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Abstract

A comprehensive understanding of wheat responses to environmental stress will contribute

to the long-term goal of feeding the planet. ALERNATIVE OXIDASE (AOX) genes encode

proteins involved in a bypass of the electron transport chain and are also known to be involved

in stress tolerance in multiple species. Here, we report the identification and characterization

of the AOX gene family in diploid and hexaploid wheat. Four genes each were found in the

diploid ancestors Triticum urartu, and Aegilops tauschii, and three in Aegilops speltoides. In

hexaploid wheat (Triticum aestivum), 20 genes were identified, some with multiple splice vari-

ants, corresponding to a total of 24 proteins for those with observed transcription and transla-

tion. These proteins were classified as AOX1a, AOX1c, AOX1e or AOX1d via phylogenetic

analysis. Proteins lacking most or all signature AOX motifs were assigned to putative regula-

tory roles. Analysis of protein-targeting sequences suggests mixed localization to the mito-

chondria and other organelles. In comparison to the most studied AOX from Trypanosoma

brucei, there were amino acid substitutions at critical functional domains indicating possible

role divergence in wheat or grasses in general. In hexaploid wheat, AOX genes were exp-

ressed at specific developmental stages as well as in response to both biotic and abiotic

stresses such as fungal pathogens, heat and drought. These AOX expression patterns sug-

gest a highly regulated and diverse transcription and expression system. The insights gained

provide a framework for the continued and expanded study of AOX genes in wheat for stress

tolerance through breeding new varieties, as well as resistance to AOX-targeted herbicides,

all of which can ultimately be used synergistically to improve crop yield.

Introduction

Bread wheat (Triticum aestivum) feeds a significant portion of the world’s population and

there has been substantial progress on boosting supply to meet the global increase in demand

[1, 2]. While worldwide production and yield of wheat have gradually increased over the past
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decade (http://statistics.amis-outlook.org/data/index.html), these gains may be offset by pre-

dicted harvest losses to global climate change and a reduction in arable land [3, 4]. In addition

to the decline in production quantity, the impending and growing environmental stress

expected to cause a deterioration in wheat quality [5–7].

Stress response pathways in plants trigger changes in hormone biosynthesis, transcriptional

activity and metabolic responses that are crucial for maintaining structural and functional integ-

rity [8, 9]. One key biological component of plant metabolism and stress responses is the mito-

chondrion, which is the site of an ATP-generative electron shuffle involving multiple cytochrome

oxidase and dehydrogenase complexes. Upon stress perception, electrons can also be shunted to

an alternative oxidase, which is proposed to dissipate the energy as heat, reduces oxygen to water

and limit reactive oxygen species (ROS) production [10–12]. In fact, thermogenic plants use

ALTERNATIVE OXIDASE (AOX) to produce heat during respiration to facilitate pollen germi-

nation and to volatilize pollination attractants [13]. The AOX gene was first cloned from the ther-

mogenic plant Sauromatum guttatum [14, 15]. Antibodies for this protein cross-reacted with

similar proteins from non-thermogenic plants and this facilitated the study of these terminal oxi-

dases in other species. With the availability of sequenced genomes and numerous molecular tech-

niques, AOX genes have been identified and in some cases, functionally characterized in both

dicots and monocots such as Arabidopsis thaliana, tobacco, carrot, mango, stone pine, cowpea,

chickpea, barley, rice and maize [16–27]. AOX genes fall into two discrete subfamilies, Type 1 and

Type 2. The former is present in both monocot and dicot species while the latter has so far only

been found in dicots but is purported to have existed in ancient monocots [16, 17, 28]. AOX1
(Type 1 AOX) genes are very responsive to stresses as well as irregularities in respiratory metabo-

lism [29–31]. The AOX2 (Type 2 AOX) genes control developmental processes such as germina-

tion, fertility and vegetative growth, but there is also some evidence for a role in stress response

[32–35].

The initial cloning of two AOX genes from wheat [36] spurred a considerable amount of

biochemical work and some expression studies indicating they are involved in numerous

developmental processes as well as responses to stress [37–51]. On the genomic level, the num-

ber and spatiotemporal expression patterns of AOX genes has remained unclear in wheat. The

availability of the wheat genome now makes it possible to conduct a genome-wide examina-

tion of the AOX family in the hexaploid and ancestral diploid species of this important mono-

cot [52–54]. The current study investigated and identified the AOX gene family in hexaploid

wheat and its diploid ancestors in the A (Triticum urartu), B (Aegilops speltoides) and D (Aegi-
lops tauschii) subgenomes. Using multiple in silico resources and the latest transcriptome data-

base [55], features such as phylogenetic evolutionary relationships, chromosomal locations,

gene structures, promoter cis-elements, conserved motifs, subcellular localization and expres-

sion patterns were evaluated. Our findings provide a better understanding of the wheat AOX
family members, promote our understanding of the regulation of this gene family and lay the

groundwork for future study of AOX in wheat.

Materials and methods

Identification of the AOX gene family in wheat

The amino acid sequences ofWaox1a andWaox1c (Genbank ID BAB88645.1 and BAB88646.1)

were used in a BLASTP search (E-value threshold 1 e-1) on Ensembl Plants (http://plants.ensembl.

org/index.html) and the International Wheat Genome Sequencing Consortium (IWGSC) URGI

portal (https://urgi.versailles.inra.fr/blast/) in May 2018 [56, 57]. Concurrently the coding seq-

uences ofWaox1a andWaox1c (Genbank ID AB078882.1 and AB078883.1) were used in a

BLASTN search (E-value threshold 10) on the aforementioned databases. Nucleotide sequences

AOX genes in wheat
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and unique protein IDs of matching sequences were obtained for T. aestivum as well as T. urartu
(A subgenome), A. speltoides (B subgenome) andA. tauschii (D subgenome). The output from

Ensembl Plants was classified by the databank as either high-confidence indicating that the data

was fully supported by PacBio transcript sequencing as well as RNA-seq data, or low-confidence

for sequences which had partial or no transcriptome data support (http://plants.ensembl.org/

Triticum_aestivum/Info/Annotation/ - genebuild).

Phylogeny

The amino acid sequences of the AOX proteins from wheat, barley, Brachypodium distachyon,

rice, and maize obtained from Ensembl Plants (http://plants.ensembl.org/index.html) [56],

Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) [58] and the National Center for

Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) [59] were aligned with

representative sequences from other monocots (Anasus comosus, Asparagus officinalis,Musa
acuminata, Oropetalum thomaeum, Panicum virgatum, Spirodela polyrhiza, Symplocarpus reni-
folius, Zostera marina) using MUSCLE [60]. The amino acid alignment was analyzed using

maximum likelihood (ML) with RAxML (7.7.1) [61] implementing the GTR-Gamma model

and JTT substitution matrix with 100 bootstrap replicates. Bayesian inference (BI) analyses

implementing a mixed AA model prior in MrBayes 3.2.2 [62] were run over 50 million genera-

tions with the first 25% removed for burn-in and assessed for convergence and stationarity

using average standard deviation of split frequencies, potential scale reduction factor (PSRF)

values approaching 1.0, and a large effective sample size assessed in Tracer v.1.4.1 [63].

Gene structure and protein analyses

The coding sequence of each AOX gene was aligned with the genomic sequence in order to

delineate the intron/exon boundaries using the Gene Structure Display Server program (http://

gsds.cbi.pku.edu.cn/) [64]. Alignment of the protein sequences to search for relevant motifs and

residues was done using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) [65] and

the results used in subclassification via a protocol described by previous researchers [16, 66].

When all four motifs were present in high-confidence protein sequences, it was designated an

AOX. Furthermore, when a motif was absent, the protein was given the suffix “-like”, and when

all motifs were missing the corresponding gene was proposed to have a putative regulatory

function and given the prefix “reg”. The low-confidence proteins with all motifs were given the

prefix “put” (putative), those missing a motif were given the prefix “put” and the suffix “-like”

and those with no motifs received the prefix “put.reg”. In some cases, the proteins were given

the prefix “ne” for “non-expressed” to indicate a complete lack of transcript data but a similarity

to a particular class of AOX proteins. Where the non-expressed protein bore no resemblance to

a particular subclassification, the suffix symbol “•” was added as a stand-in for a future subclassi-

fication pending the availability of transcript data. For all hexaploid proteins, an indication was

made of the chromosomal location of the corresponding gene provided by the Ensembl Plants

database. The genes with splice variants were given the alphanumerical suffix “sv” followed by a

number. In order to determine the orientation of genes on the same chromosomal arm, the

sequences we obtained were aligned to the respective arms via SnapGene. A Needleman-Wu-

nsch alignment was performed to determine transcript and protein percent identities using the

Global Align program from NCBI with default parameters. The subcellular localization was pre-

dicted using TargetP (http://www.cbs.dtu.dk/services/TargetP/) [67] and putative protein modi-

fication sites were predicted using the Plant Protein Phosphorylation Database (http://www.

p3db.org/index.php) and Musite (http://musite.net/) [68, 69] with a threshold score of 0.5. CpG

islands in the gene body were determined using Cpgplot available in the European Molecular

AOX genes in wheat
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Biology Open Software Suite (EMBOSS) (http://www.bioinformatics.nl/cgi-bin/emboss/

cpgplot) [70].

Promoter analyses

To identify cis-elements needed for various developmental cell functions as well as binding

motifs for known regulators of AOX expression [71], 1500 bp upstream of the translation start

site of the wheat AOX sequences was analyzed using plantCARE (http://bioinformatics.psb.

ugent.be/webtools/plantcare/html/), PlantPan2.0 (http://plantpan2.itps.ncku.edu.tw/index.

html) and the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/) [72–74].

CpG islands in the promoter region were found using Cpgplot available in EMBOSS (http://

www.bioinformatics.nl/cgi-bin/emboss/cpgplot) [70].

