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Acetylcholinesterase (AChE) is responsible for the hydrolysis of the neurotransmitter,
acetylcholine, in the nervous system. The functional localization and oligomerization of
AChE T variant are depending primarily on the association of their anchoring partners,
either collagen tail (ColQ) or proline-rich membrane anchor (PRiMA). Complexes with ColQ
represent the asymmetric forms (A12) in muscle, while complexes with PRiMA represent
tetrameric globular forms (G4) mainly found in brain and muscle. Apart from these tradi-
tional molecular forms, a ColQ-linked asymmetric form and a PRiMA-linked globular form
of hybrid cholinesterases (ChEs), having both AChE and BChE catalytic subunits, were
revealed in chicken brain and muscle. The similarity of various molecular forms of AChE
and BChE raises interesting question regarding to their possible relationship in enzyme
assembly and localization. The focus of this review is to provide current findings about the
biosynthesis of different forms of ChEs together with their anchoring proteins.
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INTRODUCTION
Cholinesterases (ChEs) are serine hydrolases that preferentially act
on choline esters. Vertebrates possess two types of cholinesterases
(ChEs), corresponding to two distinct genes: acetyl cholinesterase
(AChE, EC 3.1.1.7) and butyryl cholinesterase (BChE, EC 3.1.1.8).
These two enzymes are distinguished on the basis of the substrate
specificities and their sensitivities to selective inhibitors (Mendel
and Rudney, 1943; Austin and Berry, 1953). The primary function
of AChE is to efficiently hydrolyze the neurotransmitter acetyl-
choline (ACh) at cholinergic synapses (Massoulié et al., 1993),
whereas the physiological function of BChE in vertebrates remains
a question of different speculations. Studies of AChE knock-
out mice suggested that BChE can partially compensate for the
absence of AChE in the nervous system (Xie et al., 2000; Duy-
sen et al., 2001); therefore BChE could hydrolyze acetylcholine
functionally. Poisoning by ChE inhibitors, such as insecticides
or nerve gas, results in accumulation of ACh, and uncontrolled
activation of cholinergic receptors, which causes cholinergic cri-
sis and potentially leads to death (Feyereisen, 1995; Bajgar, 2004).
On the other hand, controlled treatment with ChE inhibitors are
used in therapeutics for patients suffering from myasthenia gravis
(Brenner et al., 2008; Mehndiratta et al., 2011), Alzheimer’s dis-
ease (Giacobini, 2000; Stone et al., 2011), and Parkinson’s disease
(Hutchinson and Fazzini, 1996; Emre et al., 2004).

Abbreviations: A, asymmetric; ACh, acetylcholine; AChE, acetylcholinesterase;
BChE, butyrylcholinesterase; ChEs, cholinesterases; ColQ, collagen tail; Endo
H, endoglycosidase H; ER, endoplasmic reticulum; FHB, four-helix bundle; G4,
tetrameric globular form; nmj, neuromuscular junction; PRAD, proline-rich
attachment domain; PRiMA, proline-rich membrane anchor; WAT, tryptophan
amphiphilic tetramerization.

In vertebrates, ACHE gene produces several types of coding
sequences differing in an alternative choice of splice acceptor sites
in the 3′ region. This process generates different AChE isoforms,
named AChER, AChEH, and AChET (Massoulié, 2002). They con-
tain the same catalytic domain, but are associated with distinct
C-terminal peptides. In contrast, BCHE gene produces single type
of transcript and generates single type of isoform BChET (Blong
et al., 1997). AChE and BChE are well-known for their multi-
ple molecular forms that have their specific localizations: AChER

is a soluble monomer that is up-regulated in the brain under
stress stimulation (Kaufer et al., 1998; Perrier et al., 2005); AChEH

is a glycosylphosphatidylinositol-anchored dimer that is mainly
expressed in red blood cells (Li et al., 1991); AChET and BChET

