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Powered by glucose metabolism, the brain is the most energy-demanding organ in our
body. Adequate ATP production and regulation of the metabolic processes are essential for
the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic
activity utilizes the largest portion of bioenergy for synaptic events including neurotransmit-
ter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading
to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is cou-
pled with synaptic function via activities of the sodium pumps, glutamate transporters,
glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the
AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the
catalytic process to enhance energy production. A decline in energy supply and a disrup-
tion in bioenergy homeostasis play a critical role in multiple neuropathological conditions
including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease
and traumatic brain injuries.

Keywords: glucose metabolism, glutamatergic neurotransmission, AMPK, mitochondria, Alzheimer disease,
traumatic brain injury, stroke

INTRODUCTION
The brain is the most energy-demanding organ in our body. It
consumes 20% oxygen and 25% of total glucose supply, equiva-
lent to approximately 20% of total ATP production (1–5). Given
that the brain accounts for only 2% of our body weight, its energy
consumption is impressive – 10 times that of other organs on aver-
age. The high cost in energy is not solely due to a large number
of cells in the brain, with an estimated 100 billion neurons and
many fold more glia, because organs with a comparable num-
ber of cells such as the liver have a much more modest energy
bill (6). In contrast to peripheral tissues, neurons depend almost
entirely on glucose for ATP production (1). Notably, the brain
lacks cellular mechanisms to store energy or energy-generating
sources such as glycogen or fat. Rather, energy must be produced
continuously in order to maintain neuronal activity. Therefore,
neurons are extremely sensitive to energy decline occurring dur-
ing hypoxia, ischemia, stroke, and other forms of neurotrauma.
Indeed, decreased glucose metabolism and mitochondrial energy
production dysfunction have been associated with neurodegener-
ative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s
disease. Alzheimer’s and Huntington’s patients exhibit reduced
glucose energy metabolism even at early stages of disease, pos-
sibly caused by reduced glucose uptake through transporters,
mitochondrial dysfunction, or changes in mitochondrial motil-
ity. Traumatic brain injuries are becoming increasingly concerning
in populations due to recent wars and the discovery of Chronic
Traumatic Encephalopathy (CTE) in athletes. These conditions
also cause rapid declines in neuronal glucose levels and associ-
ated long-term damaging effects, such as increased intracellular
calcium, production of free radicals, and depolarization of the

mitochondrial membrane. Recent studies have elucidated mecha-
nisms in energy sensing and the role of synaptic events in energy
metabolism and neuronal energy homeostasis, which shed light
on our understanding of the pathogenesis of neurological dis-
eases. In addition, proteins and pathways involved in neuronal
energy metabolism are being investigated as therapeutic targets
for neurodegenerative diseases and traumatic brain injuries.

GLUTAMATERGIC EXCITATORY SYNAPTIC TRANSMISSION
IS A PRIMARY ENERGY-CONSUMING EVENT
Although glia outnumber neurons, the latter account for 85% of
energy consumption (1). Among many neuronal cellular events,
action potential-mediated neuronal communication is believed to
be a major process of energy consumption. However, in contrast
to a long-held belief, recent studies have revealed that the propaga-
tion of action potentials is highly energy efficient (7), consuming
only 11% of brain ATP (8). Instead, energy cost mainly comes
from synaptic activity, including transmitter release, but primar-
ily postsynaptic receptor activation (9). In the brain, most of the
synaptic activity is mediated by glutamate, thus, the excitatory glu-
tamatergic system represents the single largest energy consumer,
consuming 50% of ATP in the brain (4, 8, 10, 11). In addition
to glutamate receptor channel activity, other glutamate-related
events including glutamate synthesis, vesicle filling, release, uptake,
and recycling, as well as receptor trafficking and signaling, are also
energy consuming.

At the presynaptic terminals, glutamate is enriched in synap-
tic vesicles (SVs), powered indirectly by a proton pump on the
vesicle membrane, at a concentration of 100 mM. During synaptic
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transmission, a single vesicle release can cause a rapid rise of gluta-
mate in the synaptic cleft to concentrations as high as 1 mM (12).
Under normal conditions, ambient glutamate in the extracellular
environment is maintained by the constant activity of glutamate
transporters at the plasma membrane of both neurons and glia
(12, 13). Glial transporters often surround synapses to ensure
an efficient uptake of released transmitter and prevent glutamate
spillover.

There are three types of ligand-gated ionotropic glutamate
receptors, including AMPA receptors (AMPARs), NMDA recep-
tors (NMDARs), and kainate receptors (KRs) (14–16). AMPARs
are sodium channels that are the major components responsible
for synaptic transmission, whereas NMDARs play an essential role
in the formation of synaptic plasticity, mainly via regulation of
AMPAR trafficking and synaptic localization. More importantly,
the high permeability of NMDARs to calcium enables the recep-
tor to initiate a series of calcium-dependent signaling cascades,
including those for energy-dependent protein modification and
metabolic regulations (17). Of note, although NMDARs show
high permeability to calcium and are often mistakenly consid-
ered a calcium channel, more than 80% of NMDA currents are
actually carried by sodium (18). Since NMDA synaptic currents
have a long-lasting time course compared to that of AMPARs,
NMDARs contribute a large amount of sodium influx during
synaptic activities.

