on the current topic are required to 
elucidate the exact role of NPT in the clinical symptoms of patients with 
COVID-19 infection. 

5. Measurement of neopterin in COVID-19 

NPT is one of the measurable prognostic substances produced by 
humans’ immune systems. Due to its cost-effective and easily detectable 
features, NPT has recently become a significant marker for usage in the 
clinic to predict disease progression. Because the high amount of NPT 
mirrors significantly activated cellular immunity, it has been used to 
diagnose several diseases and their treatment selections [10,143]. Since 
the 19th-century [14], NPT levels were often detected and used as a 
disease progression prediction marker. Especially in infectious diseases 
like bacterial parasitic and viral, detecting NPT levels became highly 
useful in monitoring cellular immunity [144,145]. Currently, we are 
facing the COVID-19 viral infection, and helpful information about the 
disease and its progression has become crucial. Several articles showed 
that measuring NPT levels can guide observing the infection degree of 
COVID-19 prognosis. 

Bellmann-Weiler and her colleagues used 115 patients’ serum sam-
ples to measure NPT levels, and they found that the NPT levels were 
similar to the first study, which is above 40 nmol/L. Moreover, they 
concluded that the high amount of NPT [ 45 nmol/L] can be helpful for 
the early prediction of high-risk group COVID-19 patients [71]. NPT has 
been chiefly detected in serum and urine [146]. Also, it showed that it 

could be measured in the cerebrospinal fluid [147] and saliva [148] as 
well, and besides this, some studies detected NPT in the synovial fluid 
[149] and pancreatic secretion [150]. NPT is immensely simple in body 
samples, and it can be made with several techniques. Table 4 represents 
all studies measuring and pointing to the importance of NPT levels in the 
COVID-19. According to the table, ELISA has been the first choice for 
measuring the levels of NPT. ELISA is one of the labeled immunoassays. 
Furthermore, this technique uses the antibody-antigen interactions as an 
immunocomplex to detect the desired molecule in the sample. 

Generally, a particular molecule binds to its antibody that contains 
unique binding sites for its specific antigen. Also, the antibodies can be 
detected with the ELISA tests [150]. For the detection and measurement 
of NPT, the ELISA test contains rabbit-anti-NPT, that is, antibody 
binding sites for both sample NPT and enzyme-attached antigen. These 
antigen–antibody complexes then bind to the specific surface of the test 
for detection. Due to its flexibility, the ELISA test can apply and design 
for various diseases. The test uses up to 96 well plates, allowing one to 
look at the multiple samples simultaneously [151]. Thus, many models 
can be observed, and the results can be obtained quickly. Also, its usage 
is straightforward then does not need exceptional learning. The other 
advantageous use of ELISA is its sensitivity and specificity [150]. With a 
small sample size, desired substances can be detected through specific 
antigen–antibody interactions. 

Additionally, the test has some drawbacks. While applying fluid 
samples, it does not need pretreatment, but non– fluid samples like stool 
require pretreatment. One of the studies in Table 4 used the stool sample 
to measure NPT levels. They made some dilution processes before the 
applying test on the pieces. Then they used the supernatant of the 
models for test respectively [148]. Other potential methods measure and 
detect NPT. Lately, their usage did not present in COVID-19 infection, 
but they used it for measuring NPT levels in several diseases and con-
ditions. The technique RIA is one of the labeled immunoassays 
[152,153]. Unlike the ELISA, the RIA technique uses radioactive iso-
topes rather than enzymes as a label. Although the procedure is similar 
to ELISA, RIA has some differences and drawbacks [153]. The trained 
people need to prepare and do the experiment in the RIA test due to its 
labeled radioactive isotopes. Also, the storage and disposal of radioac-
tive substances require special procedures that must do carefully. 

Most importantly, if these isotopes are not disposed of correctly, they 
can cause radiation hazardous. Notwithstanding it has some difficulties, 
The RIA test successfully detects biomarkers. S’anchez-Regaña et al. 
concluded that the determination of NPT could be done with the RIA, 
and results showed that the RIA is highly accurate [151]. 