Molecular modeling

The three-dimensional structures of the wheat AOX proteins were obtained via modeling to

solved protein structures, using the Protein Homology/Analogy Recognition Engine version

2.0 server (Phyre2) [75]. This server was also used to predict the transmembrane topology of

AOX proteins in the diploid and hexaploid and wheat species. Modeling and residues involved

in the diiron center of the AOX proteins were visualized using Chimera (http://www.rbvi.ucsf.

edu/chimera/) [76].

RNA expression analyses

The expression patterns of the hexaploid wheat AOX genes were obtained from the publicly

available RNA-seq data from the wheat variety Chinese Spring on expVIP (http://www.wheat-

expression.com/) [55]. The relative transcript abundance data from the seedling, vegetative

and reproductive stages of development and over multiple tissue types were used to generate

heat maps in order to visualize the similarities and differences in the TaAOX family. As previ-

ously described [77], the expression ratio for a given treatment compared to the control was

used to generate heat maps for the transcripts under biotic and abiotic stress (https://www.

rdocumentation.org/packages/gplots/versions/3.0.1/topics/heatmap.2).

Results and discussion

Identification and classification of the AOX gene family in wheat

Two AOX coding sequences were previously cloned from wheat and namedWaox1a and

Waox1c [36]. These sequences as well as the Waox1a and Waox1c protein sequences were

used in BLAST searches in order to identify additional wheat AOX genes and proteins. The

obtained nucleotide sequences broadly fell into three groups, high-confidence where there was

ample transcriptome and RNA-seq data, low-confidence where there was partial or no tran-

scriptome data, and non-expressed where there was nucleotide similarity but no transcript

data (Table 1). Based on previous work, all the corresponding proteins of AOX genes show a

trend of unique motifs and residues known to dictate functionality [16, 66]. Therefore, in

order to classify these genes and the corresponding proteins, the protein sequences were used

in phylogenetic analysis resulting in the categorization into the clades AOX1a, AOX1c or

AOX1e or AOX1d (Figs 1, S1 and S2; S1 Table). The outcomes were also supported by the spe-

cific AOX motifs and subclassification residues peculiar to each clade. Subsequently, the pro-

teins and corresponding genes were named with additional indicators of chromosomal

locations where necessary (Figs 1 and 2 and Tables 1 and 2 and S1 and S3 Figs and S2 Table).

It must be noted that the residues of the wheat AOX proteins deviated in some cases from the

AOX genes in wheat
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Table 1. Summary of all accession numbers of the AOX gene family in wheat done via a BLASTN search.

Promoter Classification Ensembl Plants Gene ID

TaAOX1a-2AL TaAOX1a-2AL.sv1 TRIAE_CS42_2AL_TGACv1_093624_AA0283900.1

TaAOX1a-2AL.sv2 TRIAE_CS42_2AL_TGACv1_093624_AA0283900.2

TaAOX1a-2BL TaAOX1a-2BL TRIAE_CS42_2BL_TGACv1_132767_AA0439680.1

TaAOX1a-2DL TaAOX1a-2DL.sv1 TRIAE_CS42_2DL_TGACv1_159044_AA0531270.1

TaAOX1a-2DL.sv2 TRIAE_CS42_2DL_TGACv1_159044_AA0531270.2

TaAOX1a-like-2DL TaAOX1a-like-2DL TRIAE_CS42_2DL_TGACv1_160367_AA0549780.1

regTaAOX-4BL regTaAOX-4BL.sv1 TRIAE_CS42_4BL_TGACv1_321481_AA1061160.1

regTaAOX-4BL.sv2 TRIAE_CS42_4BL_TGACv1_321481_AA1061160.2

regTaAOX-4BL.sv3 TRIAE_CS42_4BL_TGACv1_321481_AA1061160.3

regTaAOX-4BL.sv4 TRIAE_CS42_4BL_TGACv1_321481_AA1061160.4

put.regTaAOX-3B put.regTaAOX-3B TRIAE_CS42_3B_TGACv1_221271_AA0735840

put.regTaAOX-6BL put.regTaAOX-6BL TRIAE_CS42_6BL_TGACv1_499339_AA1578450

TaAOX1c-6AL TaAOX1c-6AL TRIAE_CS42_6AL_TGACv1_471250_AA1505530.1

TaAOX1c-6BL TaAOX1c-6BL.sv1 TRIAE_CS42_6BL_TGACv1_499881_AA1593950.1

TaAOX1c-6BL.sv2 TRIAE_CS42_6BL_TGACv1_499881_AA1593950.2

TaAOX1c-6BL.sv3 TRIAE_CS42_6BL_TGACv1_499881_AA1593950.3

TaAOX1c-6DL TaAOX1c-6DL TRIAE_CS42_6DL_TGACv1_528632_AA1715280.1

regTaAOX-3B regTaAOX-3B TRIAE_CS42_3B_TGACv1_221946_AA0753740.1

put.TaAOX1e-3DS put.TaAOX1e-3DS TRIAE_CS42_3DS_TGACv1_271978_AA0912170

TaAOX1d-2AL.1 TaAOX1d-2AL.1 TRIAE_CS42_2AL_TGACv1_094717_AA0302070.1

TaAOX1d-2AL.2 TaAOX1d-2AL.2.sv1 TRIAE_CS42_2AL_TGACv1_093545_AA0282360.1

TaAOX1d-2AL.2.sv2 TRIAE_CS42_2AL_TGACv1_093545_AA0282360.2

TaAOX1d-2DL TaAOX1d-2DL TRIAE_CS42_2DL_TGACv1_162315_AA0562440.1

put.TaAOX1d-like-4AS put.TaAOX1d-like-4AS TRIAE_CS42_4AS_TGACv1_308389_AA1027660

TuAOX1d.1� TuAOX1d.1� TRIUR3_12374

TuAOX1d.2� TuAOX1d.2� TRIUR3_19476

TuAOX1c� TuAOX1c� TRIUR3_08189

TuAOX1a� TuAOX1a� TRIUR3_10307

AetAOX1d� AetAOX1d� F775_18387

AetAOX1d-like� AetAOX1d-like� F775_43125

AetAOX1e� AetAOX1e� F775_11948

AetAOX1a� AetAOX1a� F775_17784

Non-Expressed

Promoter Classification Ensembl Plants/IWGSC Fragment Location

N/A ne.TaAOX1d-2BL.1 RC.TGACv1_scaffold_129474_2BL:235,137–236,895

N/A ne.TaAOX1d-2BL.2 RC.TGACv1_scaffold_129474_2BL:226867–227725

N/A ne.TaAOX1d-2DL RC.TGACv1_scaffold_160654_2DL:15,057–16,369

N/A ne.TaAOX•-2AL RC.TGACv1_scaffold_093545_2AL:13252–14775

N/A Ta.Fragment-7BL TGACv1_scaffold_576971_7BL:58792–58921

N/A Tu.Fragment� C163670370 1–226

N/A ne.AesAOX1d� RC.TGAC_WGS_speltoides_v1_contig_403763

N/A ne.AesAOX•� RC.TGAC_WGS_speltoides_v1_contig_239141

N/A ne.AesAOX•� TGAC_WGS_speltoides_v1_contig_195745

N/A Fragment� TGAC_WGS_speltoides_v1_contig_1601667

N/A Fragment� TGAC_WGS_speltoides_v1_contig_1653744

(Continued)
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observed residues thought to be highly conserved in the clades in other monocot species

(Table 2) [16].

Consequently, 12 high-confidence AOX genes and four low-confidence genes were found

in hexaploid wheat (Table 1 and S4 Fig). Four AOX genes were found in each of the two A and

D subgenome diploid ancestors, T. urartu and A. tauschii. Four non-expressed hexaploid AOX
genes and three non-expressed A. speltoides genes were also found. For all the genomes, gene

fragments were found and these have been documented (Table 1). The genomes of the diploids

are still being resolved and thus it is possible that with further work, some of these fragments

discovered would be shown to be part of complete gene sequences. The current study focused

on elucidating the information from both high- and low-confidence genes with the caveat that

future work could resolve the low-confidence data provided. No analysis was done on the

non-expressed genes beyond the phylogeny and protein classification as we have no experi-

mental support for final transcript or translation features. These non-expressed sequences may

be transcribed as given, or may undergo intronizations to give sequences which fall into the

“-like” or regulatory categories. The artificial non-expressed protein sequences used in the

phylogeny give an indication of evolutionary relationships and may indicate function if the

protein form is maintained as we assume. However, it is possible that once transcribed and

translated, putative intronizations may change the final structure. This simulated use of the

non-expressed sequences was only possible for AOX1d as the “ne” nucleotide and protein

sequences showed a strong alignment to the full coding regions and protein sequences of high-

confidence TaAOX1d genes (S5 and S6 Figs). The assumption made was further validated by

the observation that these AOX1d “ne” proteins grouped in the AOX1d clade in the phylogeny,

an analysis also supported by all the required residues to meet this subclassification (Figs 1 and

S1 and Table 2;) [16]. The other non-expressed genes in the AOX1a, AOX1c or AOX1e clades

are multiexonic and therefore it was impossible to artificially determine intron exon bound-

aries and extrapolate the putative protein sequences.

With the exception of a few amino acid substitutions and an insertion, the proteins which

were used in the initial search Waox1a (BAB88645.1) and Waox1c (BAB88646.1) were found

to align most closely to TaAOX1a-2AL.sv1 and TaAOX1c-6AL respectively (S7 Fig). The sub-

stitutions may be due to a varietal difference since the Waox1a and Waox1c proteins were

obtained from the wheat variety Mironovskaya 808 [36], whereas sequences from Chinese

Spring have been used in this study. It must also be noted that the chromosomal locations

noted by the previous researchers of the coding sequencesWaox1a (AB078882.1) andWaox1c
(AB078883.1) match that of TaAOX1a-2AL.sv1 and TaAOX1c-6AL respectively [36].