A large amount of energy consumption results from the main-
tenance of ionic gradients via the sodium pump. Neuronal activity
and synaptic transmission cause rises in intracellular sodium.
Compared with the intracellular sodium concentration of about
10 mM at resting conditions, an action potential can increase spine
sodium concentrations to 35–40 mM, and tetanus stimulation
for the induction of long-term potentiation (100 Hz stimula-
tion for 1 s) leads to sodium levels as high as 100 mM in the
spine (19). Inhibition of the sodium pump activity abolishes
glutamate-induced ATP reduction (20), indicating the sodium
pump as the major cellular machinery attributing to glutamate-
related energy spending. Membrane depolarization by glutamate
stimulation induces firing of action potentials, which also leads to
sodium influx via voltage-gated sodium channels. However, con-
sistent with the notion that action potentials are energy efficient,
blockage of sodium channels by tetrodotoxin (TTX) does not
affect glutamate-induced ATP reduction, indicating that glutamate
receptors are the primary source of intracellular sodium.

SENSING OF CELLULAR ENERGY BY AMPK SIGNALING
When ATP is hydrolyzed to release energy to enable cellular
processes, a rise in the AMP:ATP ratio is sensed by the bioenergy
detector AMP-activated protein kinase (AMPK). Once activated,
AMPK utilizes its serine/threonine kinase activity to increase the
rate of cellular catabolism (glucose utilization, fatty acid oxi-
dation, etc.) while simultaneously inhibiting anabolic processes
(cell biosynthesis), resulting in a net increase in ATP produc-
tion. AMPK is a heterotrimeric protein composed of α, β, and
γ subunits in equal stoichiometry. The α subunit constitutes the
catalytic domain, conferring kinase activity, while the γ subunit
enables AMPK to monitor cellular energy status through two
AMP/ATP binding domains, referred to as Bateman domains, that

bind AMP or ATP in a mutually exclusive manner (21–23). An
increase in the concentrations of AMP, an indicator of energy
insufficiency, will facilitate AMP binding to the AMPK Bateman
domains, leading to a change in molecular structure, and expo-
sure of an activation loop in the α subunit. This conformational
alteration allows AMPK to be phosphorylated at the α subunit
Threonine 172 residue by upstream kinases, causing a 50–100-
fold increase in the catalytic activity of AMPK (24). Conversely, a
high concentration of intracellular ATP promotes ATP/Bateman
domain binding and produces an antagonistic effect on AMPK
activation. Given that neurons have a high degree of metabolic
activity and energy demand, it is expected that AMPK plays a
critical role in maintaining energy homeostasis within the brain.

AMPK can be phosphorylated by two upstream kinases includ-
ing liver kinase B1 (LKB1) and the calmodulin-dependent protein
kinase kinases, CaMKKα, and CaMKKβ (25–28). LKB1 was origi-
nally found as the tumor suppressor mutated in the genetically
inherited susceptibility to human cancer, coined Peutz–Jeghers
Syndrome (PJS) (29). In peripheral tissues, LKB1 has been shown
to be necessary for AMPK phosphorylation and activation (30,
31). Despite both LKB1 and AMPK being ubiquitously expressed
in mammalian cells, there is evidence to suggest that AMPK may
be acted upon by different AMPKKs in a tissue-specific man-
ner. For instance, LKB1 has been demonstrated to be the major
upstream activator of AMPK in muscle and liver cells (32, 33),
however a study utilizing LKB1 knockouts found that LKB1 defi-
cient neurons had similar levels of phosphorylated AMPK as
compared to wild-type cells under normal physiological condi-
tions (34). In neurons, AMPK is more likely to be regulated
by calcium-dependent signaling. In rat brain slices, intracellular
increases in Ca2+ results in CaMKK-dependent AMPK phospho-
rylation. Importantly, membrane depolarization causes AMPK
phosphorylation in the absence of an obvious change in cellular
AMP:ATP ratio, indicating that AMPK can be regulated in a Ca2+-
dependent, AMP-independent manner (35). Thus, glutamatergic
synaptic activity can signal neurons for energy production via
calcium-mediated AMPK activation.

COUPLING OF SYNAPTIC ACTIVITY AND ENERGY
HOMEOSTASIS
In the brain, glutamate is the major neurotransmitter mediating
most synaptic transmission. Multiple molecular events occur-
ring during synaptic activation, including sodium pump activ-
ity, receptor trafficking, cytoskeletal rearrangements, signaling,
and metabolic processes make synaptic activity an energetically
costly process (8). Thus, coordinated cellular processes are neces-
sary to convey synaptic signals to bioenergy metabolic activities
(Figure 1).

