
Short Paper

Refined analyses suggest that recombination is a minor
source of genomic diversity in Pseudomonas aeruginosa
chronic cystic fibrosis infections

David Williams,1 Steve Paterson,1 Michael A. Brockhurst2 and Craig Winstanley3

1Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK

2Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK

3Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, 8 West Derby Street,
Liverpool L69 7BE, UK

Correspondence: Craig Winstanley (c.winstanley@liv.ac.uk)

DOI: 10.1099/mgen.0.000051

Chronic bacterial airway infections in people with cystic fibrosis (CF) are often caused by Pseudomonas aeruginosa, typically

showing high phenotypic diversity amongst co-isolates from the same sputum sample. Whilst adaptive evolution during chronic

infections has been reported, the genetic mechanisms underlying the observed rapid within-population diversification are not well

understood. Two recent conflicting reports described very high and low rates of homologous recombination in two closely related

P. aeruginosa populations from the lungs of different chronically infected CF patients. To investigate the underlying cause of these

contrasting observations, we combined the short read datasets from both studies and applied a new comparative analysis.

We inferred low rates of recombination in both populations. The discrepancy in the findings of the two previous studies can be

explained by differences in the application of variant calling techniques. Two novel algorithms were developed that filter false-posi-

tive variants. The first algorithm filters variants on the basis of ambiguity within duplications in the reference genome. The second

omits probable false-positive variants at regions of non-homology between reference and sample caused by structural rearrange-

ments. As gains and losses of prophage or genomic islands are frequent causes of chromosomal rearrangements within microbial

populations, this filter has broad appeal for mitigating false-positive variant calls. Both algorithms are available in a Python package.
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LES, Liverpool Epidemic Strain; SNP, single nucleotide polymorphism.
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Data Summary

1. Short read data for Nottingham Pseudomonas
aeruginosa isolates were obtained from the European
Nucleotide Archive; study: ERP005188 (http://www.
ebi.ac.uk/ena/data/view/ERP005188).

2. Short read data for Liverpool Pseudomonas aerugi-
nosa isolates were obtained from the European

Nucleotide Archive; study: ERP006191; sample
group: ERG001740; reads: ERR953477–ERR953516
(http://www.ebi.ac.uk/ena/data/view/ERP006191).

3. Complete genome sequence with annotations for
Pseudomonas aeruginosa LESB58 was obtained from
NCBI RefSeq: NC_011770.1 (http://www.ncbi.nlm.
nih.gov/nuccore/NC_011770.1).

4. Complete genome sequence with annotations for
Pseudomonas aeruginosa LESlike7 was obtained fromReceived 3 September 2015; Accepted 15 January 2016
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NCBI RefSeq: NZ_CP006981.1 (http://www.ncbi.nlm.
nih.gov/nuccore/NZ_CP006981.1).

5. The Python package ‘Bacterial and Archaeal Genome
Analyser’ (BAGA) can be used to download the data,
and reproduce most of the analysis, tables and figures.
The most recent version is available from the GitHub
repository: https://github.com/daveuu/baga; release
version 0.2: http://dx.doi.org/10.6084/m9.figshare.
2056350

6. A script to reproduce the analysis using BAGA is
available via FigShare: http://dx.doi.org/10.6084/m9.
figshare.2056359

7. A script to reproduce the benchmarking of
variant calling using BAGA is available via FigShare:
http://dx.doi.org/10.6084/m9.figshare.2056365

8. Variants called against the Pseudomonas aeruginosa
LESB58 and LESlike7 genomes and for benchmarking
are available as VCF files via FigShare: http://dx.doi.
org/10.6084/m9.figshare.2056326

9. Variants called against the Pseudomonas aeruginosa
LESB58 and LESlike7 genomes and for benchmarking
are available as CSV files via FigShare: http://dx.doi.
org/10.6084/m9.figshare.2056356

10. The multiple sequence alignments from which the
phylogeny and recombination were inferred are avail-
able via FigShare: http://dx.doi.org/10.6084/m9.
figshare.2056344