Hexaploid AOX transcripts ranged in size from 1180 bp to 3274 bp with coding regions

between 249 bp and 1374 bp (Table 3 and S4 Fig). The notable exception was put.TaAOX1e-
3DSwhere intron 2 was almost 17000 bp. There were splice variants in some AOX genes result-

ing from 5’ and 3’ alternative splice sites as well as intronizations (Table 4). Within the hexa-

ploid coding regions, it was observed that the AOX1a clade generally had the longest introns

Table 1. (Continued)

N/A Fragment� RC.TGAC_WGS_speltoides_v1_contig_2863348

N/A Aet.Fragment� RC.C137891329 48–258

N/A Aet.Fragment� RC.scaffold67708 39107–39328

N/A Aet.Fragment� RC.scaffold94414 27790–27998

RC prefix designates sequences that were reverse-complemented in order to achieve AOX sequence identity.

�Indicates diploid promoters or protein isoforms.

https://doi.org/10.1371/journal.pone.0201439.t001

AOX genes in wheat

PLOS ONE | https://doi.org/10.1371/journal.pone.0201439 August 3, 2018 6 / 43

https://doi.org/10.1371/journal.pone.0201439.t001
https://doi.org/10.1371/journal.pone.0201439


Fig 1. Maximum likelihood (ML) phylogeny of AOX. Numbers on branches are ML bootstrap percentages. The number of

splice variant isomers for a protein are denoted in the dark gray circle when applicable. Colored boxes distinguish the different

AOX clades.

https://doi.org/10.1371/journal.pone.0201439.g001

AOX genes in wheat

PLOS ONE | https://doi.org/10.1371/journal.pone.0201439 August 3, 2018 7 / 43

https://doi.org/10.1371/journal.pone.0201439.g001
https://doi.org/10.1371/journal.pone.0201439


while the AOX1d clade genes were intronless or single-intron (Fig 3). Given the few occurrences

genes in the AOX1e clade, it was to conclude any gene structure patterns. The transcripts and

coding sequences of the diploid AOX genes spanned 615 bp to 1305 bp (Table 3). There were

one to six exons in the transcripts giving one to five exons within the start and stop codons (Fig

3 and Table 3). There was at least one gene from each of the diploid AOX1d clade which was

also monoexonic within the coding regions, mirroring what was observed in the hexaploids

(Fig 3 and Table 3). In contrast to the multi-exonic nature of most AOX genes described in the

literature from a variety of species [27, 78, 79], it seems that hexaploid wheat shows clade-dep-

endent differences in gene structures (Fig 3 and Table 3). In yeast, moss, A. thaliana, mice, rice

and switchgrass it has been suggested that genes with fewer introns are rapidly activated or are

highly responsive to environmental changes or stress [78, 80–82]. The simplicity of the gene

structure denoted by the presence of few or no introns leads to faster processivity of the pre-

mRNA, which in turn leads to faster accumulation of the protein. In contrast, other researchers

have found that highly expressed genes had more complex gene organization as indicated by

more and longer introns in both A. thaliana and rice [83, 84]. The expression strategies des-

cribed above are both possible in the wheat AOX genes given the variation in gene structures

between the clades and may be suggestive of a mosaic pattern of expression.

The paralogs and homeologs for the hexaploid AOXs were also identified by Ensembl Plants.

There were paralogs in all the high-confidence hexaploid genes all located on long chromosomal

arms. With the exception of TaAOX1a-like-2DL, regTaAOX-4BL, regTaAOX-3B and TaAOX1d-
2AL.1 homeologs were found (Fig 4). The gene sequences were aligned with the draft physical

genome sequences downloaded from Ensembl Plants (ftp://ftp.ensemblgenomes.org/pub/

release-39/plants/fasta/triticum_aestivum/dna/). The higher resolution of the latest version of the

genome facilitated the placement of the hexaploid genes on the chromosomal arms. It was clear

Fig 2. Summary of protocol for AOX protein classification in wheat.

https://doi.org/10.1371/journal.pone.0201439.g002
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that most of the AOX genes were on the long chromosomal arms with about half the total the

long arms of the subgenomes of chromosome 2 (Fig 4). The two hexaploid AOX genes with the

shortest distance on the same chromosome were ne.TaAOX1d-2BL.1 and ne.TaAOX1d-2BL.2

which were 8.6 kbp apart. TaAOX1a-2BL and ne.TaAOX1d-2BL.1 were the farthest apart with

Table 2. Classification of wheat AOX proteins using Arabidopsis AOX1a as reference.

Protein Name Type 1 or Type 2 Residues Type 1 (a-c/e) or Type 2(d) Residues

112 124 229 233 241 167 175 178 180 181 295

TaAOX1a-2AL.sv1

TaAOX1a-2AL.sv2

TaAOX1a-2BL

TaAOX1a-2DL.sv1

TaAOX1a-2DL.sv2

TaAOX1a-like-2DL

regTaAOX-4BL.sv1

regTaAOX-4BL.sv2

regTaAOX-4BL.sv3

regTaAOX-4BL.sv4

put.regTaAOX-3B

put.regTaAOX-6BL

TaAOX1c-6AL

TaAOX1c-6BL.sv1

TaAOX1c-6BL.sv2

TaAOX1c-6BL.sv3

TaAOX1c-6DL

regTaAOX-3B

put.TaAOX1e-3DS

TaAOX1d-2AL.2.sv1

TaAOX1d-2AL.2.sv2

TaAOX1d-2AL.1

TaAOX1d-2DL

put.TaAOX1d-like-4AS

TuAOX1a�

TuAOX1c�

TuAOX1d.1�

TuAOX1d.2�

AetAOX1a�

AetAOX1e�

AetAOX1d�

AetAOX1d-like�

ne.TaAOX1d-2BL.1

ne.TaAOX1d-2BL.2

ne.TaAOX1d-2DL

ne.AesAOX1d�

Residues used are from Costa et al. 2014. Blue indicates presence of Type 1 residues. Red indicates a Type 2 residue. Green indicates residues for monocot Type 1(d).

Yellow indicates Type 1(a-c/e). Purple represents amino acid residues that did not match either classification. Black represents residues that were absent.

�Denotes diploid wheat AOX proteins.

https://doi.org/10.1371/journal.pone.0201439.t002
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301 Mbp between the two genes (S8 Fig). It is possible that with future work especially on the

non-expressed and putative gene copies, the relationships between these genes and the high-con-

fidence AOX gene copies will be better established. This will allow for a better study of the func-

tionality of these paralogs within the hexaploid wheat genome.

Epigenetic gene regulation via CpG islands can lead to diversity and specificity in gene

expression [85, 86]. The gene sequences discovered were input into the CpgPlot program in

order to find putative CpG islands. The greatest CpG distribution was in the AOX1a clade fol-

lowed by that of the AOX1c clade (Table 5). While no clear relationship could be established

between these GC-rich regions and levels of transcription, it must be noted that these varia-

tions could become more relevant under other experimental conditions which were unex-

plored in the RNA-seq dataset used in the present study (exposure to phytohormones, salt

stress, long-term heat and drought stress). CpG islands were not examined in the putative

hexaploid genes and the diploids as significant gene regions were unresolved in the database.

AOX protein phylogeny reveals four lineages of wheat AOX genes, each

with multiple copies

In order to hypothesize the major lineages of wheat AOX gene copies and infer the number

and timing of duplication events, amino acid sequences of the diploid and hexaploid wheat

AOX proteins in combination with other monocot sequences were used to generate a phyloge-

netic hypothesis of gene family evolution (Figs 1 and S1). All putative AOX copies in wheat

and as many putative AOX1 paralogs as possible from other species were included in order to

better assess the timing of duplication events. Four lineages of wheat AOX genes were found,

corresponding to the AOX1a, AOX1c, AOX1e and AOX1d genes previously found [16, 17].

Wheat gene copies within each lineage are unevenly distributed: the AOX1a lineage includes

seven T. aestivum copies (including regulatory, putative regulatory, and -like copies), but only

one each from T. urartu and A. tauschii; the AOX1c lineage includes three T. aestivum copies

and one from T. urartu; the AOX1d lineage includes seven T. aestivum copies, two T. urartu
and three A. tauschii copies; and the AOX1e lineage includes two T. aestivum and one A.

tauschii copies. Given the incomplete and only partially annotated nature of the T. urartu (A-

subgenome) and A. tauschii (D-subgenome) genomes and the lack of availability of the A. spel-
toides (B-subgenome) genome, it is unclear how to interpret the lack of copies or variable

number of copies of some of the duplication types. Some gene types (e.g., AOX1c) fit what we

would expect for a hexaploid (three copies), while other types have more variable copy number

in wheat (AOX1a, seven copies). AOX1d appears to be a triticoid-specific duplication with

what appears to be two clades of AOX1d genes in wheat and relatives, with the duplication

after the divergence of triticoid grasses from Brachypodium (Figs 1 and S1). It is important to

note that while Brachypodium also has two AOX1d gene copies, those are from a different

duplication event than the triticoid duplication.