CO-ORDINATION OF SODIUM PUMP AND GLUTAMATE RECEPTOR
LOCALIZATION
The sodium gradient forms the foundation for synaptic transmis-
sion and neuronal excitation. Because of the frequent perturbation
of ion homeostasis due to constant neuronal activity, the workload
of the Na+/K+ ATPase (NKA) is so high that it consumes nearly
half of the ATP in the brain. NKA is a heterodimer composed of
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FIGURE 1 | Synaptic activity and energy homeostasis. During synaptic
transmission, activation of glutamate receptors allows influx of a large
amount of sodium and calcium. Rises in intracellular sodium are rebalanced
by the sodium pump powered by ATP consumption. Cellular energy status is
sensed by AMPK via a reduced ATP/AMP ratio and CaMKK-dependent
calcium signaling, leading to enhanced mitochondria activity and ATP
biogenesis. AMPK activity also activates the PI3K/AKT pathway, leading to
enhanced glucose uptake by stimulating glucose transporter membrane
expression and transport efficiency. Mitochondria are trafficked on
microtubules into metabolically demanding synapses by binding to

Milton/Miro-mediated kinesin motor complex. In conditions of neurotrauma
and neurodegenerative diseases, several aspects of this regulation may be
disrupted. During hypoxia, ischemia, and stroke, insufficient ATP levels cause
dysfunction of the sodium pump, leading to a loss in membrane potential and
neuronal function. AD brains show reduced levels of GLUT3, and both AD and
HD brains have a reduced rate of neuronal glucose metabolism. Mouse
models of AD and PD show mitochondrial dysfunction along with reduced
mitochondrial motility, preventing proper mitochondria delivery to the synapse
and leading to decreased energy metabolism. Brains of traumatic injuries
show reduced ATP levels and suppressed mitochondrial function.

two subunits: the catalytic α subunit that contains ATPase activ-
ity and the regulatory β subunit that is required for the enzymatic
activity of NKA. At the single-neuron level, immunostainings have
shown widespread localization of NKA in the soma and the den-
drites (36, 37). During synaptic transmission, AMPAR-mediated
currents are carried by sodium ions that flow into the cytosol of
the neuron, typically within a microspace of the spine <1 µm3.
In hippocampal neurons, one action potential can cause a several-
fold increase in intraspinal sodium. The frequent and often large
rises in intraspinal sodium must be exuded efficiently in order
to maintain synapse electrophysiology, a task achieved via the
activity of NKA. Therefore, there should exist cross-talk between
AMPARs and the NKA to coordinate their functions. Indeed,
we have shown that sodium pumps are enriched at the synapse
and physically associate with AMPARs via interactions between
the pump and receptor intracellular C-terminals. AMPAR surface
localization and thus activity intensity are controlled to match the
functional capacity of the pump. When sodium pump activity

is decreased, AMPARs undergo a translocation from the plasma
membrane to intracellular compartments via endocytosis, which
are then directed to the proteasome for degradation. Presumably,
the adjustment in surface glutamate receptor number can help pre-
vent drastic toxicity caused by sodium and calcium accumulation
due to sodium pump insufficiency. It remains unclear whether and
how changes in glutamate receptor activity lead to corresponding
regulation of NKA. However, changes in sodium pump levels cor-
relating with glutamate receptor density have been documented.
In the macaque retina, TTX treatment for 4 weeks caused a sig-
nificant reduction in NMDARs; this reduction was paralleled by
a lower level of NKA, suggesting that glutamate activity regulates
NKA levels (38).

SYNAPTIC ACTIVATION REGULATES GLUCOSE UPTAKE
Glucose is the sole source for ATP production in neurons (1).
Therefore, it is of physiological significance to have synaptic
activity coupled with glucose uptake. Both neurons and glia are

www.frontiersin.org December 2013 | Volume 4 | Article 199 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Khatri and Man Synaptic activity and bioenergy homeostasis

equipped with glucose utilization machinery, including glucose
transporters and regulators, however higher glucose demands
seem to be fulfilled with the assistance from glia. Glucose is first
taken up by glia to be converted into lactate via glycolysis, which
is then released and retaken by neurons where lactate is used for
oxidative ATP genesis in mitochondria. Processes of astrocytes
grow in the close proximity to neurons, often wrapping the synap-
tic cleft, as evidenced by a concentration of the astrocytic glucose
transporter GLUT1 around synapses, where glutamate released
during synaptic transmission is sensed by the glia and stimulate
glial glucose uptake (39, 40).

In addition to the glia-coupled glucose delivery to neurons,
synaptic activity can directly stimulate neuronal glucose uptake
(41). However, exposure of neurons to glutamate results in a reduc-
tion in cellular ATP levels (20) and glucose uptake in neurons (42),
indicating distinct signaling and cellular responses to synaptic vs.
non-synaptic glutamate receptor activation.

