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Abstract

Estrogens are thought to contribute to cognitive function in part by promoting the function of

basal forebrain cholinergic neurons that project to the hippocampus and cortical regions

including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the

function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present

study, we assessed the effects of ovariectomy on proteins associated with cholinergic syn-

apses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was

obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinester-

ase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although

the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetyl-

cholinesterase and M1 receptor protein, and these reductions were prevented by chronic

replacement of 17β-estradiol following ovariectomy. We also assessed the effects of ovari-

ectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of

the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in

brain slices obtained from intact rats, and from ovariectomized rats with or without 17β-

estradiol replacement. Eserine is known to prolong the effects of endogenously released

acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory

synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex

induced by 15-min application of 10 μM eserine was greatly reduced in slices from ovariec-

tomized rats as compared to intact rats and ovariectomized rats with replacement of 17β-

estradiol. The reduced modulatory effect of eserine is consistent with the observed changes

in cholinergic proteins, and suggests that reductions in 17β-estradiol following ovariectomy

lead to impaired cholinergic function within the entorhinal cortex.
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Introduction

Estrogens are produced by the ovaries and synthesized in the brain, and are known to modu-

late cognitive functions in both humans and animals [1–3]. Cyclic increases of estrogens are

associated with improved attention and recollection of verbal, emotional and spatial memory

in humans [4–7] and rats show improved object recognition and working memory during pro-

estrus when estrogens are high [8, 9]. Administration of estrogens also enhance working mem-

ory and hippocampal-dependent tasks including spatial navigation, novel object

discrimination, and social learning [10, 11], and can promote the use of spatial cognitive strat-

egies associated with the hippocampus [12–14].

Estrogens are thought to promote cognitive function by enhancing excitatory synaptic

transmission though multiple mechanisms in the hippocampus and other cortical regions

including the entorhinal cortex [15–18]. In the hippocampal CA1 region, 17β-estradiol (E2)

reduces inhibitory synaptic transmission [19], facilitates excitatory transmission [20–22], and

increases dendritic spine density [23]. We have also found that activation of G-protein estro-

gen receptor-1 (GPER1) receptors by E2 induces a rapid and reversible potentiation of excit-

atory synaptic responses in the entorhinal cortex [18], indicating that E2 can facilitate

excitatory synaptic inputs to the entorhinal cortex. Estrogens are also thought to enhance cog-

nition by promoting the function of basal forebrain cholinergic neurons. Basal forebrain cho-

linergic neurons contain estrogen receptor α [24, 25], and the transcription of choline

acetyltransferase is modulated during the estrous cycle, and enhanced by E2 following ovariec-

tomy [26, 27]. Cholinergic inputs to the hippocampus and entorhinal cortex promote neuronal

synchronization and reduce excitatory transmission [28–30], and play central roles in atten-

tion, sensory processing, learning and memory, and spatial navigation [4, 15, 31–33].

Reductions in cholinergic function in the hippocampal region associated with a decline in

circulating estrogens are thought to contribute to cognitive changes during the perimenopause

transition [4]. Surgical removal of ovaries is associated with cognitive decline in women that is

prevented by hormone replacement therapies containing estrogens [34, 35]. Ovariectomy in

rats results in estrogen-dependent changes in cognitive function that are due in part to disrup-

tions in cholinergic transmission [32, 36]. Ovariectomy results in estrogen-dependent reduc-

tions in the density of basal forebrain cholinergic neurons and reduces cholinergic terminals

and acetylcholine release in the hippocampus [25, 37]. This can result in reduced activation of

NMDA glutamate receptors and the impairment of hippocampal function [38, 39].

A reduction in cholinergic function following ovariectomy in the entorhinal cortex could

have substantial effects on cognition by affecting both excitatory synaptic transmission and

neuronal excitability [29]. Reduced cholinergic function could increase basal excitatory trans-

mission by reducing the inhibition of glutamate release caused by acetylcholine [30], and

could also reduce neuronal excitability because acetylcholine normally depolarizes the mem-

brane potential of entorhinal neurons [40, 41]. In addition, the expression of theta- and

gamma-frequency rhythmic population activities that contribute to mnemonic processing and

spatial navigation are likely to be reduced because these rhythms are dependent on muscarinic

depolarization of principle neurons and activation of GABA interneurons that synchronize

population rhythms [29, 42].