Another potentially used technique for measuring NPT is HPLC, 
which uses the liquid sample mixture, several pumps, and columns to 
specify biological substances. Additionally, the detector of the HPLC 
system is enabled to determine implications quantitatively [154]. 
Although high-pressure liquid chromatography [HPLC] for detecting 
fluorimetric signals has been widely used, many of the procedures 
described have practical limitations. This is mainly due to the difficulty 
of detecting contaminant peaks in blood samples. Carru et al. used the 
more extended column in their experiment. In these conditions, the NPT 
concentration achieved with phosphate buffer was resolved from im-
purities. The concentration achieved with water as eluents were also 
decreased by about 20% wing to several features of NPT, the measure-
ment techniques should choose carefully. The specificity of ELISA 

Table 4 
Neopterin detection techniques and levels in COVID-19.  

Sample Size Sample Neopterin Level (Mean) P-Value Measurement Technique Ref. 

103 patients Serum 46 nmol/L p < 0.001 ELISA [52] 
34 patients Serum 42 nmol/L p < 0.0001 ELISA and HPLC [72] 
115 patients Serum 56.6 nmol/L p < 0.001 ELISA [71] 
37 patients Fecal Sample (Stool) >614.7 ng/g – ELISA [137] 
45 patients Serum 44.90 nmol/L p < 0.05 ELISA [159]  
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enables it to detect NPT not only in serum samples but also in urine and 
other body materials. 

Conversely to ELISA, the HPLC method should be used to detect NPT, 
mostly in urine samples, in NPT levels deficient in the serum rather than 
urine [155]. Also, the high fluorescent feature makes NPT easily 
detectable in the urine samples by HPLC. Furthermore, Werner et al. 
found that the NPT detection with RIA was uncertain in the urine 
samples [156]. Therefore, they conclude that the RIA should measure 
NPT in serum samples. Recently, biosensors have become promising 
devices for the measurement of NPT. Also, with the fastly growing 
human population, the demand for fast and accurate point of care 
biosensor devices increased. Biosensors are handy analytic devices with 
several good features such as portability, simplicity, and the best-desired 
quality its specificity [157]. As a chemosensor, Sharma et al. used the 
molecular imprinting method that generates an artificially synthesized 
receptor polymer for the NPT. They showed that their molecularly 
imprinted film was sensitive and gave a chance to differentiate NPT 
analogs from samples [158]. The specification of progression of COVID- 
19 patients is highly possible through the measurement of NPT levels. 
Therefore, the demand for improved measurement techniques for NPT 
has become essential for characterizing the disease severity and infec-
tious degrees of patients with the SARS COV-2 virus. 

6. Prognostic value of neopterin in COVID-19 

There is incomplete evidence about predictive biomarkers that could 
ad- vantage physicians to categorize COVID-19 cases that are likely to 
improve a poor outcome. In COVID-19 patients, it is recognized that 
overexcited inflammation and coagulopathy are related to death in pa-
tients and disease severity. The results showed that compared with mild 
cases of COVID-19, high levels of circulating cytokines, profound lym-
phopenia, and significant infiltration of mononuclear cells into the lungs 
and other organs occur in very severe inflammatory conditions [6]er. 
High circulating biomarkers such as cytokines were described in severe 
COVID-19 patients. The serum rates of the immune motivation NPT 
have been revealed to be predictive value in patients with SARS-CoV-1 
[55]. Early studies suggest that serum NPT may help classify SARS-CoV- 
2 patients [52,72]. It has also been shown that high levels of cytokines 
associated with macrophage activation, including IFN-, are present in 
patients with SARS-CoV-2 [7]. Also proved based on different reports 
that raised kynurenine/ tryptophan ratio is usual in COVID-19 and 
associate narrowly with elevated NPT levels. 