AMPK is implicated in glutamate-induced glucose uptake. In
neurons, AMPK signaling leads to activation of the PI3K/Akt
pathway. We have shown that in cultured hippocampal neu-
rons application of the AMPK activator AICAR causes a marked
increase in phosphorylated Akt (43). This effect results directly
from AMPK activation, as introduction of the AMPK antagonist
successfully blocks AICAR-induced Akt phosphorylation. Further-
more, addition of a PI3K inhibitor also abolishes AICAR-induced
Akt phosphorylation, indicating that the AMPK effect on Akt acti-
vation is mediated via PI3K (43) Interestingly, glutamate treatment
activates AMPK, and pharmacological activation of AMPK leads to
increased amounts of glucose transporters at the cell surface (44).
We have recently found that in hippocampal neurons, AMPK acti-
vation causes higher levels of membrane GLUT3 and enhances
glucose uptake (unpublished data). How AMPK activates PI3K
remains unclear. Upon AICAR treatment, AMPK activation has
been shown to phosphorylate IRS-1, the upstream component in
the PI3K signaling pathway (45), suggesting IRS-1 as the interme-
diate factor linking AMPK to PI3K/Akt activation. Considering
that glutamate-induced ATP reduction is a typical condition for
AMPK activation (20, 46), the AMPK-PI3K-mediated enhance-
ment in glucose uptake may function to prevent energy depletion
and neuronal excitotoxicity. In addition, phosphorylated Akt may
have a stimulatory effect on respiration by translocating to the
mitochondria and increasing ATP synthase activity (47).

GLUTAMATE TRANSPORTER AND GLUTAMATE RECEPTOR ACTIVITY IN
NEURONAL ENERGY CONSUMPTION
Glutamate is an extremely ample neurotransmitter, ranging to lev-
els of 5–10 mmol/kg of brain tissue (48) and reaching millimolar
concentrations within the synaptic cleft during synaptic transmis-
sion (49). However, glutamate levels are maintained in the micro-
to nano-molar concentration in the extracellular milieu (50),
many fold against its concentration gradient (12, 51–53). Unlike
some neurotransmitters such as acetylcholine, which are efficiently
removed by enzymatic digestion at the synaptic cleft, such disposal
mechanism for glutamate does not exist. Instead, following release,
glutamate is rapidly taken up by glia and neurons via membrane-
distributed glutamate transporters (12, 54). By rapidly binding
and transporting glutamate from the synaptic cleft, transporters

limit the amount of glutamate receptor-permitted calcium influx
and the subsequent excitotoxicity, a principal process involved in
neuronal damage and neurodegeneration (55–57).

To date, five excitatory amino acid transports (EAAT1–5) have
been identified in glia and neurons. The glial transporters EAAT1–
2 are primarily localized to the plasma membrane of specialized
domains in astrocytic processes (58, 59). The distribution of
the neuronal transporters shows cell type specificity. EAAT3 is
expressed in most neurons, including hippocampal and cortical
neurons, whereas EAAT4 is mainly localized in cerebellar Purkinje
cells and EAAT5 is restricted to the ribbon synapses of rod bipolar
cells in the retina (60, 61). The majority of glutamate re-uptake
is conducted by the glial transporters EAAT1 and EAAT2 (62, 63)
which are expressed abundantly at the glial plasma membrane (59,
64) located in close proximity to synaptic release sites (65).

Glutamate transport by EAATs is powered indirectly by the
sodium gradient across the membrane. During one complete cycle
of glutamate transport, an EAAT brings one glutamate molecule
against its concentration gradient, together with three Na+ ions
and one H+ ion into the cell, meanwhile counter-transporting
one K+ ion out of the cell, thereby resetting the transporter to
the outward-facing conformation (66, 67). During stroke and
brain trauma, a large amount of glutamate release is coupled with
elevated activity of EAATs attempting to restore extracellular glu-
tamate concentration. Despite EAAT activity being an ultimately
energy consuming event, glutamate removal prevents overexci-
tation of glutamate receptors including AMPARs and NMDARs,
which are ion channels with higher energy cost, and thus reduces
net energy consumption. Indeed, inhibition of EAATs results in
a decrease in ATP amount, which can be completely blocked by
the glutamate receptor antagonists, indicating that local glutamate
stimulation at synaptic sites causes ATP reductions similar to that
caused by global glutamate application (20). Interestingly, gluta-
mate uptake is powered mainly by glycolytic metabolism both in
glia and neurons (68).