To assess the effects of ovariectomy on cholinergic function in the entorhinal cortex, we

measured the expression of proteins associated with cholinergic transmission three weeks fol-

lowing either a sham surgery, ovariectomy, or ovariectomy with chronic replacement of E2

[43, 44]. Entorhinal tissue samples were quantified for expression of the degradative enzyme

acetylcholinesterase, the vesicular acetylcholine transporter (VAChT), and M1 muscarinic

receptor protein. The effects of ovariectomy on the cholinergic modulation of excitatory
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synaptic transmission were also assessed by quantifying the effect of the acetylcholinesterase

inhibitor eserine on excitatory postsynaptic field potentials in vitro. Evoked excitatory synaptic

responses are reduced by activation of M1-like muscarinic receptors in the entorhinal cortex

[30, 45], and a smaller eserine-induced reduction in synaptic responses could occur if cholin-

ergic function is compromised by ovariectomy.

Methods

Subjects and surgery

Experiments were conducted according to the guidelines of the Canadian Council on Animal

Care and were approved by the Concordia University Animal Research Ethics Committee

(Permit Number: 30000253). Female Long-Evans rats (Charles River) were pair-housed under

a 12-hour light-dark light cycle. Animals that received ovariectomies underwent surgery on

PD63. Rats were anaesthetized with 3% isoflurane in O2 and ovaries were removed via a single

2 cm lumbar skin incision and bilateral tears in the abdominal musculature. Groups of animals

received either a sham surgery in which only the skin incision was made, ovariectomy, or

ovariectomy and immediate implantation of a subcutaneous capsule in the nape of the neck to

maintain low circulating levels of 17β-estradiol (E2) [43]. Capsules were made using the mate-

rials and methods of Almey et al. (2013) which have resulted in serum E2 of 38 pg/ml 7 to 14

days following ovariectomy, and 29 pg/ml 21 days following ovariectomy [44]. Silastic tubing

(1 cm-long; Dow Corning, I.D. 1.47 mm, O.D. 1.96 mm) sealed with silicone contained 8 mg

of 5% cyclodextrin-encapsulated 17β-estradiol (Sigma Aldrich) in cholesterol (Bioshop Can-

ada). Animals received postsurgical injections of buprenorphine (0.05 mg/kg, s.c.) every 12

hours for 72 hours.

Protein quantification

Tissue preparation. Tissue was prepared for protein quantification 21 to 26 days follow-

ing surgery. Subjects were anaesthetized with isoflurane and brains were rapidly removed and

cooled (4˚C) in oxygenated (95% O2 and 5% CO2) high sucrose ASCF solution containing, in

mM, 2 KCl, 1.25 NaH2PO4, 7 MgSO4, 26 NaHCO3, 250 sucrose, 10 dextrose and 0.5 CaCl2.

Horizontal slices (400 μm) were obtained using a vibratome (Leica, VT1200), and were then

kept at 32˚C for 30 min in normal ACSF containing 124 NaCl, 5 KCl, 1.25 NaH2PO4, 2

MgSO4, 2 CaCl2, 26 NaHCO3, and 10 dextrose. The medial and lateral entorhinal cortex were

isolated through the dorso-vental extent of the brain [46, 47]. Tissue was placed in normal

ACSF consisting (in mM) of 124 NaCl, 5 KCl, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, 26 NaHCO3,

and 10 dextrose saturated with 95% O2 and 5% CO2 at 32˚C for 30 min. Tissue was then kept

in normal ACSF at 22–24˚C for 30 min.

Protein extraction and western blotting. Tissue was collected into microfuge tubes and

snap-frozen in liquid nitrogen. Tissues were then disrupted in radioimmunoprecipitation

assay homogenization buffer (50 mM Tris, pH 7.4, 0.1% SDS, 150 mM NaCl, 1.0% NP-40,

0.5% sodium deoxycholate, 1 mM EDTA, and 1 mM PMSF) using a tissue sonicator (QSonica,

Q55). The quantity of protein in each sample was determined using BCA Protein Assay

(Thermo Fisher, 23227) and an ELISA Fluorostar Analysis System plate reader. Bovine serum

albumin (BSA) was used as the standard for protein quantification. Protein samples (20 to