Introduction

People with cystic fibrosis (CF) are susceptible to a range of
bacterial airway infections, most commonly due to
Pseudomonas aeruginosa, which once established are difficult
to clear. Damage to lung tissue caused by these chronic infec-
tions is a major cause of patient morbidity and mortality.
A number of studies have used analyses of sequentially
sampled single-isolate genome sequences obtained over
many years fromCF patient sputum to characterize adaptive
evolution during chronic infection (Smith et al., 2006;
Cramer et al., 2011; Marvig et al., 2013). However, recent
studies have demonstrated that there is considerable pheno-
typic and genomic diversity within single populations of
P. aeruginosa in the CF lung (Mowat et al., 2011;Workentine
et al., 2013;Williams et al., 2015).Darch et al. (2015) reported
large trade-offs in virulence factors, quorum sensing signals
and growth amongst CF lung P. aeruginosa. Notably, they
discovered that when multiple isolates were mixed together,
resistance to antibiotics increased significantly. As this diver-
sity impedes accurate diagnosis and treatment, there is an
urgent need to understand the mechanisms by which these
complex population structures have evolved.

Although most patients become infected with a
P. aeruginosa strain from the environment, transmissible
strains can lead to cross-infection between CF patients
(Winstanley et al., 2009; Fothergill et al., 2012). In the

UK, the most abundant single lineage associated with
chronic lung infections with CF patients is the Liverpool
Epidemic Strain (LES) (Fothergill et al., 2012; Martin
et al., 2013). Recent reports by Darch et al. (2015) and
Williams et al. (2015) estimated the amount of genetic
exchange by homologous recombination in populations of
the P. aeruginosa LES from chronic infections of CF airways.
Both studies sequenced genomes of multiple contemporary
isolates from individual patient sputum samples, but
whereas Darch et al. (2015) inferred high rates of recombi-
nation correlated with phenotypic diversity, Williams et al.
(2015) reported much lower rates, implying a larger role for
spontaneous mutations in generating diversity.

In this study, we describe a novel and easily reproducible ana-
lysis ofwhole-genome short reads from theDarch et al. (2015)
and Williams et al. (2015) papers to estimate recombination
rates amongst P. aeruginosa LES populations during chronic
infection of the airways of two CF patients. We conclude
that differences in the bioinformatic analyses can explain
the contradictory findings between the two studies and that
although recombination occurs, it is not the major driver of
the population heterogeneity observed amongst infecting
populations of P. aeruginosa in these patients.

Methods

The whole variant calling bioinformatic analysis pipeline
can be conveniently reproduced using the freely available
‘Bacterial and Archaeal Genome Analyser’ (BAGA) com-
mand line tool and Python 2.7 package, tested on Linux.
See Data Bibliography for commands to reproduce the
analysis and benchmarking. Each set of short reads was
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Rapid pathogen evolution within chronic infections is
a major health concern. The resulting high levels of
genetic diversity within patients can make infections
harder to diagnose and treat. Understanding the gen-
etic mechanisms by which this genetic diversity is
generated is therefore vitally important. Two recent
studies using genomics to analyse populations of
Pseudomonas aeruginosa causing chronic airway infec-
tions in cystic fibrosis patients reported conflicting
findings. Estimates of the contribution of genetic
exchange by homologous recombination, a process
that could potentially accelerate pathogen adaptive
evolution by generating diversity, differed between
the two reports. We applied a new analytical approach
to the genome data from these studies that, by inclusion
of a stringent data-filtering regime, was designed to
improve accuracy. In both sets of data, we found
similarly low rates of genetic exchange. This suggests
that de novo mutation, not genetic exchange, is the
primary mechanism driving evolutionary diversifica-
tion of bacterial populations in these chronic infections.
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aligned to two reference genomes: P. aeruginosa LESB58
(Winstanley et al., 2009) and LESlike7 (Jeukens et al., 2014).
Variants were called using the Genome Analysis Toolkit
(GATK) HaploTypeCaller (McKenna et al., 2010; DePristo
et al., 2011; Van der Auwera et al., 2013). Two novel variant
filters were developed to mitigate false-positive variants at
regions likely to be affected by rearrangements between a
sample and the reference and repeat regions in the reference.
Variants were validated by confirming their existence in con-
tigs generated by de novo assembly of the small subset of
reads aligning to regions around variants using SPAdes
(Bankevich et al., 2012). The accuracy of the pipeline was
benchmarked using simulated reads containing known
variants using GemSIM (McElroy et al., 2012). See online
Supplementary Material for further details.