An additional layer of co-ordination exists between synaptic
activity and glutamate receptor trafficking. In response to glu-
tamate release and binding, glutamate receptors, especially the
primary synaptic mediator AMPARs, undergo rapid translocation
from the plasma membrane to the cytosolic domain via recep-
tor internalization (69, 70). Elevated neuronal network activity
or synaptic glutamate accumulation as a result of transporter
suppression lead to AMPAR internalization (71). AMPAR traf-
ficking has been extensively studied as a mechanism for synaptic
plasticity and learning, but it may also play a role in energy
homeostasis, especially in neurotraumatic conditions to prevent
receptor overexcitation and rapid depletion of cellular energy
store.

SYNAPTIC ACTIVITY AND MITOCHONDRIA FUNCTION AND
TRANSLOCATION
Mitochondria are responsible for generating and providing energy
in the form of ATP in eukaryotic cells. In addition to con-
verting glucose into ATP, mitochondria are involved in cal-
cium signaling, apoptosis, and the metabolism of reactive oxy-
gen species (ROS). With such high energy demands, neurons
rely heavily on the proper functioning of mitochondria. The
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significance of this organelle in neurons has been shown by
the implication of mitochondrial dysfunction in several neu-
rodegenerative diseases (72). Mitochondria are also involved
in other neurobiological processes including neural differentia-
tion, neurite outgrowth, neurotransmitter release, and dendritic
remodeling (73).

Because regions of highest energy consumption in the neuron
are located at the synapses, mitochondrial transport and distrib-
ution are critical, since diffusion of ATP from the center of the
neuron would be too slow and inefficient (74). Mitochondrial
movement in dendrites is increased in areas with high levels of
ATP and decreased in areas containing higher levels of ADP, sug-
gesting that low levels of ATP signal the mitochondria to remain
in the area so as to increase local energy supply (75). Dendrites
contain a greater proportion of highly charged, more metaboli-
cally active mitochondria than axons to match energy demands
of local activity. In accordance, axonal mitochondria are more
mobile compared to those in the dendrites (76). This activity-
dependent mitochondrial stopping results from NMDAR-gated
calcium rises, which lead to a recruitment of mitochondria to the
synapse (77). Mitochondria use the dynein and kinesin motor
complexes to move in the retrograde and anterograde directions,
respectively. Specifically, the core of this motor/adaptor complex
is made up of kinesin-1, the protein Miro that is anchored to
the outer surface of the mitochondria, and Milton, which links
kinesin and Miro. A fine balance and regulation of the move-
ments based on these complexes determine where mitochondria
will be static or motile to provide adequate ATP for neuronal activ-
ity. Elevation of cytosolic Ca2+, which arises from activation of
glutamate receptors in dendrites, stops both the anterograde and
retrograde movement of mitochondria in neurons (77), which
may be regulated by a Ca2+ binding site on Miro (78). How
this regulation occurs remains unclear, although proposed mech-
anisms have included a conformational change in the complex
triggered by Ca2+ (77), and direct binding of Ca2+ to kinesin,
thereby preventing Miro from interacting with microtubules to
allow mitochondrial movement (79).

Although less than synapses, axons themselves are also energy-
demanding sites, as they are responsible for generating and con-
ducting action potentials along the length of the neuron. In
the peripheral nervous system, the nodes of Ranvier harbor the
highest density of Na+ channels to sustain saltatory conduction
(80). During action potentials, mitochondria are recruited to the
nodal region and their mobility is reduced to provide more ATP
(81). In addition, mitochondria motility seems to be crucial for
axon growth and branching. A recent study shows that LKB1-
NUAK1 signaling immobilize mitochondria in the axon where
locally produced energy presumably supports formation of axon
branches (82).

The regulation of mitochondrial function occurs both presy-
naptically and postsynaptically in the brain. In the presynaptic
zone, the cycle of SVs in neuronal synapses involves steps regulated
by cytosolic calcium concentrations and dependent on mitochon-
drial function. Upon the arrival of an action potential at the nerve
terminal, voltage-gated Ca2+ channels open and allow an influx of
calcium into the terminals. The elevated cytosolic calcium nega-
tively affects mitochondria transport along microtubules, causing

them to pause, and accumulate close to the active zones where
SVs will fuse to the membrane (83). Synapses tend to have an
accumulation of mitochondria that have high electrical potential
across their inner membranes and are capable of enhanced ATP
production (84).

Regulation of mitochondrial function in the postsynaptic
region of the dendrite involves responses to glutamate to increase
glucose uptake and ATP production. Synaptic activity increases
surface expression of GLUT3 leading to an elevation of intracel-
lular glucose (85). This effect is NMDAR-dependent and involves
nNOS phosphorylated by Akt. As glutamate itself is utilized by
mitochondria to produce ATP, the transport of glutamate into
mitochondria is also regulated by activity. Interestingly, EAAT3
(EAAC1) has been shown to be expressed in neuronal and glial
mitochondria where it participates in glutamate-stimulated ATP
production (86).