40 μg) were resolved on Tris-glycine 8–10% SDS-PAGE gels. The resolved proteins were trans-

ferred from gels to nitrocellulose membrane (Bio-Rad, 1620112) and blocked for 1 hour in

either 5% milk or 5% BSA, depending on the specific antibody, in Tris-buffered saline (TBS)

containing 0.2% Tween-20 (TBST).
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Primary antibodies including anti-choline acetylcholinesterase (1:1000; Abcam,

AB183591), anti-vesicular acetylcholine transporter (1:2000; Abcam, AB235201), anti-cholin-

ergic muscarinic receptor 1 (1:2000; Alomone labs, AMR-010), anti-vinculin (1:4000; Abcam,

AB130007), anti-β-Actin (1:5000; Abcam, AB8226), were diluted in TBST containing either of

5% milk or 5% BSA and incubated overnight at 4˚C. Membranes were then washed 3 times for

5 minutes each in TBST and incubated at room temperature with either peroxidase-conju-

gated goat anti-mouse secondary antibody (used at 1: 3000 for anti-vinculin, and 1: 5000 for

anti-β-Actin; Millipore Sigma, AP124P) or peroxidase-conjugated goat anti-rabbit secondary

antibody (used at 1: 5000 for anti-acetylcholinesterase, 1: 6000 for anti-vesicular acetylcholine

transporter, and 1:4000 for anti-cholinergic muscarinic receptor 1; Millipore Sigma, AP132P)

for 1–2 hours. Immunoreactivity was detected using ECL Western blotting substrate (Thermo-

scientific, 32106) and visualized using a CDP-STAR chemiluminescence system (Amersham

hyperfilm ECL). Western blot data were compiled from at least six animals, and bands were

quantified by densitometric analysis using Image-J software (version 1.41).

Results were analysed using GraphPad Prism software version 8.0.1 and analyzed with a

mixed design Group (Intact, OVX, OVX+E) by Site (MEC vs LEC) analyses of variance

(ANOVA) and Tukey comparisons. Antibody signals were normalized against the largest load-

ing control immunoreactivity recorded in the medial or lateral entorhinal cortex of rats that

received sham surgery. Bar graphs indicate the mean and standard error of the mean, normal-

ized to the largest control value in percentage, and include values obtained from individual

animals.

Electrophysiological recordings

Recordings were obtained 7 to 17 days after ovariectomy on PD70 to PD80, and conducted

during the dark phase of the light-dark cycle. Horizontal brain slices (400 μm-thick) contain-

ing the hippocampal and entorhinal regions were obtained and maintained for at least 30 min

at 22–24˚C prior to recordings. Slices were placed on a nylon net in a gas-fluid interface

recording chamber (Fine Science Tools) and perfused at 2.0 ml/min with the upper surfaces

exposed to humidified 95% O2, 5% CO2 atmosphere. Field excitatory postsynaptic potentials

(fEPSPs) were recorded using borosilicate glass pipettes (1.0 mm OD; Sutter Model P97) filled

with ACSF (4 to 6 MΩ). Electrodes were positioned 75 to 200 μm below the surface of the slice

in layer I of the lateral entorhinal cortex, close to the layer II border, using a dissecting micro-

scope (Leica, MS5). Bipolar stimulating electrodes made from tungsten electrodes (0.8–1 MΩ,

FHC Inc.) were placed in the middle of layer I, 0.3 to 0.4 mm rostral to the recording

electrode.

Changes in fEPSPs induced by the acetylcholinesterase inhibitor eserine hemisulfate

(Sigma) were compared in slices obtained from intact rats and ovariectomized rats with and

without E2 capsules. Constant current pulses (0.1 ms duration) were delivered every 30 sec-

onds with a stimulus generator and stimulus isolation unit (WPI, A300 and A365), using a cur-

rent that elicited fEPSPs approximately 65% of the maximal response (50–135 μA). Field

EPSPs were amplified (DC-3 kHz; Axoclamp 2B, Molecular Devices) and digitized (20 kHz;

Digidata 1322A) using Clampex 8.2 software (Molecular Devices). In each slice, after a baseline

period of at least 10 min in which fEPSP amplitude varied less than 10%, 10 μM eserine was

added to the ACSF for a period of 15 minutes. There was then a 40 min follow-up period in

normal ACSF. Peak amplitudes of fEPSPs were measured using pClamp 8.2 software (Molecu-

lar Devices), and data for each slice were expressed as a percent of the average baseline fEPSP

amplitude. The average fEPSP amplitude obtained during the baseline period, and 25–30 and

50–55 min after the onset of eserine, were assessed using a mixed design ANOVA with Group
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(Intact, OVX, OVX+E) and Time (baseline, 25–30 min, 50–55 min) as factors. Significant

effects were investigated with post-hoc Tukey’s comparisons.