In addition to the variation in copy number among AOX1 clades, the variation in the num-

ber of splice variants is unevenly distributed. As with the number of gene copies, the AOX1a
clade also has the most splice variants with eight splice variants found from three genomic cop-

ies, whereas only three splice variants from one gene copy are found in the AOX1c lineage and

two splice variants from one gene copy in the AOX1d lineage (Fig 3 and Table 1). No splice vari-

ants were found for the AOX1e genes. The pattern of duplication and divergence in the AOX1a
gene lineage needs further study, but suggests that these genes are undergoing rapid duplication

and divergence in sequence characteristics and, presumably, function. Whether the co-occur-

rence of multiple splice variants and duplication of genomic copies are connected will require

AOX genes in wheat
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further evaluation, but it is plausible that splice variant reintroduction to the genome as a dupli-

cation mechanism could drive the gene proliferation that we document here [87, 88]

Promoter analyses reveal regulatory motifs in wheat AOX gene family

To identify putative regulatory elements of the wheat AOX genes, promoter elements were iden-

tified in the 1500 bp sequence upstream of the translation start site (S4 Fig). In the hexaploid and

diploid species, the greatest proportion of elements was for light response (Fig 5). It was also

apparent that there was diversity between family members with regards to elements involved in

hormonal, developmental, biotic and abiotic environmental responses (Figs 5 and 6). Cumula-

tively, the greatest numbers of these hexaploid response elements were found in TaAOX1a-2AL,

regTaAOX-4BL and TaAOX1c-6BL. The smallest numbers were observed in TaAOX1a-2BL, put.

Table 3. Features of AOX genes in hexaploid and diploid wheat.

Gene Name Length of Gene (bp) Transcript Length (bp) Coding Sequence (bp) # of Exons # of Introns

Hexaploid TaAOX1a-2AL.sv1 2369 1456 987 4 3

TaAOX1a-2AL.sv2 2369 1432 963 5 4

TaAOX1a-2BL 6169 2102 1374 4 3

TaAOX1a-2DL.sv1 2419 1467 1011 4 3

TaAOX1a-2DL.sv2 2419 1341 885 5 4

TaAOX1a-like-2DL 1515 1372 495 2 1

regTaAOX-4BL.sv1 4284 1571 327 5 4

regTaAOX-4BL.sv2 4284 3158 249 4 3

regTaAOX-4BL.sv3 4284 3176 267 4 3

regTaAOX-4BL.sv4 4284 3274 327 4 3

put.regTaAOX-3B 3652 585 291 3 2

put.regTaAOX-6BL 3833 718 441 3 2

TaAOX1c-6AL 2019 1736 1194 4 3

TaAOX1c-6BL.sv1 2207 1940 1296 4 3

TaAOX1c-6BL.sv2 2207 1806 1239 6 5

TaAOX1c-6BL.sv3 2207 1863 1296 5 4

TaAOX1c-6DL 2075 1801 1188 4 3

regTaAOX-3B 1456 1370 324 2 1

put.TaAOX1e-3DS 18352 1142 789 4 3

TaAOX1d-2AL.1 1290 1180 885 2 1

TaAOX1d-2AL.2.sv1 1423 1423 993 1 0

TaAOX1d-2AL.2.sv2 2395 1269 993 2 1

TaAOX1d-2DL 1405 1405 981 1 0

put.TaAOX1d-like-4AS 1065 963 552 2 1

A Genome TuAOX1a� 1383 615 615 3 2

TuAOX1c� 4469 1305 1305 7 6

TuAOX1d.1� 888 888 888 1 0

TuAOX1d.2� 8777 1212 1212 3 2

D Genome AetAOX1a� 1379 615 615 3 2

AetAOX1e� 2958 1098 1098 5 4

AetAOX1d� 888 888 888 1 0

AetAOX1d-like� 1198 870 870 4 3

�Denotes diploid wheat AOX genes.

https://doi.org/10.1371/journal.pone.0201439.t003
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regTaAOX3B, TaAOX1d-2AL.1 and TaAOX1d-2DL (Figs 5 and 6). Out of these the highest

numbers of environmental response elements were found in regTaAOX-4BL, TaAOX1c-6BL,

TaAOX1c-6DL, and TaAOX1d-2AL.2 (Fig 5A). The highest numbers of hexaploid hormonal

and developmental response elements were found in TaAOX1a-2AL, regTaAOX-3B and put.
TaAOX1e-3DS (Fig 6A). The jasmonic acid (JA) and abscisic acid (ABA) response elements were

also common across many family members in the hexaploid and diploid species (Fig 6). There

was a large proportion of specific response elements in some promoters, e.g. TaAOX1a-2AL
(JA), TaAOX1a-2BL (circadian control) and TaAOX1d-2AL.2 (fungal elicitor response) (Figs 5A

and 6A). While the low temperature response elements were absent in the hexaploid AOX1a pro-

moters, they were present in the diploid AOX1a promoters and may indicate levels of control

peculiar to the diploid species (Fig 5). Many of these factors such as light, heat, drought, ABA,

and SA have already been shown to cause induction of AOX in wheat and other plants [10, 37–

39, 42]. However, the presence of motifs for gibberellic acid (GA), jasmonic acid (JA), ethylene

(ACC) and others (Fig 6) suggest that there is still a lot of work to be done in terms of how these

phytohormones and developmental factors are integrated into the framework of AOX expression

and regulation. The commonality of certain elements across many family members could also

Table 4. Splice variants of hexaploid wheat AOX genes.

Gene Name Status Points of Difference

TaAOX1a-2AL.sv1 Wildtype Intron retention: Portion of exon 1 in wildtype is intron 1 in variant.

TaAOX1a-2AL.sv2 Variant

TaAOX1a-2BL N/A N/A

TaAOX1a-2DL.sv1 Wildtype Intron retention: Portion of exon 1 in wildtype is intron 1 in variant.

TaAOX1a-2DL.sv2 Variant

TaAOX1a-like-
2DL

N/A N/A

regTaAOX-4BL.sv1 Wildtype Intron retention: Portion of exon 2 in wildtype is part of intron 2 in variant.

Portion of exon 4 in variant is intron 4 in wildtype.regTaAOX-4BL.sv2 Variant

regTaAOX-4BL.sv3 Variant Intron retention: Portion of exon 2 in wildtype is a part of intron 2 in variant.

Portion of exon 2 in variant is part of intron 1 in wildtype. Portion of exon 4 in

variant is intron 4 in wildtype.

regTaAOX-4BL.sv4 Variant Intron retention: Portion of exon 4 in variant is intron 4 in wildtype.

put.regTaAOX-3B N/A N/A

put.regTaAOX-6BL N/A N/A

TaAOX1c-6AL N/A N/A

TaAOX1c-6BL.sv1 Wildtype Intron retention: Portion of exon 1 in wildtype is part of intron 1 in variant.

Portion of exon 4 in wildtype is part of intron 5 in variant.TaAOX1c-6BL.sv2 Variant

TaAOX1c-6BL.sv3 Variant Intron retention: Portion of exon 4 in wildtype is intron 4 in variant.

TaAOX1c-6DL N/A N/A

regTaAOX-3B N/A N/A

put.TaAOX1e-3DS N/A N/A

TaAOX1d-2AL.1 N/A N/A

TaAOX1d-2AL.2.
sv1

Wildtype Intron retention: Portion of exon 1 in wildtype is part of intron 1 in variant.

Alternative 3’UTR site: Portion of exon2 in variant is downstream of the gene

sequence of the wildtype.

TaAOX1d-2AL.2.
sv2

Variant Alternative 5’UTR site: part of the wildtype’s 5’UTR is upstream of the gene

sequence of the variant

TaAOX1d-2DL N/A N/A

put.TaAOX1d-like-
4AS

N/A N/A

https://doi.org/10.1371/journal.pone.0201439.t004
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give ways of inducing the expression of some or all of the low-confidence and non-expressed

AOX genes that have been reported in the current study. It must be noted that some regions of

the promoters were unresolved and therefore additional motifs may be found that could be spe-

cific to the diploids or show similar elements as in the hexaploid counterparts.

Previous research has revealed a number of positive and negative regulators of AOX (S3

Table). Generally, regulator motifs were common in the AOX1a and AOX1d clades and absent

in the AOX1c and AOX1e clades. Motifs were found for known positive regulators of AOX
(Tables 6, 7, S3 and S4) in all the promoters except those of put.regTaAOX-3B, put.regTaAOX-
6BL, TaAOX1c-6AL, TaAOX1c-6BL, TaAOX1c-6DL, regTaAOX-3B, put.TaAOX1e-3DS, put.
TaAOX1d-like-4AS, TuAOX1d.2, TuAOX1c and AetAOX1e. The NAC Domain Containing

Protein 17 (ANAC017) (At1g34190) is considered to be a critical positive regulator of AOX
[89, 90] and motifs for this protein were well-represented in the AOX1a and AOX1d clades

(TaAOX1a-2AL, TaAOX1a-2BL, TaAOX1a-2DL, TaAOX1a-like-2DL, TaAOX1d-2AL.2,
TaAOX1d-2DL, TuAOX1d.1, AetAOX1a, AetAOX1d, and AetAOX1d-like) (Tables 6 and 7).

Another positive regulator WRKY DNA-Binding Protein 63 (AtWRKY63, At1g66600) [91]

Fig 3. AOX gene structures of hexaploid and diploid wheat. Exons are depicted in red, with introns being represented by black lines for (A) high-

confidence T. aestivum AOX gene family, (B) low-confidence T. aestivum AOX gene family (C) T. urartu AOX gene family, and (D) A. tauschii AOX
gene family.

https://doi.org/10.1371/journal.pone.0201439.g003
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Fig 4. Distribution of AOX homeologs and paralogs on hexaploid wheat chromosomes. Boxes of the same color indicate paralogs, while lines of the

same color indicate homeologous groups. Grey boxes with a dashed outline indicate putative or non-expressed genes.

https://doi.org/10.1371/journal.pone.0201439.g004

Table 5. CpG islands in the promoters and gene bodies of the high-confidence TaAOX gene family.