Results and Discussion

Both populations exhibit similarly low rates of
recombination

This analysis incorporates genomic short read Illumina
data from two previous studies. All short read data from

the Darch et al. (2015) report were included, representing
22 of the P. aeruginosa isolates obtained from a single
sputum sample from a chronically infected CF patient at
a Nottingham clinic. These will be referred to as the
Nottingham data. A subset of the short read data from
the Williams et al. (2015) report, that sequenced from 40
P. aeruginosa isolates obtained from the patient ‘CF03’
sputum sample, were incorporated and will be referred
to as the Liverpool data. Differences in the methods of
the two previous papers are summarized in Fig. 1.

In the present analysis, 270 SNPs and 60 indels were called
between the Liverpool sequences and the LESB58 reference
sequence compared with 251 SNPs and 49 indels reported
previously (Williams et al., 2015). For the Nottingham
sequences, 129 SNPs were called. This is similar in quantity
to a set of 121 SNPs reported by Darch et al. (2015) from
short read alignments. Of the 129 SNPs called here, 37 were
polymorphic amongst the samples, in contrast to 78 in the
Darch et al. (2015) data. Tables S1–S3 list the totals of the
different classes of variants and the effects of variant filters
(see Data Bibliography items 8 and 9 for tables containing
each variant). The congruity between SNPs called in this

Fig. 1. Comparison of stages of bioinformatic analyses in this and the two previous studies (Darch et al., 2015; Williams et al., 2015).
The relevant aim of each analysis was estimation of recombination rates amongst P. aeruginosa isolates from short read whole-genome
shotgun sequencing data.
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analysis and those reported by Darch et al. (2015) is low
(Fig. 2), although 41 within-sample SNPs in the latter
were called as fixed here. Several variants were called in
both studies but subsequently filtered by our novel algo-
rithms. Most were adjacent to prophage in the reference
that were missing in the samples or at repetitive regions
associated with paired reads mapping with unexpected sep-
aration distances (Fig. 3). Additionally, the previous study
reported an absence of insertions or deletions causing
frameshifts in protein-coding regions either amongst, or
compared with the reference sequence, which is atypical
for P. aeruginosa isolated from chronic CF airway infec-
tions (Rau et al., 2010; Marvig et al., 2013). In this analysis,
eight protein-coding regions were polymorphic for
frameshift indels amongst the Nottingham isolates:
PLES_RS00075, PLES_RS001530, PLES_RS05000 (mpl),
PLES_RS06070, PLES_RS12750, PLES_RS15875 ( pslJ),
PLES_RS18160 (mltD), PLES_RS18915 (stk1). A further
six were fixed relative to the reference genome (LESB58):
PLES_RS02170 (mexB), PLES_RS16380, PLES_RS25200
(ampD), PLES_RS27535, PLES_RS28165 and PLES_
RS30445 (Table S4). In total, 37 indels were inferred in
the Nottingham isolates relative to LESB58, 22 of which
were polymorphic amongst them.

The overall higher number of variants, particularly indels,
reported in the present analysis might reflect improved
sensitivity of the newer GATK HaploTypeCaller module
(McKenna et al., 2010) over the GATK Unified Genotype
caller used by Williams et al. (2015) and SAMTools
(Li et al., 2009) used by Darch et al. (2015). This character-
istic has been demonstrated in previous benchmarking
reports (Chapman, 2014). The joint genotyping performed
in the GATK-based analyses, where information across
samples is combined, might also have contributed to the
incongruence with the Darch et al. (2015) results.

Phylogenetic reconstruction (Fig. 4) recovered the two dis-
tinct lineages in Liverpool patient CF3 reported previously
(Williams et al., 2015) and a single lineage of lower diver-
sity from the Nottingham data. Despite some differences in
bioinformatics (Fig. 1), the topology within each Liverpool
lineage was similar to that reported previously (Williams
et al., 2015) with an unweighted Robinson–Foulds distance
of 44 between trees with 79 bipartitions (Robinson &
Foulds, 1981). The topology within the 22-isolate Notting-
ham lineage was entirely incongruent to that reported by
Darch et al. (2015): these trees with 43 and 41 bipartitions
each differed by a distance of 42. This metric is the sum of
the edges present in one tree but not the other and vice
versa. In the latter case, 42 is the maximum distance
given the number of tips and resolution of each topology
i.e. the topologies could not be more incongruent.