Results

Protein quantification

Western blot quantification was used to measure proteins related to cholinergic function, and

to determine if changes in protein expression induced by ovariectomy could be blocked by

chronic E2 administration (n = 6 per group). In comparison to tissue from animals that

received sham surgery, ovariectomy resulted in marked reductions in AChE protein immu-

noexpression (F2, 20 = 16.54, p<0.0001) in both the medial (p = 0.003) and lateral entorhinal

cortex (p = 0.002) (Fig 1A). Further, the replacement of E2 following ovariectomy prevented

significant reductions in AChE in both the medial (p = 0.208) and lateral entorhinal cortex

(p = 0.821). Differences in AChE in ovariectomized rats versus ovariectomized rats with E2

replacement were significant for the lateral (p = 0.007), but not medial entorhinal cortex

(p = 0.113). Ovariectomy therefore causes a reduction in AChE protein in the entorhinal cor-

tex that is prevented by chronic administration of E2.

Although the vesicular acetylcholine transporter (VAChT) is expressed broadly and serves

as a marker for cholinergic axon terminals [48], we found that ovariectomy did not signifi-

cantly affect expression of VAChT. Results showed no significant main effect of group (F1, 30 =

0.15, p = 0.706) on VAChT expression (Fig 1B).

Ovariectomy resulted in a strong reduction in M1 muscarinic receptor protein expression in

both the medial and lateral entorhinal cortex in comparison to the sham control group (F2,20 =

27.22, p<0.0001; medial, p = 0.001; lateral, p<0.0001). Replacement of E2 prevented the reduction

in M1 receptor protein. There was no significant difference in M1 receptor expression between

control animals and ovariectomized animals that received E2 replacement (medial, p = 0.660; lat-

eral, p = 0.946). Muscarinic M1 expression was also significantly reduced in ovariectomized ani-

mals in comparison with ovariectomized animals that received E2 replacement (medial,

p = 0.009; lateral, p<0.001) (Fig 1C). Ovariectomy therefore causes reductions in M1 protein in

both the medial and lateral entorhinal cortex that are prevented by chronic administration of E2.

Effects of eserine on field EPSPs

Application of eserine resulted in reductions in the amplitude of field excitatory postsynaptic

potentials (fEPSPs) that began about 10 min after the onset of eserine application, and were

maximal after approximately 25 to 30 min during the wash period. In intact rats, EPSP ampli-

tude was reduced to 79.1 ± 2.2% of baseline levels 25–30 min after the onset of the drug, and to

83.0 ± 3.2% at the end of the recording period (n = 13 slices from 7 rats); Fig 2A). The size of

the reduction was smaller in ovariectomized animals (11.5 ± 2.9% versus 20.9 ± 2.2% in intact

rats), and fEPSP amplitudes in slices from ovariectomized animals were at 88.1 ± 3.2% of base-

line 25–30 min after onset of eserine, and 91.7 ± 3.5% of baseline at the end of the recording

period (n = 10 slices from 6 rats; Fig 2B). Ovariectomized rats that received E2 replacement

showed declines in fEPSP amplitude similar to intact rats, and fEPSP amplitudes were

78.9 ± 2.5% of baseline 25–30 min after onset of eserine, and 77.8 ± 3.1% of baseline at the end

of the recording period (n = 10 slices from 5 rats; Fig 2C). An ANOVA showed a significant

group by time interaction (F4,60 = 3.51, p = 0.023). Tukey’s comparisons indicated that,

although reductions in fEPSPs did not differ between intact rats and ovariectomized rats that

received E2 replacement (25–30 min, p = 0.997; 50–55 min, p = 0.296), slices from ovariecto-

mized rats showed significantly smaller fEPSPs as compared to intact rats (25–30 min,

p = 0.028; 50–55 min, p = 0.034), and as compared to ovariectomized rats with E2 replacement
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(25–30 min, p = 0.034; 50–55 min, p< 0.001). Therefore, the reduction in fEPSP amplitude

induced by eserine was significantly smaller in slices from ovariectomized animals versus

intact rats, and this effect was prevented by replacement of E2 following ovariectomy.