Gene Name Promoter Gene Body

# of Islands Regions Length # of Islands Regions Length

TaAOX1a-2AL.sv1 1 (1040..1444) 405 2 (47..845), (1192..1730) 799, 539

TaAOX1a-2AL.sv2
TaAOX1a-2BL 1 (51..289) 239 2 (51..1249), (1622..2167) 1199, 546

TaAOX1a-2DL.sv1 1 (1207..1444) 238 2 (47..910), (1273..1819) 864, 547

TaAOX1a-2DL.sv2
TaAOX1a-like-2DL 3 (139..355), (554..1045), (1064..1444) 217, 492, 381 1 (47..464) 418

regTaAOX-4BL.sv1 3 (427..690), (860..1203), (1208..1444) 264, 344, 237 1 (49..435) 387

regTaAOX-4BL.sv2 1 (49..511) 463

regTaAOX-4BL.sv3 1 (49..511) 463

regTaAOX-4BL.sv4 1 (49..435) 387

TaAOX1c-6AL 1 (494..720) 227 1 (48..1356) 1309

TaAOX1c-6BL.sv1 0 2 (49..522), (586..1431) 474, 846

TaAOX1c-6BL.sv2
TaAOX1c-6BL.sv3
TaAOX1c-6DL 0 1 (48..1327) 1280

regTaAOX-3B 0 1 (48..317) 270

TaAOX1d-2AL.1 0 1 (48..938) 891

TaAOX1d-2AL.2.sv1 2 (49..380), (768..1408) 332, 641 1 (47..937) 891

TaAOX1d-2AL.2.sv2
TaAOX1d-2DL 2 (702..1064), (1079..1402) 363, 324 1 (47..925) 879

https://doi.org/10.1371/journal.pone.0201439.t005
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was more common in the AOX1d clade (TaAOX1a-like-2DL, TaAOX1d-2AL.2, TaAOX1d-
2DL, TuAOX1d.1 and AetAOX1d) (Tables 6 and 7). Motifs for the negative regulator ABA

Insensitive 4 (ABI4, At2g40220) [92] were found in all the promoters except TaAOX1c-6AL,

TaAOX1c-6BL and AetAOX1e (Tables 6, 7, S3 and S4). The binding sites for another negative

Fig 5. Putative cis-elements for abiotic response in promoter regions. (A) TaAOX gene family and (B) diploid AOX gene families. The promoter for

put.regTaAOX-6BL was not analyzed due to the majority of the promoter sequence being unresolved.

https://doi.org/10.1371/journal.pone.0201439.g005
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regulator WRKY DNA-Binding Protein 40 (ATWRKY40, At1g80840) [90] existed only in the

TaAOX1c-6BL promoter (Tables 6, 7, S3 and S4).

Previous researchers analyzed A. thaliana transcriptome data obtained via induction with mito-

chondrial regulation perturbation reagents. Further analysis on the promoters of the highly

Fig 6. Putative cis-elements for hormonal and developmental responses in promoter regions. (A) TaAOX gene family and (B) diploid AOX gene

families. The promoter for put.regTaAOX-6BLwas not analyzed due to the majority of the promoter sequence being unresolved.

https://doi.org/10.1371/journal.pone.0201439.g006
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responsive and upregulated genes showed the presence of the cis-regulatory element

CTTGNNNNNCAMG [93] labeled the mitochondrial dysfunction motif (MDM). All the genes with

the MDM motif which were upregulated during disruption of mitochondrial retrograde regulation

were thereafter referred to as theMITOCHONDRIALDYSFUNCTION STIMULON (MDS) genes

which includeAOX. The protein ANAC013 (At1g32870) controls theMDS genes by direct interac-

tion with the MDM motif CTTGNNNNNCAMGor the alternative YTTGNNNNNVAMV (sequence

variation in orthologs) (Tables 6, 7, S3 and S4). [93]. In the current study, a search was conducted

for the MDM motif in the wheatAOX gene family promoter regions. The stringent motif,

CTTGNNN NNCAMG, was found in all promoters except regTaAOX-4BL, put.regTaAOX-3B, put.
regTaAOX-6BL, TaAOX1c-6AL, TaAOX1c-6BL, regTaAOX-3B, put.TaAOX1e-3DS, TaAOX1d-
2AL.1, put.TaAOX1d-like-4AS, TuAOX1a, TuAOX1c, TuAOX1d.2, AetAOX1d andAetAOX1e. The

alternative MDM motif (YTTGNNNNNVAMV) was found in all promoters except regTaAOX-3B
and put.regTaAOX-6BL (Tables 6, 7, S3 and S4). Furthermore, the promoters for TaAOX1a-2AL,

TaAOX1a-2DL, TaAOX1a-like-2DL, TaAOX1c-6AL, TaAOX1d-2AL.2, TuAOX1a, TuA-OX1d.2,
andAetAOX1e contained the YTTGNNNNNVAMVmotif but with only one nucleotide deviation

from the stringent motif (S4 Table). This single nucleotide deviation was also found amongst some

of the 24 MDM motif genes identified in a previous study [93]. This could indicate that for

TaAOX1c-6AL and TuAOX1a, which lacked the stringent motif, they could still be controlled by

ANAC013. The results found using the YTTGNNNNNVAMVmotif could therefore be false positives

as in A. thaliana there are other genes containing this MDM motif that have regulators other than

ANAC013. They could also indicate that although not directly controlled by ANAC013, they may

still be involved in the network of mitochondrial retrograde regulation [93]. If valid, this motif dis-

tribution allows for greater levels of control in how this gene family is expressed and may provide

clues as to how to induce the expression of some or all of the non-expressed wheatAOX genes.

It must also be noted that the pattern or mode of expression could differ between the hexa-

ploids and the diploids. Given that the promoter regions of the diploid species are still being

sequenced, it is entirely possible that additional motifs of other aforementioned positive regula-

tors could be discovered. This would further our knowledge of the regulation of AOX in the wild

ancestors of bread wheat. Motifs for the hypoxia responsive promoter element [94] as well as

known positive and negative regulators of A. thaliana AOX, At5g13610, At5g63610, At5g12290,

At5g07690 and At1g32230 [95–99] were missing from both the hexaploid and diploid promoters

(Tables 6, 7, S3 and S4). It is possible that these factors are restricted to dicots and have evolved a

different form of control or have significantly diverged in grasses or monocots.

We also examined the CpG islands in the AOX promoters (S4 Fig). In the promoter regions,

the largest distribution of CpG islands was in the genes of the AOX1a clade followed by the

Table 7. Occurrence of conserved motifs for known positive and negative AOX regulators in the promoters of the diploid AOX gene families.

Locus TuAOX1a TuAOX1c TuAOX1d.1 TuAOX1d.2 AetAOX1a AetAOX1e AetAOX1d AetAOX1d-like

At1g32870 1 1 3 1 2

At1g34190 1 2 1 2

At1g66600 2 1

At3g10500 1 2 1 1

At5g04410 1

At2g40220� 2 1 2 1 5 3 4

CTTGNNNNNCAMG 2 2 2

YTTGNNNNNVAMV 2 3 3 4 3 2 3 6

�Denotes negative regulators.

https://doi.org/10.1371/journal.pone.0201439.t007
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AOX1d clade. The lowest CpG distribution was in the AOX1c and AOX1e clades (Table 5).

Similar to the AOX gene sequences, there was no obvious relationship between the number or

length of CpG islands and the regulation of the transcripts from these promoters. Again, it is

entirely possible that variations may emerge under new experimental conditions such as lon-

ger-term abiotic stresses and exposure to phytohormones.

AOX expression is diverse among all family members over tissue types and

developmental stages

To provide further insight into wheat AOX function, RNA-seq data were obtained from studies

deposited into the wheat database expVIP [55]. Data for the high-confidence AOX genes was

obtained and expression was found in multiple tissues at various developmental stages as well as

over various environmental conditions. Ten out of 20 possible transcripts were expressed in all

tissues examined at all three developmental stages (seedling, vegetative and reproductive) (Fig 7

and S5 Table). These were, TaAOX1a-2AL.sv1, TaAOX1a-2BL, TaAOX1a-2DL.sv1, regTaAOX-
4BL.sv2, regTaAOX-4BL.sv4, TaAOX1c-6AL, TaAOX1c-6BL.sv1, TaAOX1c-6DL, TaAOX1d-
2AL.2.sv1 and TaAOX1d-2DL. There was a low-level of expression for TaAOX1a-2AL.sv2,
TaAOX1a-like-2DL, regTaAOX-4BL.sv1, regTaAOX-4BL.sv3, regTaAOX-4BL.sv4, TaAOX1c-6BL.

sv2, TaAOX1c-6BL.sv3, regTaAOX-3B, TaAOX1d-2AL.1 and TaAOX1d-2AL.2sv2 in all tissue

and developmental stages tested. Of note were TaAOX1a-2AL.sv1, TaAOX1a-2BL, TaAOX1a-
2DL.sv1, TaAOX1d-2AL.2.sv1 and TaAOX1d-2DL which had higher expression in the root at all

three developmental stages (Fig 7 and S5 Table). There were a few transcripts with high root

expression in particular stages. TaAOX1a-2DL.sv2 and had higher root expression at the seedling

and vegetative stages (Fig 7 and S5 Table).