are present in collagen-tailed forms at the neuromuscular junction
(nmj) and hydrophobic-tailed forms in the brain (Legay et al.,
1995; Blong et al., 1997; Massoulié et al., 2005). The molecular
forms of AChET and BChET in brain and muscle are of particular
interest because they are associated with their anchoring proteins:
collagen Q (ColQ) or proline-rich membrane anchor (PRiMA).
Complexes with ColQ represent the collagen-tailed or asymmet-
ric (A) forms in muscle (Krejci et al., 1997), while complexes with
PRiMA represent membrane-bound tetrameric globular form
(G4), mainly in brain (Perrier et al., 2002, 2003; Xie et al., 2009)
and muscle (Xie et al., 2007). In addition, mixed cholinesterases,
ColQ-linked AChE–BChE A12 hybrid enzyme (Tsim et al., 1988a)
and PRiMA-linked AChE–BChE G4 hybrid enzyme (Chen et al.,
2010) that contain both AChE and BChE homodimers in a single
molecule are being found in avian system. Here, we summarized
the recent studies on the assembly of oligomeric AChE and BChE,
as well as the regulation of AChE and/or BChE biosynthesis in
neurons and muscles.
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MOLECULAR FORMS OF AChE AND BChE IN BRAIN AND
MUSCLE
PRiMA-LINKED GLOBULAR FORMS OF ChEs
In Xenopus oocytes, COS-7 cells, neuroblastoma cells, and muscle
cells, the expression of PRiMA has been identified as a limiting
factor in organizing G4 AChE and targeting it to the cell mem-
brane (Perrier et al., 2002; Xie et al., 2007), as well as in directing
its membrane raft localization (Xie et al., 2010a). In the absence of
PRiMA, the G4 AChE, or the G4 BChE, could not be formed. In the
brain, the catalytic subunit contained in G4 AChE is AChET (Ine-
strosa et al., 1994). The expression of PRiMA mRNA and protein
are increased with an increment of G4 AChE during the develop-
ment of brain and spinal cord (Leung et al., 2009; Xie et al., 2010b).
The PRiMA-linked AChE is also present at the nmj, in which both
motor neuron and muscle are the major suppliers. In rat mus-
cles, the protein expression of PRiMA and AChET, as well as the
G4 AChE, are dramatically increased during development (Leung
et al., 2009). The parallel expression of PRiMA and G4 AChE
during the development strengthens the importance of PRiMA
in directing, and/or regulating the formation of G4 enzyme. The
PRiMA-linked G4 BChE however has not been well studied, and
therefore the expression profile of which in brain or muscle are
not fully revealed.

CoLQ-LINKED ASYMMETRIC FORMS OF ChEs
Asymmetric forms of AChE and BChE are characterized by the
presence of collagen-like tail, which is formed by the triple heli-
cal association of three ColQ subunits (Feng et al., 1999). The
cDNA encoding ColQ has been cloned in Torpedo (Krejci et al.,
1991), rat (Krejci et al., 1997), human (Ohno et al., 1998), quail,
and chicken (Ruiz and Rotundo, 2009a). The presence of the
collagen-tailed forms of ChEs has been found in all classes of ver-
tebrates, but not in invertebrates. They are specifically expressed
in muscles and regulated by physiological activity (Sketelj and
Brzin, 1985; Deprez et al., 2003; Lau et al., 2008). In human
and rat, COLQ gene has two transcripts, ColQ-1 and ColQ-
1a: they are differentiatedly expressed in slow-twitch (ColQ-1)
and fast-twitch (ColQ-1a) muscles (Ohno et al., 1998; Krejci
et al., 1999). The differentiated expression patterns may account
for the synaptic and non-synaptic expression profile of ColQ-
linked AChE in fast slow-twitch and fast-twitch muscles, respec-
tively (Lee et al., 2004; Crne-Finderle et al., 2005; Choi et al.,
2007).

EXISTENCE OF AChE–BChE HYBRID ChEs
Most of our knowledge concerning ChEs derives from the studies
on the classical AChE and BChE homogenous oligomers. How-
ever, the sequence similarity between AChET and BChET has been
further emphasized regarding the existence of hybrid A12 forms in
new-born chicken muscle (Tsim et al., 1988a), as well as a hybrid
G4 from in the brain (Chen et al., 2010) and embryonic muscles of
chicken (Chen et al., 2009). In these hybrid enzymes, both AChET

and BChET are attached to the same anchoring protein, ColQ
for A12 form and PRiMA for G4 form (Figure 1). The hybrid
enzyme exists as a single type, with equivalent number of AChE
and BChE catalytic subunits in a single molecule. Interestingly,
the expression of these hybrid molecules in chicken brain and