Discussion

Basal forebrain cholinergic neurons impact cognitive processing by modulating neuronal

excitability and synaptic transmission in both the hippocampus and entorhinal cortex [30, 40,

Fig 1. Ovariectomy results in reductions in proteins associated with cholinergic synaptic function in the entorhinal cortex. Lysates were obtained

from the medial and lateral entorhinal cortex (MEC and LEC), in groups of animals that received either sham surgery (Sham), ovariectomy (OVX), or

ovariectomy and a subdermal implant containing 17-β estradiol (E2; OVX+E). A. Representative immunoblots of acetylcholinesterase (AChE) and the

β-actin loading control are shown (A1), and the bar graph shows relative expression of AChE protein (A2; n = 6 per group). Note that the reduction in

AChE induced by ovariectomy is prevented by administration of E2. Asterisks indicate levels of statistical significance (�, p< 0.05; ��, p< 0.01; ���,

p< 0.001; ����, p< 0.0001). B. No significant changes were observed in immunoblots (B1) or normalized protein expression (B2) for the vesicular

acetylcholine transporter (VAChT; n = 6 per group; vinculin was the loading control). C. Representative immunoblots (C1) and relative protein

expression (C2) indicate that the reduction in M1 receptor protein induced by ovariectomy was prevented by administration of E2.

https://doi.org/10.1371/journal.pone.0271131.g001
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45]. Reductions in estrogens following ovariectomy are thought to impair cognitive processes

in part by reducing the function of cholinergic afferents to the hippocampus [15, 39], but

reduced cholinergic input to the entorhinal cortex is also likely to impact cognitive function.

We have found that ovariectomy results in reductions in both acetylcholinesterase (AChE)

and M1 receptor protein in the medial and lateral entorhinal cortex, and that these reductions

are prevented by chronic replacement of 17β-estradiol (E2). Ovariectomy also reduced the

modulatory effects of the acetylcholinesterase inhibitor eserine on excitatory synaptic

responses in the entorhinal cortex in vitro. Eserine induced a smaller reduction in the ampli-

tude of field EPSPs in slices from ovariectomized vs intact rats, indicating a reduced choliner-

gic suppression of excitatory synaptic transmission [30], and this effect was prevented by

chronic replacement of E2 following ovariectomy. This suggests that reductions in E2 follow-

ing ovariectomy result in a functional impairment of cholinergic transmission in the entorhi-

nal cortex.

The cognitive changes following ovariectomy that have been attributed to reduced basal

forebrain cholinergic input to the hippocampus may be due in part to reduced cholinergic

function in the medial and lateral entorhinal cortex [39, 49]. The medial entorhinal cortex con-

tributes to navigation and spatial processing and memory [50] and the lateral entorhinal cortex

is involved in olfaction, object recognition, and memory for object location [51, 52]. We have

shown that ovariectomy reduced AChE and M1 receptor protein in both regions, and this may

affect both local processing and the activity of entorhinal projections to the hippocampus [53].

Reductions in cholinergic synaptic proteins

The finding that ovariectomy reduced AChE expression in entorhinal tissue is consistent with

studies that have found reductions in ChAT mRNA in basal forebrain cholinergic nuclei [54–

56]. Ovariectomy also results in widespread reductions in cholinergic projections to the hippo-

campus, prefrontal cortex, and olfactory bulbs as reflected by reductions in ChAT and high

affinity choline uptake [36, 57, 58]. We found that the reduction in AChE in the entorhinal

cortex of ovariectomized animals was prevented by maintaining circulating E2 using a subcu-

taneous implant [44]. Similarly, E2 replacement prevents reductions in cholinergic staining in

hippocampus [36, 57] and prefrontal cortex [58]. It is not clear why levels of the vesicular ace-

tylcholine transporter (VAChT) remained stable [59] while levels of AChE were reduced by

ovariectomy, but this suggests that ovariectomy resulted in a reduction in the function of cho-

linergic terminals without substantial loss of synaptic terminals or vesicular machinery.