TaAOX1a-2BL, TaAOX1a-2DL.sv1, regTaAOX-4BL.sv1, TaAOX1c-6AL, TaAOX1c-6BL.sv1,
TaAOX1c-6DL, TaAOX1d-2AL.1, TaAOX1d-2AL.2.sv1 and TaAOX1d-2DL were upregulated

under drought stress (Fig 8 and S5 Table). Under heat stress, the highest level of transcript

expression was notably TaAOX1a-2BL, TaAOX1a-2DL.sv1 and TaAOX1d-2AL.1. In addition,

TaAOX1a-2AL.sv1, regTaAOX-4BL.sv1, regTaAOX-4BL.sv2, TaAOX1c-6AL, TaAOX1c-6BL.sv1,
TaAOX1c-6DL, TaAOX1d-2AL.2.sv1, TaAOX1d-2AL.2.sv2 and TaAOX1d-2DL were expressed

under heat but to a lesser extent. In contrast, TaAOX1a-2AL.sv2 and TaAOX1c-6BL.sv3 showed

no expression under heat or drought stress (Fig 8 and S5 Table). Overall, heat stress had a higher

impact on expression levels than drought stress. Under various forms of biotic stress (Fusarium
graminearum, powdery mildew, stripe rust, Septoria tritici), TaAOX1a-2AL.sv2, TaAOX1a-2DL.

sv2, regTaAOX-4BL.sv1, TaAOX1c-6DL and TaAOX1d-2AL.2.sv2 showed high expression levels

(Fig 8 and S5 Table). TaAOX1a-2AL.sv1, TaAOX1a-2BL, TaAOX1a-2DL.sv1, TaAOX1a-2DL.

sv2, regTaAOX-4BL.sv3, TaAOX1c-6AL, TaAOX1c-6BL.sv1, TaAOX1c-6BL.sv3, TaAOX1d-
2AL.2.sv1 and TaAOX1d-2DL were also upregulated during biotic stress (Fig 8 and S5 Table).

RegTaAOX-3B was mostly dormant during biotic stress. The mosaic pattern of results indicates

diversity in the level of expression between gene family members and between splice variants of

the same gene. This allows for nuance and complexity in function over numerous environmen-

tal and physiological conditions. In contrast to previous research, there was no clear relationship

between the number of exons and the level of transcript expression [81–84]. It may be that

unique physiology, polyploidization and the alternative splicing machinery have given rise to

alternate forms of transcriptional regulation in wheat. There was no expression data available

for the diploid ancestors. However, polyploidization can lead to neofunctionalization [100, 101]

and therefore it is possible that the expression patterns and subsequent protein activities may

differ between the hexaploid and diploid wheat species. This highlights the need for expression

data in the diploid progenitor species as well.
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With regard to the Chinese Spring reference transcriptome, the expVIP database which inte-

grates the most reliable gene models from Ensembl Plants, the most consistent and reliable infor-

mation that has been supported by expression data from other species [102]. The transcriptome

data generated by this database relied on genomic resources such as nullitetrasomic lines as well

as the latest RNA-seq software in the analysis [55] to pinpoint the chromosomal localizations and

ensure accurate placement on the physical map. In addition, this database contains information

Fig 7. Heat map of expression profiles for high-confidence TaAOX genes at different developmental stages.

https://doi.org/10.1371/journal.pone.0201439.g007
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that has been shown by other researchers to be validated by alternate sources [77, 103]. A compar-

ison of the transcript sequences shows that there are enough differences for further validation via

future qPCR experiments (S6 Table). The current study provides information which can be used

in future biological experiments over the same or different conditions used in this study. Different

varieties may express these AOX genes differently and therefore drawing broad conclusions may

not apply to other wheat cultivars or landraces or diploid species. It is critical that elite cultivars

being used by researchers be utilized in further studies to further validate the sequences and gene

Fig 8. Heat map of expression profiles for high-confidence TaAOX genes under biotic and abiotic stresses.

https://doi.org/10.1371/journal.pone.0201439.g008
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structures shown in the present study. Future experiments may lead to the discovery of new alleles

which may show different expression patterns than those revealed in the present study. Subse-

quent research may also show the occurrence of gene copy number variations, a phenomenon

known to occur in the polyploid wheat and which has been shown to cause a spectrum of pheno-

typic differences that may depend on the geographic region of the cultivars in question [104, 105].

Researchers may therefore find that their respective cultivars have more AOX copies which may

provide adaptation advantages nonexistent the Chinese Spring cultivar. The possibilities described

may require alternate ways of triggering the induction of the newly discovered gene copies as well

as the low-confidence and the non-expressed AOX genes in order to validate the transcripts and

ensure that qPCR primers designed would be gene-specific. For example, hormone elicitors such

as jasmonic acid (JA) could trigger expression as JA-responsive elements are found in some wheat

AOX promoters (Fig 6). Alternatively, reagents that disrupt mitochondrial regulation could be

used as in previous studies [93]. Regardless, these data lay the groundwork and generates new

hypotheses concerning AOX gene expression and function given the isoforms discovered.

Determining expression profiles of AOX genes in the diploid ancestors could lead to a bet-

ter understanding of how these genes evolved in the polyploid species as has been shown in

wild relatives of rice [106, 107]. This process could also lead to potential germplasm sources

which can be introgressed to improve marketable wheat varieties [108]. The results for short

term abiotic stress (1 hour and 6 hours) indicate expression levels under temporary heat and

drought stress, but more experimentation is need to determine expression under more sus-

tained levels of stress. Variance in AOX expression and or copy number in wheat varieties with

contrasting levels of resilience or tolerance to biotic or abiotic stress in a general or tissue-spe-

cific manner will facilitate the discovery of germplasm to create more marketable varieties.

Importantly, AOX can have a strong effect on root morphology and may be upregulated roots

under stress [109, 110]. Investigating the level of expression under infection by root pathogens

and symbiotic soil microbes may aid in the elucidation of mechanism of susceptibility or resis-

tance as well as symbiosis.

Comparative analysis of wheat AOX proteins shows potential role of

protein properties in functional diversity

The corresponding proteins obtained from theAOX transcripts in both the hexaploid and diploid

wheat species were used in phylogenetic analysis in order to determine their classification to the

clades AOX1a, AOX1c, AOX1e and AOX1d. Ten high-confidence hexaploid isoforms were classi-

fied as AOX1a, five as AOX1c, one as AOX1e and four as AOX1d. An additional two low-confi-

dence hexaploid isoforms were in the AOX1a clade and one each in the AOX1e and AOX1d clades

respectively (Figs 1 and S1). For the diploid T. urartu, one protein each was identified in the

AOX1a and AOX1c clades and two in the AOX1d clades. InA. tauschii, one protein each was iden-

tified in the AOX1a and AOX1e clades and two in the AOX1d clades (Figs 1 and S1). Overall, the

protein lengths ranged from 82 amino acids to 457 amino acids (Table 8). Generally, the theoretical

isoelectric points of the AOX1d and AOX1e proteins were the lowest while that of the AOX1c pro-

teins was the highest. In some cases, splice variant isoforms were shown to have distinct isoelectric

points (TaAOX1a-2AL.sv1 and TaAOX1a-2AL.sv2; TaAOX1a-2DL.sv1 and TaAOX1a-2DL.sv2;

regTaAOX-4BL.sv1, regTaAOX-4BL.sv2 and regTaAOX-4BL.sv3) (Table 8). Plants are able to alter

their gene expression in response to external pH [111, 112]. The presence of protein isoforms with

varying isoelectric points may therefore help with adaptability to external acidity or alkalinity. It

has been experimentally shown that AOX may functionally substitute for the plastid terminal oxi-

dase (PTOX) [113] and it is possible that in the polyploid and ancestral wheat genomes, some of

the AOX proteins could perform non-canonical functions or play support roles for other organellar
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proteins. Different compartments have different acidic or basic environments levels [114] and if

this flexibility in functionality works in the AOX proteins in wheat, protein isoforms with efficien-

cies in a pH range will aid in functionality in multiple cell organelles or compartments. In addition,

the isoelectric point can affect protein localization [115, 116]. It is therefore plausible that the range

of isoelectric points play a role in the determination of subcellular localization and functionality.

Using the subcellular localization program TargetP, it was observed that there was a range of

mitochondrial localization probabilities for AOX proteins. Generally, the hexaploid AOX1c clade

had very low probability of export to the mitochondria and this trend continued with all the dip-

loid isoforms (Table 8). Most prediction software focus on the N-terminal region of the protein

Table 8. Features of AOX proteins in the wheat genomes.

Protein Name Protein Length (Amino Acids) Molecular Weight (KDa) Theoretical Isoelectric Point Export Probability to Mitochondria

TaAOX1a-2AL.sv1 328 36.7 7.90 0.97

TaAOX1a-2AL.sv2 320 36.0 7.51 0.97

TaAOX1a-2BL 457 50.5 9.60 0.12

TaAOX1a-2DL.sv1 336 37.6 8.40 0.94

TaAOX1a-2DL.sv2 294 33.4 7.30 0.82

TaAOX1a-like-2DL 164 18.8 6.50 0.76

regTaAOX-4BL.sv1 108 12.7 10.90 0.93

regTaAOX-4BL.sv2 82 9.9 9.90 0.88

regTaAOX-4BL.sv3 88 10.6 10.10 0.91

regTaAOX-4BL.sv4 108 12.7 10.90 0.93

put.regTaAOX-3B 96 11.1 4.66 0.20

put.regTaAOX-6BL 146 15.5 8.58 0.79

TaAOX1c-6AL 397 43.7 9.80 0.64

TaAOX1c-6BL.sv1 431 47.5 10.20 0.29

TaAOX1c-6BL.sv2 412 45.5 10.30 0.28

TaAOX1c-6BL.sv3 431 47.6 10.20 0.29

TaAOX1c-6DL 395 43.7 9.70 0.57

regTaAOX-3B 107 12.1 6.70 0.77

put.TaAOX1e-3DS 262 30.0 6.97 0.08

TaAOX1d-2AL.1 294 33.5 7.20 0.17

TaAOX1d-2AL.2.sv1 330 37.1 7.20 0.81

TaAOX1d-2AL.2.sv2 330 37.1 7.20 0.81

TaAOX1d-2DL 326 36.7 7.20 0.85

put.TaAOX1d-like-4AS 183 21.0 7.79 0.25

TuAOX1a� 204 23.5 6.90 0.49

TuAOX1c� 434 49.8 5.90 0.15

TuAOX1d.1� 295 33.6 6.80 0.24

TuAOX1d.2� 403 44.6 9.90 0.21

AetAOX1a� 204 23.5 6.90 0.49

AetAOX1e� 365 40.8 7.40 0.49

AetAOX1d� 295 33.6 6.80 0.24

AetAOX1d-like� 289 32.6 8.60 0.58

The theoretical isoelectric points were obtained with the SnapGene Program and the mitochondrial localization probabilities were obtained with TargetP. A high value

in the last column indicates a greater likelihood of localization to the mitochondria.