FIGURE 1 |Two types of AChE–BChE hybrid enzyme. (A) The
PRiMA-linked G4 AChE–BChE hybrid in chicken brain. (B) The ColQ-linked
A12 AChE–BChE hybrid in chicken muscle.

muscle was found to be developmentally regulated. In 1-day-old
chicken muscle, the predominant form of AChE is A12 hybrid
form; however, the proportion of BChE subunits in the hybrid
molecules progressively disappear during the muscle development
from embryonic, hatching to adult, and the homogeneous asym-
metric AChE becomes the sole form upon the muscle maturation
(Tsim et al., 1988b). On the other hand, a continuous increase of
AChE–BChE G4 hybrid expression was observed in chicken brain,
while an obvious decrease was found in the leg muscles. To date,
we do not have conclusive idea about the underlining regulatory
mechanism of these hybrid enzymes. We believe that AChE–BChE
hybrid enzymes could take part in cholinergic functions, which
includes (i) they carry the catalytic activities of AChE and BChE
in hydrolyzing ACh; (ii) they are associated with the anchoring
protein, PRiMA or ColQ, which can anchor the hybrid enzymes
onto the plasma membrane in the brain or nmj in the muscles;
and (iii) the level of BChET indirectly regulates the expression of
homogenous G4 AChE.

In fact, the notion of having the existence of AChE–BChE
hybrid enzyme is not new. An abnormal ChE species in the
serum of patients suffering from carcinomas was reported (Zakut
et al., 1988). This abnormal ChE species in human serum was
inhibited by both AChE inhibitor BW284c51 and BChE inhibitor
iso-OMPA. In addition, a collagen-tailed asymmetric hybrid AChE
has been found relatively abundant in young chicken muscle (Tsim
et al., 1988b), but which tends to disappear at the adult stage
(Tsim et al., 1988b). Moreover, a hybrid tetramer having AChE
and BChE activity was also found in cyst fluids derived from a
human astrocytoma (García-Ayllón et al., 2001). However, none
of the physiological function of these abnormal ChEs has been
elucidated.

ASSEMBLY MECHANISM OF AChE AND BChE
The presence of G4 and A12 hybrid ChEs raised interesting ques-
tions about the organization of the subunits in a hybrid ChE
complex. The assembly of AChE and BChE in cells could pro-
vide a good model in revealing the protein assembly of oligomers.
By using DNA transfected cell cultures, the organization of differ-
ent subunits in the PRiMA-linked ChE tetramers has been studied
(Chen et al., 2010). Interestingly, AChET and BChET could not
form hybrid dimer in the absence of anchoring protein; on the
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other hand, a single type of hybrid tetramer was clearly observed
when the two catalytic subunits were co-expressed with PRiMA.
Therefore, a “2 + 2” model is proposed for the organization of
the four catalytic subunits in the PRiMA-linked ChE tetramers
(Figure 2). After protein synthesis, AChET and BChET sponta-
neously form AChE homodimer and BChET homodimer first.
When two dimers (two AChET dimers, or two BChET dimers, or
one AChET dimer plus one BChET dimer) encounter the anchor-
ing protein, PRiMA, and thus ChE tetramers, e.g., G4 AChE, G4

BChE, and G4 AChE/BChE hybrid, are formed.

T-PEPTIDE IS NECESSARY FOR THE OLIGOMERIZATION OF AChET

AND BChET

AChET and BChET have a catalytic domain of approximately
500 amino acids, followed by a C-terminal t-peptide of 40 and
41 residues, respectively. The t-peptide on AChET and BChET

presents a considerable sequence similarity, with 24 identical
residues, including seven aromatic residues and one cysteine near
the C-terminus, which are conserved in human, cat, rabbit, mouse,
cow, rat, chicken, and Torpedo (Massoulié et al., 1993).

The t-peptide was reported to play an important role in the
biosynthesis of ChEs, particularly in the protein folding and
exportation. The presence of aromatic residues in the t-peptide
induces the misfolding of newly synthesized AChET polypeptides,
and this effect depends on the hydrophobic character of these
residues, because the same effect occurs when they are replaced
by leucines (Falasca et al., 2005). In the absence of a proline-
rich attachment domain (PRAD)-containing anchoring protein,
the t-peptide enhanced a pool of AChET molecules toward endo-
plasmic reticulum (ER)-associated degradation (Belbeoc’h et al.,
2003).