Muscarinic M1 receptor protein was reduced in the entorhinal cortex by ovariectomy, and

this reduction was prevented by replacement of E2. These findings are consistent with the con-

current decrease in AChE protein, and with studies demonstrating reduced cholinergic

Fig 2. Ovariectomy reduces cholinergic modulation of excitatory synapses. The acetylcholinesterase inhibitor

eserine differentially modulates field excitatory postsynaptic potentials (fEPSPs) in the lateral entorhinal cortex in

brain slices obtained from intact rats (A), ovariectomized rats (B), and ovariectomized rats with E2 capsules (C). A.

Representative averaged fEPSPs from a slice obtained from an intact rat (A1) are shown for the baseline period (trace

1), 28 min after onset of application of 10 μM eserine (trace 2), and at the end of the recording period (trace 3). Traces

are averages of five consecutive responses. In slices from intact rats, mean fEPSP amplitude was reduced following

application of eserine (black bar; n = 13) (A2). The inset diagram shows typical locations of the stimulating (�) and

recording (circle) electrodes in horizontal slices of the lateral entorhinal cortex. Numbers indicate the times at which

traces in A1 were obtained, and bars indicate ± one standard error of the mean. B. Representative averaged traces are

shown for a slice obtained from an ovariectomized rat (B1), and changes in mean amplitude of fEPSPs in the group of

slices are shown (B2; n = 10). C. Representative traces (C1) and averaged changes in mean fEPSP amplitude (C2,

n = 10) are shown for a group of slices obtained from ovariectomized rats that received E2 replacement. Reductions in

fEPSP amplitude induced by eserine were significantly smaller in ovariectomized rats versus either intact rats or

ovariectomized rats that received E2 replacement, both 25–30 min and 50–55 min after eserine application (p<0.05).

https://doi.org/10.1371/journal.pone.0271131.g002
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function following ovariectomy [36, 57, 58]. Ovariectomy decreases M1 receptor mRNA in the

hippocampus [49] and has been found to reduce M1 and M2 receptor binding in basal fore-

brain and cortical projection areas including the entorhinal cortex, although this effect was not

prevented by E2 supplementation [60]. In contrast, others have found that M1 to M5 receptor

protein is increased 15 days following ovariectomy in the hippocampus and that these

increases are prevented by E2 supplementation [61, 62]. An increase in muscarinic M4 recep-

tors on glutamatergic terminals may also underlie reduced glutamate release in the hippocam-

pus following ovariectomy [63]. Increases in muscarinic receptors following estrogen

supplementation are also thought to contribute importantly to the cognitive benefits of estro-

gen supplementation [64]. Compared to their non-treated counterparts, postmenopausal

women that receive hormone replacement therapy have increased plasma estradiol and higher

muscarinic receptor densities in the striatum, hippocampus and frontal cortex [65]. Estrogen

replacement following ovariectomy also results in an enhancement of hippocampal long-term

synaptic potentiation that is dependent on muscarinic receptors [63]. Differences in the effects

of ovariectomy on muscarinic receptors may be related to experimental variables including

duration of ovariectomy and brain region examined.

Reduced effect of eserine on EPSPs

Reductions in fEPSP amplitudes began approximately 10 minutes after the onset of eserine

application and persisted for the duration of recordings. The delayed onset of the effect is likely

due to time needed for drug concentration to rise in our high-volume interface recording

chamber, and for eserine to increase acetylcholine availability by blocking degradation of

endogenously released acetylcholine. The reduction in fEPSPs did not reverse entirely; this

may be due to the high binding affinity of eserine [66], but eserine can also induce a long-term

depression of synaptic responses in the CA1 region via a lasting reduction in glutamate release

[67], and this may have contributed to the duration of the effect.

Electrophysiological results obtained here are consistent with a functional impairment of

cholinergic transmission in the entorhinal cortex following ovariectomy. The acetylcholines-

terase inhibitor eserine reduces the amplitude of fEPSPs, by prolonging the effects of acetyl-

choline which causes an M1-mediated reduction in glutamate release [30, 45] that is likely to

affect both AMPA and NMDA receptor-mediated responses. Eserine had a reduced effect on

field EPSPs in the lateral entorhinal cortex in slices from ovariectomized animals. Ovariectomy

is also likely to have similar effects in the medial entorhinal cortex which also showed reduc-

tions in AChE and M1 receptor protein. The reduced effect of eserine could result from a

reduction in endogenous release of acetylcholine, leading to smaller eserine-induced increases

in acetylcholine concentration. Results are also consistent with the reduction in M1 receptors

that we have observed, which may include reductions in M1 receptors on glutamate terminals.
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