ENERGY DYSREGULATION IN ISCHEMIA AND STROKE
Under normal conditions, high glutamate concentrations only
occur at the synaptic cleft; ambient glutamate concentrations are
maintained at very low levels (50). However, during traumatic
brain injury (TBI) or stroke, massive glutamate release can lead
to a marked increase in extracellular glutamate and hyperac-
tivity of the overall glutamate system, causing additional acute
and delayed neural pathology. Energy depletion plays a key role
in glutamate-induced neurotoxicity (87–90). Glutamate stimula-
tion causes more severe cell death when cellular energy home-
ostasis is impaired (88). A lack of sufficient ATP undermines a
large number of energy-dependent cellular processes including
kinase/enzymatic activity, proteasomal protein turnover, trans-
membrane biochemical gradients, and membrane potentials, all
leading to a collapse of cellular functional integrity and deteriora-
tion of cell conditions. As the primary energy user consuming half
of the ATP in the brain, sodium pump activity is highly sensitive
to ATP levels. Under energy deficient conditions such as hypoxia,
ischemia, and stroke, NKA dysfunction is often a major early
pathological response (91, 92), which leads to a loss in membrane
potential and neuronal function.

Ischemic stroke-induced energy depletion is sensed by
the master metabolic regulator AMPK. AMPK activation has
been observed in glutamate-treated neurons and a variety of
ischemia/stroke models both in vitro (93) and in vivo (94). Because
AMPK activation results in enhanced catalytic and suppressed ana-
bolic metabolism, AMPK activity helps to relieve energy stress and
is beneficial for neuronal conditions. Studies have shown that in
cultured neurons AMPK activation reduces neuronal cell death
caused by ischemia/hypoxia (93), whereas AMPK inhibition dur-
ing energy stress stimulation leads to more severe damage (95).
However, there are also studies showing deleterious effects of
AMPK. In vivo ischemia model shows that blockade of AMPK by
Compound C suppressed neural injury (96). Consistently, knock-
out of AMPK α2 results in a reduction of brain damage (97).
Mechanisms for the detrimental effects of AMPK are not clear.
Possibly,when cells are under conditions of metabolic stress, forced
energy production pushes the metabolic machinery over its limits,
causing a collapse of the system and irreversible structural and
functional failure.
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ALTERATIONS OF BIOENERGY METABOLISM IN
NEURODEGENERATIVE DISEASES
Given that the brain is the major energy consumer in the body,
and neurons rely heavily on ATP production for development
and function, even a slight impairment in energy metabolism can
have drastic effects on the brain. In line with this, mitochondria
and bioenergy defects have long been proposed as the mecha-
nism underlying chronic neuronal dysfunction and death, and an
increasing amount of evidence has been accumulated in support
of the hypothesis (Figure 1).

Alzheimer’s Disease (AD) is a neurodegenerative disease char-
acterized by progressive memory loss and cognitive deficits. Its
pathological hallmarks are neuronal loss, extracellular plaques
consisting of Aβ aggregates and intracellular neurofibrillary tan-
gles made up of hyperphosphorylated tau. Although the exact
cause of neuronal death has not yet been determined, many studies
suggest that dysfunction of energy metabolism may be responsible
for neuronal deficits contributing to cell death. Indeed,AD patients
exhibit reduced glucose energy metabolism, even at an early stage
of disease. Positron emission tomography (PET) imaging with the
2-[18F]-fluorodeoxyglucose (FDG) tracer has long been used to
track AD-related changes in the brain by estimating the cerebral
metabolic rate of glucose (CMRglc). FDG-PET studies in AD show
consistent and progressive CMRglc reductions. Compared to age-
matched healthy controls, AD patients show metabolic reductions
in the parieto-temporal and posterior cingulated cortices in early
and late-onset AD (98, 99), and in the frontal areas in advanced
disease (99–102). These changes in glucose metabolism could be
caused by a reduction of glucose uptake through glucose trans-
porters, mitochondrial dysfunction, or changes in mitochondrial
movement.

The neuronal glucose transporter GLUT3 level is reduced in the
AD brain (103). Full-length cAMP response element binding pro-
tein (CREB), which is reduced in AD brain along with an increase
in the truncated form, regulates the expression of GLUT3. Calpain
I proteolyses CREB at Gln28-Ala29 to generate a 41-kDa truncated
CREB, which is less active in promoting GLUT3 expression, sup-
ported by the observation that activation of calpain I itself also
reduces GLUT3 expression. It has been suggested that overactiva-
tion of calpain I by calcium overload proteolyses CREB, resulting
in a reduction of GLUT3 expression, and consequently impair-
ing glucose uptake and metabolism in AD brain (104). AMPK,
as a sensor and regulator of cellular energy metabolism, has been
shown to decrease with aging, and may contribute to decreased
mitochondrial function in AD (105). A study using quercetin, a
natural flavonoid and activator of AMPK, showed that activation
of AMPK reduces oxidative stress, improves mitochondrial dys-
function and impaired glucose uptake in AD, and slows down Aβ

accumulation (106).
Characterization of mitochondrial dynamics and function

in three mouse models of familial AD (FAD) (APP, PS1, and
APP/PS1) revealed mitochondrial dysfunction before the onset
of memory phenotype and the formation of amyloid plaques
(107). Movement of mitochondria in both anterograde and retro-
grade directions in FAD neurons was significantly inhibited com-
pared to wild-type neurons. This reduced motility correlated with
increased excitotoxic neuronal cell death by NMDA in all three