The major function of t-peptide is directing the assembly of
tetramers of AChET (Bon and Massoulié, 1997) and BChET (Blong
et al., 1997), as well as the association with the structure proteins,
ColQ and PRiMA (Krejci et al., 1997; Perrier et al., 2002; Bon et al.,
2004). The t-peptide is also named as tryptophan (W) amphiphilic
tetramerization (WAT) domains, which contains a sector with
seven aromatic residues that are strictly conserved between AChET

and BChET. The association between AChET or BChET catalytic
subunits and anchoring proteins, ColQ and PRiMA, is mostly
based on the interaction between four WAT domains on the t-
peptides and a PRAD on ColQ or PRiMA (Bon et al., 1997; Dvir
et al., 2004; Noureddine et al., 2007). A crystallographic analysis of

FIGURE 2 | Model for the assembly of PRiMA-linked AChE and BChE

tetramers. When AChET and BChET subunits are expressed together, they
form their own homodimers spontaneously. PRiMA recruits two
homodimers together to form a PRiMA-linked tetramers, e.g., G4 AChE, G4

BChE. G4 hybrid.

the complex of synthetic t-peptide and PRAD peptide indicated
that four α-helical t-peptides form coiled-coil structure around
the PRAD, which is arranged in a poly-proline II helix (Dvir
et al., 2004). In addition, the formation of disulfide bonds through
the cysteine residues near the end of the t-peptides stabilizes the
quaternary association, and in fact this association appears to
be critical in the case of AChE dimer formation. Dimers could
be hardly observed after mutagenesis of the C-terminal cysteine
residues in H or T-peptides of Torpedo and rat AChE (Morel et al.,
2001; Chen et al., 2010).

The importance of t-peptide in the assembly of AChET

and BChET was also reported by DNA mutagenesis studies.
The truncated mutants, AChEΔT and BChEΔT, in which the t-
peptides were deleted from the catalytic subunits, produced only
monomers (Duval et al., 1992). AChET and AChEBChE-T, BChET

and BChEAChE-T, in which the catalytic domain of each enzyme
was swapped with the t-peptide of each other, presented similar
assembly ability to form oligomers (Liang et al., 2009; Chen et al.,
2010).

THE FHB DOMAIN IS INVOLVED IN THE SELECTION OF CATALYTIC
SUBUNITS DURING DIMERIZATION
Although the nature of AChET and BChET oligomers depends on
the presence of the t-peptides, the catalytic domains also influence
the oligomerization patterns. The X-ray crystallography studies of
Torpedo AChE dimers showed that the contact zone between two
AChEH subunits could be a “four-helix bundle” (FHB), formed by
two α helices from each catalytic domain (Sussman et al., 1991). In
addition, rat AChET was also demonstrated to dimerize through
FHB inter-subunit contact zone (Morel et al., 2001). Based on
these findings, we compared the predicted FHB sequences that are
responsible for the dimeric contact zone of AChET and BChET

from different species. Indeed, FHB domains are highly conserved
across different species for either AChE or BChE, including human,
mouse, rat, chicken, and Torpedo (Figure 3). On the other hand,
the similarity between FHB domains of AChET and BChET is
very low. An inter-species hybrid dimer could be formed between
human AChET and chicken AChET, but not between mammalian
AChET and BChET, in transfected HEK293T cells (Chen et al.,
2010). The selectivity of dimerization seems to be based on the fea-
ture that the FHB domains of AChE are highly conserved among
different species of vertebrates, but are distinguished from verte-
brate BChETs. Moreover, another hybrid dimer, between human
AChEBChE-T and chicken AChET, which contained the similar FHB
but different t-peptides, was formed when they were co-expressed
together in HEK293T cultured cells (Chen et al., 2010). This
further confirmed that the catalytic domains, possibly the FHB
domains, should play a critical role in the selection of subunits
during the dimerization of ChEs.