Recombination was inferred using BRAT NextGen
(Marttinen et al., 2012) and, for importations only,
ClonalFrameML (Didelot & Wilson, 2015). Amongst the
22 Nottingham genomes analysed together, BRAT NextGen
detected a single region from 433 989 to 2 386 565 bp
imported by one isolate (SED5). ClonalFrameML did not
detect any imported regions. BRAT NextGen analysis of
the combined Liverpool and Nottingham data yielded
nine distinct origins of foreign genomic segments amongst
the 62 sequences, with a single region of common origin
amongst all 22 Nottingham isolates. ClonalFrameML
reported six haplotypes (distinct chromosome regions),
totalling 2134 bp with eight individuals, extant or ancestral,
affected. These are indicated in Fig. 4 and have only two
regions, close to 0.8 Mb in the larger Liverpool clade, that
are in partial agreement with the BRAT NextGen analysis.
Thus, the present analysis indicates the Liverpool and
Nottingham data sharing similarly low rates of recombina-
tion, and does not corroborate the high rates of homo-
logous recombination for P. aeruginosa in chronic CF
lung infections reported by Darch et al. (2015).

Potential causes of incongruity between studies

Recombination detection sensitivity decreases with diver-
sity (Marttinen et al., 2012); thus, the lower recombination
rate inferred here can be partly explained by the fewer
variants found in this study than in Darch et al. (2015):
37 versus 78 SNPs. However, in addition to read mapping,
multiple sequence alignment of short read de novo assem-

Fig. 2. Congruity between two independent variant calling
analyses on the same dataset.
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blies of the 22 genome sequences yielded a nearly 40-fold
larger set of 1436 SNPs in the Darch et al. (2015) study
(Fig S2). This high-diversity SNP collection was used for
BRAT NextGen analysis, indicating many more historical
recombination events. Multiple sequence alignment of
de novo assemblies is a more complex problem to solve
than short read mapping. With more complexity, errors
in each of the assemblies might have compounded errors
of multiple alignment, i.e. false-positive SNPs. Alterna-
tively, the short read mapping approaches might have
missed many true-positive variants, including those in
variably present chromosome regions that cannot be
aligned to the LESB58 reference sequence. We quantified
missing regions by de novo assembly of reads that did
not align or aligned poorly for each isolate genome: on
average 38 kb amongst 25 contigs. Thus, the read mapping
approach missed 0.57% of each genome, consistent with a
pan-genome analysis by Darch et al. (2015) that indicated
only three genes missing in the reference and present in
more than one isolate. Furthermore, their BRAT NextGen
analysis indicated recombinant regions along the whole

genome length. Thus, it seems most variants are likely to
be in regions tested by the read mapping approaches.

We also performed a series of benchmarking and vali-
dation tests on our variant calling approach.
In simulated reads from LESB58 genome sequences with
known variants added in silico, all SNPs were called cor-
rectly with no false positives (Table 1). Darch et al.
(2015) reported no indels, whereas the present analysis
found several. Across our 10 simulations, 295 out of 300
indels were correct within 2 bp. In simulations 5–10,
large deletions were added to simulate absence of LESB58
Genomic Island 5 and prophage 5. Polymorphic false-posi-
tive insertions were called by GATK, but correctly filtered
by our novel ‘rearrangements’ filter.