FAD mouse models, consistent with the essential role for mito-
chondrial motility and positioning in proper calcium buffering
(83). Additionally, similar effects were seen in mouse hippocam-
pal neurons treated with the Aβ(23–35) peptide. Compared to the
control neurons, which showed approximately 35% mobile mito-
chondria, motile mitochondria in the Aβ-treated neurons were
significantly reduced to 20%, suggesting that the Aβ(25–35) pep-
tide impairs axonal transport of mitochondria in AD neurons.
This reduction in mitochondrial dynamics also correlated with,
and was suggested to be causing, a reduction in synaptic pro-
teins synaptophysin and MAP2. In the Tg2576 AD mouse model,
where a significant decrease in mitochondrial movement was also
seen (108), the mitochondria-targeted antioxidant SS31, which
reduces intracellular free radicals (109), restored mitochondrial
transport and synaptic viability, and decreased the percentage of
defective mitochondria, implicating the important role of mito-
chondrial function in the disease. A recent report, however, found
no consistent presynaptic bioenergetic deficiencies in three mouse
models of AD pathogenesis (J20, Tg2576, and APP/PS1) (110).
APP/PS1 cortical synaptosomes showed an increase in respiration
associated with proton leak, but calcium handling and membrane
potentials of synaptosomes were not consistently impaired. The
disparities between these studies may be due to the mouse models
used and the age of the animal when mitochondrial dysfunction
was examined. In transgenic Drosophila expressing human tau,
RNAi-mediated knockdown of Milton or Miro enhanced tau-
induced neurodegeneration and increased tau phosphorylation
at the AD-related site Ser262. Correlated with pathological con-
ditions implicated in AD, a reduction in the number of axonal
mitochondria was also observed, and knockdown of Miro alone
was sufficient to induce late-onset neurodegeneration in the fly
brain (111).

Parkinson’s disease (PD) is characterized pathologically by the
selective degeneration of dopaminergic neurons in the substantia
nigra pas compacta and the presence of Lewy bodies, intraneu-
ronal aggregates comprised primarily of alpha-synuclein (α-syn).
A mutation in α-syn, A53T, has been identified to cause familial
Parkinson’s disease (112), and α-syn transgenic PD models display
impaired mitochondrial function and decreased mitochondrial
movement (113, 114). In addition, mutations in other Parkin-
son related proteins, such as PINK1, parkin, and DJ-1, are also
believed to be involved in the regulation of mitochondrial function
(115–117).

Huntington’s disease (HD) is an autosomal dominant neurode-
generative disease characterized by motor and cognitive impair-
ment and caused by a trinucleotide repeat expansion encoding an
elongated glutamine tract in the Huntingtin (htt) protein (118).
Reduced energy metabolism has been well documented in HD
patients. PET scan analysis of HD patients revealed diminished
rates of cerebral glucose metabolism in parts of the cortex and
throughout the striatum (119). Additionally, HD patient material
was found to have significant reductions in the enzymatic activities
of complexes II, III, and IV of the mitochondrial oxidative phos-
phorylation pathway in caudate and putamen (120, 121). BACHD
mice of mutant Htt were found to have abnormal mitochondrial
dynamics, supposedly due to the interaction of mutant Htt with
the mitochondrial protein Drp1, resulting in defective anterograde
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movement (122). A major player implicated in mitochondrial
dysfunction in Huntington’s, as well as Parkinson’s, is PPARγ co-
activator-1α (PGC-1α). As a transcription co-activator, PGC-1α

regulates the expression of various genes to promote mitochondr-
ial biogenesis and oxidative phosphorylation. Impaired PGC-1α

function is a likely contributor to HD pathology, as demonstrated
by reduced PGC-1α target gene expression in HD transgenic mice
(123). PGC-1α transcriptional activity is also repressed in a condi-
tional knockout model of parkin (124), and activation of PGC-1α

could rescue dopaminergic neuron loss induced by mutant α-syn
(125). Consistently, PGC-1α has been suggested as a promising
therapeutic target for HD and PD, either by boosting PGC-
1α expression by viral delivery, or by modulating the upstream
activators of PGC-1α activity, such as SIRT1 and AMPK (126).