�Denotes diploid wheat AOX proteins.

https://doi.org/10.1371/journal.pone.0201439.t008
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in order to determine the subcellular localization. However an internal localization signal may

exist as in the parasite Trypanosoma brucei (TbAOX) and in other nuclear-encoded plant proteins

with no clear N-terminal signals [117, 118]. The region in TbAOX that contains this internal sig-

nal (residues 115 to 146) has some sequence similarity to the wheat isoforms but there are also

clear differences, making it impossible to extrapolate outcomes from one species to another (S9

Fig). The charge of the amino acids in the sequence can also indicate the final protein destination

and this may be further complicated by various protein modifications in vivo [119–121]. Given all

the alternatives, it is clear that there is potential for a substantial amount of functional diversity

and complexity, which could manifest as tissue or subcellular specificity as well as functional

redundancy, some of which may require reporter fusions to dissect [122, 123]. This is plausible as

it has been shown that AOX has both developmental and physiological functionality some of

which may suggest species-specific or clade-specific functionalities [10, 31, 124].

Protein modifications such as phosphorylation, acetylation and glycosylation have been

shown to be critical for multiple cellular processes in plants and it is possible that this may be

the case with AOX as well [12, 71, 125–130]. Using the Plant Protein Phosphorylation Database

and the Musite prediction program with a cut-off score of 0.5 as a baseline [68, 69], we found 14

predicted phosphorylation sites in TuAOX1a and two predicted phosphorylation sites in

TuAOX1c (Table 9 and S7). There were two and one predicted acetylation sites in TaAOX1a-

2DL.sv1 and TaAOX1d-2AL.1 respectively. There was one predicted glycosylation site each in

TaAOX1a-2AL.sv1, TaAO X1a-2AL.sv2, TaAOX1a-2DL.sv1, put.regTaAOX-3B, TaAOX1c-

6DL and TaAOX1d-2DL, and 28 sites in TaAOX1a-2DL.sv2. The dramatic difference in the

number of predicted glycosylation sites between two splice variant isoforms (TaAOX1a-2DL.

sv1 and TaAOX1a-2DL.sv2) (Tables 9 and S7) introduces the possibility of variable regulation

and functionality which needs to be studied further.

Molecular modeling depicts conservation of diiron center residues and

isoform variance in transmembrane topology

In order to determine the three-dimensional structure of the wheat AOX isomers, homology

models of wheat AOX proteins were made using the crystal structure of TbAOX as a reference

(model 3vvaD in Phyre2). With the exception of the low-confidence protein put.regTaAOX-

6BL, all other proteins modeled to the TbAOX with over 95% confidence, sequence identity

between 34 to 46% and coverage ranging from 20% to 96% depending on the isoform (range:

82 to 457 amino acids). These results offer a preliminary understanding of the structure of

these proteins in wheat (Fig 9 and S8 and S9 Tables and S1 Appendix). The proteins which had

most or all the motifs required for the diiron center were modeled with a similar global confor-

mation and active site configuration indicating a likely similarity in three-dimensional struc-

tural conformation (Fig 9 and S10 Table and S1 Appendix).

Regardless of clade, most of the modeled wheat AOX proteins had one to three transmem-

brane domains except regTaAOX-4BL.sv1 to sv4, put.regTaAOX-3B and put.regTaAOX-6BL

which had none. Notably, TuAOX1d.2 had four transmembrane domains, the highest of all the

proteins analyzed (Fig 10 and S8 and S9 Tables). TaAOX1a-like-2DL, regTaAOX-3B and

TuAOX1a had the smallest number of transmembrane domains (Fig 10 and S8 and S9 Tables).

Mirroring the observation of heterogeneity in protein properties between splice variant isoforms

earlier observed, TaAOX1a-2DL.sv1 and TaAOX1a-2DL.sv2 had two and three transmembrane

domains respectively, an example of the phenotypic diversity resulting from alternative splicing

which could suggest functional diversification. Transmembrane domains have been shown to be

key in the determination of protein localization in plants [131, 132] and the differences observed

in wheat may facilitate the functional characterization of these proteins in the future.
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Comparative analysis of wheat AOX proteins and identification of key

functional residues in critical domains

To identify conserved amino acid residues required for AOX function, the corresponding pro-

teins of all wheat AOX transcripts and splice variants were aligned with the AOX sequence from

the parasite Trypanosoma brucei (TbAOX) [133] (Figs 11–13; S2 Table; S2 Fig). Signature motifs

required for AOX functionality via the diiron center, LETVAA, ERMHLMT, LEEEA and

Table 9. Putative post-translational modification sites in wheat AOX proteins.

Protein Phosphorylation Sites

TuAOX1a� T9, T17, T34, T78, T131, T162, T168, T197,

S12, S51, S58, S111, S129, S185,

TuAOX1c� Y145, Y214

Acetylation Sites

TaAOX1d-2AL.1 K222

TaAOX1a-2DL.

sv1

K59, K67

TuAOX1d.2� K4

AetAOX1d-like� K110

Glycosylation

TaAOX1a-2AL.

sv1

S113

TaAOX1a-2AL.

sv2

S105

TaAOX1a-2DL.

sv1

S121

TaAOX1a-2DL.

sv2

T24, T25, T61, T73, T75, T78, T99, T107, T124, T168, T221, T252, T258, T287, S2, S8, S19, S27, S44, S45, S52,

S66, S79, S102, S141, S148, S201, S219

put.regTaAOX-

3B

S11

TaAOX1c-6DL T73

TaAOX1d-2DL S111

TuAOX1d.2� S188

AetAOX1d� S80

The predictions were obtained using Musite from the Plant Protein Phosphorylation Database.

�Indicates diploid isoforms.

https://doi.org/10.1371/journal.pone.0201439.t009

Fig 9. Proposed representative 3-D structure of the residues in the active site diiron center. (A) 3-D structural representation of TaAOX diiron center

residues. (B) 3-D structural representation of TaAOX1a-like-2DL diiron center residues. (C) 3-D structural representation of AetAOX1d-like diiron center

residues.

https://doi.org/10.1371/journal.pone.0201439.g009
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Fig 10. Transmembrane topologies of wheat AOX proteins predicted by Phyre2.

https://doi.org/10.1371/journal.pone.0201439.g010
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RADEAHH, were found in 22 out of 32 protein sequences (S2 Table). The protein TaAOX1a-

like-2DL, lacked the first motif LETVAA, another put.TaAOX1d-like-4AS lacked the motif

RADEAHH and a third AetAOX1d-like lacked the motif LEEEA. The protein TaAOX1d-2AL.1,

had a slight modification LEMVAA which nevertheless conserved the glutamate critical for the

diiron center. All the regulatory proteins lacked all four of these trademark motifs (Figs 11–13; S2

Table; S2 Fig). Previous research shows that mutations in any of the residues needed for coordi-

nating the diiron center in the active site cause a partial or complete attenuation of AOX activity

(Figs 11–13 and S11 Table) [12, 133–136]. This could suggest low or abolished activity for

TaAOX1a-like-2DL, put.TaAOX1d-like-4AS and AetAOX1d-like which lack the motifs LET-

VAA, RADEAHH and LEEEA respectively, and consequently the critical glutamate residues

needed to coordinate the diiron center (Figs 11 and 13; S11 and S12 Tables). The highly conserved

threonine residue on other AOX proteins is a methionine in TaAOX1d-2AL.1 (TbAOX number

scheme T124) (Fig 11). The difference in polarity between threonine (polar) and methionine

(nonpolar) may have implications for enzyme activity and functionality. In the recombinant S.
guttatum AOX protein (rSgAOX) that was tested, T179A substituted mutant (TbAOX number

scheme T124) had severely reduced activity [134]. It is plausible that the same reduced enzyme

activity could be observed in TaAOX1d-2AL.1. However, it must be noted that even though the

hydrophobicity of the substitution in wheat mirrors that of rSgAOX T179A, the effect of the con-

formational change on AOX efficiency needs to be experimentally established in order to confirm

an identical reduction in function.

A T219V mutation, which leads to a significant change in side chain chemistry and configu-

ration, causes an almost complete loss of function in recombinant T. bruceiAOX (rTbAOX)

(S11 Table) [133]. In wheat, there is a T219S (TbAOX number scheme) substitution conserved

in all the diploid and hexaploid AOX except regTaAOX-4BL, regTaAOX-3B, put.TaAOX1d-

like-4AS and AetAOX1d-like where this residue is nonexistent (Figs 11 and 13; S12 Table). The

substitution maintains side chain properties but the effect of the lost methyl group on the enzy-

matic outcome remains to be determined. The proteins TaAOX1a-like-2DL, put.TaAOX1d-

like-4AS and AetAOX1d-like are missing residues which have been experimentally shown to

greatly reduce or abolish activity (S12 Table). Where nonexistent, it may imply an alternate pro-

tein configuration in that region which may change the enzyme efficiency or allow for high effi-

ciency in a distinct role.