According to our current knowledge, the oligomerization of
AChET or BChET with their associated anchoring proteins could
rely on three types of interactions (Figure 4): (i) the FHB inter-
action for the formation of dimer through hydrophobic interac-
tion; (ii) intercatenary disulfide bonds between the t-peptide of
AChET or BChET subunits; and (iii) tight hydrophobic interac-
tion between the WAT domains of AChET or BChET subunits and
the PRAD on PRiMA or ColQ.
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FIGURE 3 | Comparison of FHB sequences of AChET and BChET

among different species. The sequences of the two alpha helices
(FHB-1 and FHB-2) forming the dimeric contact zone of AChE and
BChE are shown. The residues conserved across species are
highlighted in bold. The amino acid sequences of human, mouse, rat,
chicken, and Torpedo AChE catalytic subunits were deduced from

nucleotide sequences accessed from GeneBank™ AAA68151,
CAA39867, EDM13278, P36196, and CAA27169, respectively. The
amino acid sequences of human, mouse, rat, and chicken BChE
catalytic subunits were deduced from nucleotide sequences
accessed from GeneBank™ AAA99296.1, AAH99977, NP_075231,
and NP_989977, respectively.

FIGURE 4 |Three types of interaction involved in the oligomerization of AChE and BChE. (A) The FHB domains of AChET or BChET direct the dimer
formation. (B) The t-peptides of AChET or BChET form intercatenary disulfide bonds. (C) WAT domains of AChET and BChET interact with PRAD on PRiMA or
ColQ.

N -GLYCOSYLATION IS NOT REQUIRED FOR THE ASSEMBLY OF AChET

BUT IS REQUIRED FOR THE MEMBRANE TRAFFICKING
AChET and BChET are well-known highly glycosylated enzymes,
which carry various amounts of N-linked carbohydrate side chains
attached to their core polypeptides (Liao et al., 1992; Kolarich et al.,
2008). Mature human AChET monomer possesses three potential
N-linked glycosylation sites (Soreq et al., 1990; Velan et al., 1993).
Mature human BChET carries nine potential N-linked glycosyla-
tion sites (Lockridge et al., 1987). These N-linked glycosylation
sites, both in AChE and BChE, are highly conserved in mammals,
which implies the physiological importance of these glycans for
ChEs.

Glycosylation is proposed to be used as a marker for the
progression of ChE forms through different subcellular compart-
ments, since it is known that the glycans added in ER are remodeled
and matured in Golgi apparatus. In chicken muscles, the assembly
of catalytically active dimer and tetramer occurred in the rough
ER, with a subset of tetramers being further assembled with ColQ
in Golgi apparatus into asymmetric forms (Rotundo, 1984). Once
assembled, these catalytically active AChE oligomers were sta-
ble, acquired complex oligosaccharides in Golgi apparatus, and
were transported to plasma membrane or secreted into medium
(Rotundo, 1984). All of these exported AChE molecules contain

complex oligosaccharides, because they could bind to lectins such
as wheat germ agglutinin and ricin, and were endoglycosidase H
(Endo H) resistant (Rotundo et al., 1989). In contrast, 70–80% of
the newly synthesized AChE polypeptide chains in chicken mus-
cle appeared to be catalytically inactive and Endo H sensitive, and
they were degraded intracellularly with a half-life of about 1.5 h
(Rotundo, 1988). Recently, Ruiz and Rotundo (2009a,b) reported
that the expression of AChE in quail muscles is regulated by muscle
activity through post-translational controls: the over-expression
of ER molecular chaperons, such as calnexin, ER protein 72, and
protein disulfide isomerase results in an increase of catalytic active
ColQ-linked AChE in quail muscles.

The biological function of the glycans on ChEs was elucidated
by site mutagenesis studies. Elimination of N -glycosylation sites
did not interfere with the ability of AChET to form a soluble dimer
(Velan et al., 1993), or to assembly with PRiMA to form a PRiMA-
linked AChE tetramer (Chen et al., 2011). It appears therefore
that the oligosaccharide side chains do not affect the structural
elements that are responsible for the interaction of different sub-
units. Indeed, none of the N -glycosylation sites on AChE is close
to or within the FHB domain implied in dimerization of AChE
subunits (Sussman et al., 1991; Morel et al., 2001), or the t-peptide
that allows the oligomerization of AChET with the anchoring
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proteins, e.g., ColQ and PRiMA (Bon et al., 2004). Moreover, the
glycosylation of AChET can greatly affects the protein folding and
membrane trafficking. When the glycosylation is eliminated, the
folding of AChET fails, leading to a severe lost of the enzymatic
activity (Chen et al., 2011). In the absence of glycosylation, the
secreted G1 and G2 AChE are dramatically reduced in transfected
cells, and the PRiMA-linked G4 AChE is retained in ER and fails
to be exported to plasma membrane (Chen et al., 2011).