Like NPT, kynurenine/ tryptophan is also related to undesirable re-
sults [72]. The same observations have been made in other infections, 
such as HIV-1 [160]. Overall, the IFN-induced immune response to viral 
infections may lead to increased NPT concentrations, tryptophan 
degradation, and increased kynurenine to tryptophan ratio [13]. Ac-
cording to the different results of the studies, various scenarios have 
been presented about the role of neoprene and how it increases in people 
with COVID-19. Most are related to antioxidants in controlling ROS 
[160]. These include a variety of vitamins, especially vitamin B; a 
decrease in vitamin B levels is associated with an increase in homocys-
teine and NPT levels in people with the disease [161,162]. It is also one 
of the possible mechanisms related to iron levels. Suppose the number of 
inflammatory factors in the blood increases. In that case, iron may be 
more likely to be stored [ferritin], which the results of some studies 
prove the same, and the amount of NPT is associated with an increase in 
ferritin [163,164]. NPT is formed by macrophage cells on motivation 
with IFN-, which is a primary factor in the antiviral immune reaction. 
Therefore, it can forecast the severity of disease in COVID-19 cases [52]. 
In patients with infectious diseases, improved NPT levels were known in 
body fluid samples like saliva, urine, blood, and CSF, e.g., during cyto-
kine therapies but also in conditions that are related to stimulation of the 
T-helper-1 immune cells such as autoimmune pathologies, mycobacte-
rial infections and numerous types of tumor cells and with viral in-
fections including SARS-CoV-1 and HIV-1 and recently also in COVID-19 

with SARS-CoV-2 [21,73,165,166]. The results of studies have shown 
that serum levels of NPT are closely related to the severity of COVID-19, 
with classes starting to rise from the 3–4 days of SARS-CoV-2 infection, 
being correlated with severe dyspnea, Take an extended stay hospital 
and other complications [68]. The different measurements of NPT levels 
can prepare valuable data in patients with current COVID-19 disease. 
Higher NPT levels emerge to describe an epidemic and widespread 
infection and thus to an improved infectious condition. In contrast, a 
standard or very low NPT reveals for quiet infection lacking fewer active 
infections [72]. Nevertheless, further studies are needed to confirm this 
conclusion, which is still in the early stages. 

7. Challenges and future perspectives 

COVID-19 is considered a cytokine storm and affects multi-organ 
inflammatory infection. The severity of inflammation and coagulation 
ascertains the mortality rate of this pulmonary and systemic injury. Due 
to this, prevention early diagnosis incorporation with effective thera-
peutic interventions is urgently needed for saving lives. NPT is an early 
critical marker for the progression and severity of immune disease or 
may be helpful together with the several inflammatory markers to 
suggest a diagnosis of SARS-CoV-2. It is also postulated as a sensitive 
marker of oxidative stress, which could decrease inflammation through 
suppressing NF-B signaling and NLRP3 inflammasomes. Other studies 
indicated that NPT contributes to high ROS and NF-B production, which 
leads to pro-inflammatory gene rise, including inducible nitric oxide 
synthase [iNOS], and triggers inflammatory processes. 

Furthermore, we need to consider that the elevated level of NPT may 
be related to other pathological conditions or inflammation-related 
diseases not only confined to COVID-19, such as RA, nephropathy, 
neuropsychiatric anomalies, or cancers. Within this view, further studies 
are required to address the exact role of NPT in the clinical symptoms of 
patients with COVID-19 infection. Also, it is essential to highlight that 
among the knowledge gaps of COVID-19, there are diagnostic errors 
with laboratory testing and their interpretation in patient management. 
While NPT appears in the blood before the onset of clinical symptoms, it 
is considered as an independent prognostic factor for COVID-19 severity. 
However, what seems to issue from this evaluation is that NPT values 
have significantly enhanced in individuals with severe SARS-CoV-2 
infection compared to those with milder forms of the disease. There-
fore, it could be logical to assume immediate measurement of cellular 
immune activation marker, namely NPT in patients and subsequently 
longitudinal monitoring, to identify a subgroup of patients with pro-
gressive inflammatory situations. 

8. Conclusion 

In conclusion, NPT level has a significant correlation with the 
severity of COVID-19 and can be considered a macrophage activation 
and sensitive indicator to predict disease risk. Further studies should 
also be planned to clarify whether targeting NPT in SARS-CoV-2 infec-
tion may be critical in early assessing infected patients’ disease pro-
gression and prognosis. 
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