The crystal structure of TbAOX shows that this protein exists as a homodimer. At the

dimer interface in TbAOX, there are six completely conserved residues and 12 highly con-

served residues [133] some of which show significant loss of activity when mutated (H138,

Q187) (S11 Table). Excluding AetAOX1d-like, these six residues are completely conserved in

wheat AOX proteins as well (Table 10). With regards to the 12 highly conserved residues for

the dimer interface, six are identical to TbAOX (M131, L139, S141, A159, M167, R180) except

in the case of AetAOX1d-like (Tables 10 and S13). This high level of conservation across spe-

cies emphasizes the importance of these residues in this functional capacity. There were three

substitutions that were peculiar to the AOX1d clade and the AOX1a-like proteins (M135V,

R147H, L156M). There were also one substitutions that were conserved in all wheat clades

(M145F) (Tables 10 and S13). Two other substitutions (I183V, D148S) are also conserved in

all the wheat clades with the exception of put.TaAOX1d-like-4AS (D148N) and AetAOX1d-

like (I183V is nonexistent) (Tables 10 and S13). None of these conserved substitutions match

any of the substitutions thought to support an AOX Type AOX1d classification done by other

researchers [16] and thus may indicate a divergence peculiar to this AOX clade in wheat which

could inform function. These substitutions need further characterization in order to test their

effect on AOX dimerization and efficiency in wheat.
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Another highly essential domain is the hydrophobic cavity consisting of 33 residues known to

facilitate quinol-binding in the TbAOX active site (Table 11) [135]. Except in the cases of

Fig 11. Alignment of select TaAOX (hexaploid wheat) proteins with TbAOX (T. brucei). Yellow highlights indicate conserved motifs. Red font indicates

residues proposed to coordinate the diiron center of the active site. Blue font indicates residues experimentally tested for loss of activity by previous researchers.

Underlined residues are involved in the TbAOX hydrophobic cavity. Splice variants were identical for the protein region analyzed. The “reg” proteins were not

analyzed due to the absence of the conserved motifs.

https://doi.org/10.1371/journal.pone.0201439.g011
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TaAOX1a-like-2DL, put.TaAOX1d-like-4AS and AetAOX1d-like, nine out of the 33 residues

show complete conservation with TbAOX (F102, L122, V125, A126, V128, Y198, S201, V209,

L212) emphasizing the crucial nature of these residues in active site efficiency (Tables 11 and

S14). With the exception of put.TaAOX1d-like-4AS and AetAOX1d-like, there are eight substi-

tutions which are conserved in all the wheat residues in this hydrophobic cavity (L179E, V181A,

S182L, I189V, M190F, F193A, L194Y, V205A) (Tables 11 and S14). The AOX1e clade also has

distinct residues or substitutions (T94A, C95M or C95I, W97, A197T, I200A, F204V, F208M)

(Tables 11 and S14). With the exception of AetAOX1d-like, there are five residues or substitu-

tions conserved in all wheat AOX1d proteins (S117, R118H, F121L, P178W, F208) (Tables 11

and S14). In addition, there are residues or substitutions peculiar to AOX1d group 1 (S91I, T94,

L98G, F99S, T186) or AOX1d group 2 (S91V, F99R, T186A) efficiency (Fig 1; Tables 11 and

S14). Substitutions of some of these residues have been shown to cause partial or complete atten-

uation of AOX activity (R118, L122, Y198 and L212) (Tables 11, S11 and S12). In rTbAOX,

R118A and R118Q abolish nearly all AOX function even though some side chain chemistry is

conserved for the latter mutation (S11 Table) [133]. The observation that R118H is conserved in

one wheat AOX clade suggests that this substitution may be important for how the Type AOX1d

isoforms function in wheat and the R118H mutation should be studied in this context.

The ratios of hydrophobic to polar residues have been shown to be critical in how this

cavity binds to substrates in the active site. With the exception of AOX1d group 1 and

TaAOX1a-like-2DL, it was very clear that the ratios of sidechain chemistries were con-

served in the clades (S15 Table). Functionally, these permutations in the wheat AOX

amino acid sequences may suggest a gradient of enzyme function and activity which can be

explored in the future. The absence of a significant number of these conserved hydropho-

bic-cavity residues in the TaAOX1a-like-2DL and AetAOX1d-like proteins (Table 11) may

Fig 12. Alignment of TuAOX (T. urartu) proteins with TbAOX (T. brucei). Yellow highlights indicate conserved motifs. Red font indicates

residues proposed to coordinate the diiron center of the active site. Blue font indicates residues experimentally tested for loss of activity by previous

researchers. Underlined residues are involved in the TbAOX hydrophobic cavity.

https://doi.org/10.1371/journal.pone.0201439.g012
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suggest distinct physiological roles for these isoforms such as interaction with other iso-

forms or proteins to exert control of subcellular localization or processes [137–139]. The

situation in wheat may be similar to what has been suggested in other organisms with

unique environments and physiologies, where residues critical for the configuration and

stability of the active site or hydrophobic cavity in one species may be negligible in another

[135, 140].

The information garnered could provide clues on how these proteins function in a poly-

ploid monocot or grass species in general and highlights the urgent need for the biochemical

elucidation of more AOX isoforms in diverse plant species. Given the similarities that exist

within the wheat AOX isoforms especially those obtained via alternative splicing, it may be

helpful to try to dissect how they function in different biological contexts (S16 Table). This can

be done by mutation studies to study the effect of the substitutions or deletions, and biochemi-

cal methods which detect isoforms as well as posttranslational modifications which may

change how and where these isomers function [141, 142].

Conclusions

Exploiting the structure of AOX holds potential for treating both human and plant diseases

[135, 143, 144]. For plants, this is of paramount importance as there is the need to maintain or

improve yield of important food and cash crops [145]. Elucidating the structure of AOX

Fig 13. Alignment of AetAOX (A. tauschii) proteins with TbAOX (T. brucei). Yellow highlights indicate conserved motifs. Red font indicates

residues proposed to coordinate the diiron center of the active site. Blue font indicates residues experimentally tested for loss of activity by previous

researchers. Underlined residues are involved in the TbAOX hydrophobic cavity.

https://doi.org/10.1371/journal.pone.0201439.g013
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proteins in wheat may allow for many possibilities in addition to those already stated in this

study. In A. thaliana, AOX induction has been shown to be a consequence of herbicide toxicity

rather than evidence for tolerance [146]; however, the effect may be different in monocots.

One could potentially exploit differences in the active site or hydrophobic substrate-binding

cavities between hexaploid wheat isoforms and diploid wheat isoforms in order to more effec-

tively design herbicides which affect diploid, wild and weedy ancestral wheat while allowing

optimal growth of domesticated wheat which is used for food. The same approach can be used

for designing better herbicides against other monocot and dicot weeds which can have a devas-

tating effect on crop yield [147, 148]. On the other hand, the domestication of wheat has

caused a loss in alleles which may be beneficial for yield. It may be advantageous to explore

AOX structures in wild relatives and select those with the dual advantages of high expression

and efficiency [149, 150]. The alleles for these isoforms that then correlate with resistance or

tolerance to various forms of biotic and abiotic stress could then be introgressed into

Table 10. Comparison of residues at dimerization interface between the TbAOX and wheat AOX proteins.

TbAOX Residue Numbers

Completely Conserved in TbAOX Highly Conserved in TbAOX

H138◆ L142 R143 R163 L166 Q187◆ M131 M135 L139 S141 M145 R147 D148 L156 A159 M167 R180 I183

TaAOX1a-2AL.sv1 H L R R L Q M M L S F Q S L A M R V

TaAOX1a-2AL.sv2 H L R R L Q M M L S F Q S L A M R V

TaAOX1a-2BL H L R R L Q M M L S F Q S L A M R V

TaAOX1a-2DL.sv1 H L R R L Q M M L S F Q S L A M R V

TaAOX1a-2DL.sv2 H L R R L Q M M L S F Q S L A M R V

TaAOX1a-like-2DL H L R R L Q M V L S F H S M A M R V

TaAOX1c-6AL H L R R L Q M M L S F Q S L A M R V

TaAOX1c-6BL.sv1 H L R R L Q M M L S F Q S L A M R V

TaAOX1c-6BL.sv2 H L R R L Q M M L S F Q S L A M R V

TaAOX1c-6BL.sv3 H L R R L Q M M L S F Q S L A M R V

TaAOX1c-6DL H L R R L Q M M L S F Q S L A M R V

put.TaAOX1e-3DS H L R R L Q M A L S F Q S L A M R V

TaAOX1d-2AL.1 H L R R L Q M V L S F H S M A M R V

TaAOX1d-2AL.2.sv1 H L R R L Q M V L S F H S M A M R V

TaAOX1d-2AL.2.sv2 H L R R L Q M V L S F H S M A M R V

TaAOX1d-2DL H L R R L Q M V L S F H S M A M R V

put.TaAOX1d-like-4AS H L R R L Q M V L S F H N M A M R V

TuAOX1a� H L R R L Q M M L S F Q S L A M R V

TuAOX1c� H L R R L Q M M L S F Q S L A M R V

TuAOX1d.1� H L R R L Q M V L S F H S M A M R V

TuAOX1d.2� H L R R L Q M V L S F H S M A M R V

AetAOX1a� H L R R L Q M M L S F Q S L A M R V

AetAOX1e� H L R R L Q M A L S F Q S L A M R V

AetAOX1d� H L R R L Q M V L S F H S M A M R V

AetAOX1d-like� H L R R L - M V L S F H S M A M - -

Completely conserved residues (yellow), highly conserved (green), and semi-conserved (white) in the wheat AOX family are shown. The “reg” proteins were not

analyzed due to the absence of the functionally necessary motifs.

�Denotes diploid wheat AOX proteins.

◆Denotes residues which have been experimentally tested.

https://doi.org/10.1371/journal.pone.0201439.t010
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marketable wheat varieties or used as a template in order to effect gene-editing in highly profit-

able hexaploid wheat [151, 152]. In general, the TbAOX has been shown to have the best effi-

ciency [135] but this may change as more plant AOX structures from organisms such as

extremophiles and other monocots and dicots with variant ploidy are genetically and biochem-

ically studied. The identification of the AOX gene family in wheat will contribute towards this

process.
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