We validated each SNP by performing de novo assemblies of
the reads aligned to the same region and checking the
resulting contigs for the variant. Our novel ‘rearrangements’
and ‘repeats’ filters improved variant corroboration from
88–98 to 97–100%; thus, they apparently omitted false-posi-
tive SNPs called in short read alignments but absent in the

Fig. 3. Sequence repeat units in P. aeruginosa LESB58 that have disrupted paired short read alignments for a closely related isolate.
Light grey is depth of aligned reads designated in a ‘proper pair’ by the aligner algorithm; dark grey, stacked above light grey, is depth of
reads not in a proper pair. Light green is the ratio of reads not in a proper pair to those in a proper pair; dark green is this ratio ‘smoothed’
by averaging over a 500 bp moving window. Read mapping for variant calling assumes a one-to-one orthologous relationship between
sample and reference genome. The proportion of proper pair aligned reads decreases where this orthologous relationship breaks down at
areas of chromosomal rearrangement or when the orthology becomes ambiguous, such as repeat regions. Variants called within a zone
where the smoothed average ratio exceeds a threshold of 0.15, highlighted in red, have a higher chance of being false positives and are
omitted. Variants are also omitted from neighbouring zones with discontinuous regions of aligned reads, highlighted in orange. Several var-
iants were filtered at this region. This region was also detected by the ‘repeats’ filter.
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contigs (Table S5). Amongst variants removed by the
‘rearrangements’ filter were seven SNPs and three indels
either side of LESB58 prophage 5 – a genomic feature
absent in the Nottingham isolates. To test whether the
filter was performing correctly in this instance, we repeated
the variant calling, but used LESlike7 instead – an alternative
reference genome without this prophage. No polymorph-
isms were called around the region in LESlike7 orthologous
to the prophage insertion site, thus validating that the filter
had removed false positives. The other novel filter was

designed to detect repeat regions in the reference genome
longer than the sequencing fragment length, which is
known to cause ambiguity in mapping reads (Olson et al.,
2015). Repeats identified included a previously documented
repeat within prophage 2 at 0.895-0.899 Mb and prophage 3
at 1.465-1.469 Mb (Winstanley et al., 2009). Nineteen SNPs
were filtered from this region that also spanned numerous
SNPs inferred as adaptive and recombinant by Darch et al.
(2015). Notably, the divergence between these repeat units
was enough to confuse the read aligner: the alignment

Fig. 4. Maximum-likelihood phylogenetic reconstruction for 63 P. aeruginosa LES isolates. All were isolated from CF patient sputa: 40
were isolated from a single sample obtained at a clinic in Liverpool, UK in 2009 (ERR953477–ERR953516) and 22 were isolated from a
single sample obtained at a clinic in Nottingham, UK in approximately 2014 (ERR453458–ERR453479). The remaining outgroup isolate,
LESB58, was isolated in 1988 in Liverpool, UK. The coloured circles indicate branches that imported DNA by homologous recombination
as inferred by ClonalFrameML. The positions in the key correspond to the LESB58 genome sequence.
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contained double the mean read depth over one region, but
very few reads at the other (Fig. 3). Furthermore, the
‘rearrangements’ filter detected the edges of the repeat
units, between which read pair members were arbitrarily
aligned, causing unexpected mapping distances. Both filters
are therefore omitting confirmed false positives or variants
at repeats indicated as unreliable because of improper
paired-readmapping. The filtering of true positives, causing
underestimation of diversity and potentially of recombina-
tion, remains a possibility. However, the benchmarking
and validation suggest this effect is small.

Conclusion

Our analysis suggests homologous recombination has
made a minor contribution to P. aeruginosa LES diversity
in two chronic CF airway infections compared with spon-
taneous mutations. Within-host adaptive evolution might
therefore be limited by the mutation rate, rather than the
effects of homologous recombination, potentially explain-
ing the prevalence of hypermutator isolates in CF clinical
samples (Oliver et al., 2000) including LES (Kenna et al.,
2007). A recent study of P. aeruginosa diversity in different
regions of chronically infected CF lungs suggests that there
exists strong spatial separation of subpopulations within
the lung (Jorth et al., 2015). Thus, genetically diverged
lineages, even if coexisting within the same lung, may
not encounter each other often enough to exchange
DNA at detectable levels. The novel variant filters allow
data-driven exclusion of probable false positives with mini-
mal intervention from the researcher. The rearrangements
filter, designed to mitigate false positives caused by missing
chromosome regions, is of particular value given the abun-
dance and rapid dynamics of prophage and genomic
islands in microbial communities (Zhou et al., 2011).
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