IMPLICATIONS OF ENERGY HOMEOSTASIS IN TRAUMATIC
BRAIN INJURY
Traumatic brain injury (TBI) is a complex brain damage by
an external force that causes brain penetrating or closed-head
injuries. Recently, TBI has become an increasing concern in the
population, as almost 179,000 service members sustained a TBI
during the Iraq and Afghanistan wars (127). Additionally, repeated
injury to the brain, especially concussions, can lead to CTE, a neu-
rodegenerative disease that has been discovered in brain tissues
of athletes who have sustained many close head and concus-
sions injuries over time (128, 129). The complex mechanism by
which TBI triggers pathological processes and long-term neurobe-
havioral abnormalities are still not well understood. Mechanistic
investigation is critical to guide the identification of compounds
to prevent acute neuronal damage and subsequent effects.

Traumatic brain injuries cause a vast array of primary structural
damages that lead to secondary effects including cellular, inflam-
matory, neurochemical, and metabolic alterations. In the early
phases after injury, changes such as metabolic impairment, reduc-
tions in cerebral blood flow, low ATP and energy stores, severe ionic
shifts, and alterations in the permeability of the blood-brain bar-
rier are seen. Thereafter, brain lactate production increases for the
first few days, indicating a shift from aerobic to anaerobic metab-
olism to maintain ATP production, while glucose levels decline
rapidly, as measured by microdialysis in affected patients (130).
High levels of lactate in the brain during this period of ischemia
may cause additional harmful effects; cerebral acidosis may exac-
erbate calcium-mediated damage to intracellular pathways and
may interfere with ion-channel function (131). ATP levels are
decreased following a TBI, along with reduced availability of the
nicotinic coenzyme pool, which declines proportionally with the
gravity of brain insult (132). The degree of oxidative metabo-
lism depression also correlates with the depth of coma after severe
TBI, as indicated by the Glasgow Coma Scale (GSC) (133). In
mice, a single blast resulted in a 20% decrease in ATP levels in the
cerebral cortex at 6 h after the blast, whereas triple blasts resulted
in a similar decrease as early as 1 h (134). A significant, though
less severe, decrease remained 24 h after the blast. Energy failure
leads to degradation of molecules of key importance to mem-
brane and cytoskeletal integrity. It also causes a disruption in ion
homeostasis, especially calcium rises, and an increase in cytosolic
acidity. The rise in free cytosolic Ca2+ is a result of failed calcium

pump function, increased membrane permeability to calcium, and
decreased sequestration of intracellular calcium. Elevated calcium
levels and oxidative stress lead to the opening of the mitochon-
drial permeability transition pore (mPTP), which depolarizes the
mitochondrial membrane and leads to organelle swelling and sub-
sequent release of cytochrome c, leading to caspase-dependent cell
death (135, 136). Specific inhibitors of the mPTP are currently
under investigation as treatment immediately after TBI to prevent
neuronal damage (137).

Mitochondrial dysfunction in TBI may be caused by several
mechanisms in addition to the opening of mPTP. Nitric oxide
(NO) is believed to cause respiratory chain inhibition in mito-
chondria after TBI (138), as it has the ability to interfere with
energy metabolism by inhibiting the enzymatic activity of complex
IV of the electron transport chain. An increase in NO production
has been observed in closed-head trauma animal models (139),
caused by the increase in the production of inducible NO synthase
(iNOS) (140), as indicated by the rapid upregulation of iNOS
mRNA at 4 h after injury. The inhibition of pyruvate dehydroge-
nase (PDH) has also been implicated in causing mitochondrial
damage in TBI. PDH is tightly regulated by end-product inhibi-
tion and reversible phosphorylation, and a significant decrease
in both PDH enzyme levels (141) and PDH phosphorylation
(142) was found in rat TBI models. In addition, activation of
poly(adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-
1) could be responsible for impaired mitochondrial respiration.
PARP-1 senses DNA damage after injury and becomes overacti-
vated, depletes NAD+/NADH stores, and impairs the utilization
of oxygen for ATP synthesis (143). In support of this mechanism,
administration of NAD− or the PARP inhibitor GP 6150 was found
to be neuroprotective after TBI in rats (144, 145). Similar blockade
of mitochondrial damage and metabolic disturbances in the early
events occurring immediately after an injury are currently under
investigation, which will be advanced following a better under-
standing of the molecular mechanisms underlying primary TBI
impacts.

CONCLUSION
Excitatory glutamatergic synaptic transmission is the major
energy-consuming cellular process in the brain. Therefore, it is
critical for neurons to couple synaptic activities with energetic
metabolism, and to have adaptive mechanisms in response to
metabolic stress and neuronal overexcitation. Dysfunctions in the
regulatory system and bioenergy homeostasis can lead to defects
in neural development and brain function, and contribute to the
pathogenesis of neurodegenerative diseases and traumatic brain
injuries. It will be important to further our understandings of how
synaptic activity communicates with the metabolic and energetic
machineries, including energy sensing, energetic signaling, bioen-
ergy metabolism, and mitochondria dynamics. Age-dependent
changes in bioenergy homeostasis, and epigenetic control of the
energetic processes are also in need of further investigation.
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