The importance of N -glycosylation in the biosynthesis of
AChE could explain the abnormality of glycosylation status in
some pathological conditions. Proper glycosylation of AChE is

important for normal brain function. Accumulation of molec-
ular forms of AChE with altered patterns of glycosylation has
been observed in the brain and cerebrospinal fluid of Alzheimer’s
patients (Sáez-Valero et al., 1999, 2000). Moreover, characteristics
of AChE found in the senile plaques are different from those in nor-
mal brain with a higher degree of glycosylation, which is proposed
to be one of the factors facilitating formation of amyloid fibrils in
the senile plaques (Mimori et al., 1997). These abnormalities in
the glycosylation of AChE are very specific for Alzheimer’s disease
and are not detected in other dementia illness, which suggests that
glycosylation of AChE may have a diagnostic value.

FIGURE 5 | Proposed model for the assembly and membrane processing

of G4 ChEs. G4 AChE, G4 BChE, and AChE–BChE G4 hybrid molecules are
assembled in ER where both AChET and BChET subunits have initial
glycosylation. These G4 complexes are subsequently transported to Golgi
apparatus where the catalytic subunits can have further glycosylation, and

finally anchored onto the plasma membrane. The AChET glycosylation mutant,
in which the glycosylation is completely abolished, is still able to assembly
with PRiMA and BChET to form G4 AChE and G4 hybrid. However, both of
them are retained in ER, which possibly will be subjected to the degradation
pathway.
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To summarize the assembly and membrane processing of
G4 ChEs, a model is being proposed as Figure 5. After the
mRNAs are translated into peptides, AChET and BChET polypep-
tides undergo initial glycosylation, presumably in a co-translation
manner. Shortly after the synthesis, the glycosylated AChET and
BChET are assembled into homodimers spontaneously. When
these homodimers encounter PRiMA, they form PRiMA-linked
G4 AChE, or G4 BChE, or AChE–BChE G4 hybrid in ER. After-
ward, PRiMA targets these G4 complexes to Golgi apparatus where
AChET and BChET subunits have further glycosylation. This traf-
ficking allows the G4 enzymes to be fully functional and finally
become anchored onto the plasma membrane. During the whole
process, the proper glycosylation of AChET is the key point for
the membrane targeting. Without glycosylation, AChET polypep-
tides cannot fold properly, resulting in inactive AChE molecules.
These un-glycosylated and inactive AChET molecules can still form
PRiMA-linked G4 AChE and AChE–BChE G4 hybrid, but both of
them are retained in ER, failing to be exported to Golgi apparatus,
and finally they are subjected to degradation most possibly.

SUMMARY
The assembly of ChEs constitutes a fascinating model to study
numerous biological processes, such as post-translational modi-
fication, protein–protein interactions, membrane trafficking, and
protein degradation. The physiological function of ChEs depends
on the catalytic property of the enzymes and the restricted
subcellular localization. In brain and muscles, ChEs display
extremely rich molecular polymorphisms, possessing soluble,

membrane-bound and basal lamina-anchored forms, and addi-
tionally, hybrid ChEs containing both AChE and BChE catalytic
subunits also curiously exist. During the assembly of these ChE
complexes, dimer is believed to be the precursor for the PRiMA-
linked tetramers and ColQ-linked asymmetric forms. The dimer
formation of AChE or BChE depends on recognition between
the FHB domains in their catalytic domains, and the assembly
of tetramers with PRiMA or ColQ requires the interaction of WAT
domain on the C-terminal t-peptides with the PRAD domain on
PRiMA or ColQ. N-linked glycans of AChE are employed as both
maturation and quality control tags that dictate the destination of
the enzyme being exported or not, which inspires that the con-
trol of glycosylation may be as a means in regulating the level of
functional AChE in pathological conditions. However, there are
still several questions out there, which have not been resolved.
These questions are: (i) the possible control mechanism in direct-
ing the formation of different forms of ChEs; (ii) the regulatory
mechanism for the protein trafficking of different states of ChEs;
(iii) the fate of the active and inactive ChEs; and (iv) the possible
non-cholinergic function of different forms of ChEs.
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