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Abstract

Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are

exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae

complex, which contains several major malaria vector species including An. arabiensis, are

increasingly adapting to polluted environments, this study examined the effects of larval

metal exposure on various life history traits of epidemiological importance. Two laboratory

strains of An. arabiensis, SENN (insecticide susceptible) and SENN DDT (insecticide resis-

tant), were reared in maximum acceptable toxicity concentrations, (MATC—the highest

legally accepted concentration) of cadmium chloride, lead nitrate and copper nitrate. Follow-

ing these exposures, time to pupation, adult size and longevity were determined. Larvae

reared in double the MATC were assessed for changes in malathion and deltamethrin toler-

ance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme

activity. As defence against oxidative stress has previously been demonstrated to affect the

expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dis-

mutase activity was assessed. The relative metal toxicity to metal naïve larvae was also

assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupa-

tion in SENN larvae was significantly reduced by metal exposure, while adult longevity was

not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult

insecticide tolerance was increased after larval metal exposure, and this effect appeared to

be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity.

These data suggest an enzyme-mediated positive link between tolerance to metal pollutants

and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal

pollutants may have operational consequences under an insecticide-based vector control

scenario by increasing the expression of insecticide resistance in adults.
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Introduction

Human activity has led to a large-scale increase in various environmental pollutants. Pollution

in rural areas accrues primarily from agrochemicals such as fertilizer and pesticides, but also

from domestic refuse, sewage and livestock excrement [1]. Urban pollutants arise from domes-

tic waste, traffic and industry [2]. In South Africa, like many other African countries, vital eco-

nomic activities such as artisanal gold mining and coal power stations are a major source of

pollution [3]. Pollution in rural and urban environments typically leads to an increase in heavy

metal contamination.

Mining is a source of urban metal pollution that has the potential to cause widespread con-

tamination by runoff and rainwater seepage into water systems [4]. Increased ground trans-

portation also results in increased levels of water soluble heavy metals (reviewed in [5]).

Although rural areas are not commonly associated with metal pollution, the use of phosphate

fertilizers can contribute to the increase of hazardous heavy metal trace elements [6]. In gen-

eral, metal pollution is highly pervasive wherever human activity occurs. Importantly, these

heavy metal contaminants have a tendency to pollute water sources [4] and this has numerous

environmental and public health consequences.

Members of the Anopheles gambiae species complex typically prefer to breed in open, sunlit

temporary bodies of water that are primarily unpolluted [7]. Therefore, reports of members of

this complex breeding in polluted water represent a significant biological shift in this species

[8–10]. Furthermore, this shift is not only reported in An. gambiae sensu stricto, but other

members of this species complex including An. arabiensis [11, 12]. As non-pesticidal residues

have been demonstrated to modulate detoxification enzyme capacity [13–15], as well as insec-

ticide resistance phenotypes [16], this adaption could inadvertently affect biological attributes

of epidemiological importance, such as insecticide susceptibility.

The importance of environmental pollution on pyrethroid resistance has been reviewed [2],

and metal pollution has been named as one of the most important effectors of resistance phe-

notype in urban settings. The effect of metal pollution has been examined in An. gambiae and

Aedes aegypti. Adapting to the presence of environmental metal pollutants incurs a fitness cost

to the larvae. Heavy metals arrest egg hatching and compromise the integrity of the larval peri-

trophic matrix in Ae. aegypti larvae when naïve populations are exposed [17]. It is possible to

select for metal tolerance in An. gambiae relatively rapidly under laboratory conditions [10].

However, this adaption incurs a significant biological cost, including reduced egg viability,

immature survivorship and emergence as well as reduced reproductive capacity [18].

At the molecular level, the development of tolerance to metal pollutants involves protein

induction shifts [10]. For example, the stress response genes coding glutathione S-transferase

[19], metallothionein [20] as well as mucin and α-tubulin have been associated with metal tol-

erance [17, 21, 22]. Several cytochrome P450 genes, particularly in the CYP6 class, have also

been associated with metal tolerance. The induction of these genes is sex-specific and although

the relevant genes are expressed at their lowest levels in females, the gene induction was female

specific, with males incurring a significant reduction in the expression of CYP6M2, CYP6P3

and CYP6Z1 [23].

Although adaptation to metal pollution has also been reported in An. arabiensis [11, 12],

very little work has been done on this species’ molecular response to pollution [2]. Anopheles
arabiensis is a dominant malaria vector species in southern Africa, including South Africa

[24]. The variable feeding and resting behaviours of this species presents a challenge to vector

control methods that are based on indoor applications of insecticide [25, 26]. This is because

outdoor biting and resting can lead to sustained low-level residual transmission in a control

setting [27], which threatens South Africa’s malaria elimination agenda.

Metal pollution and Anopheles arabiensis
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This aim of this study was to understand the effects of heavy metal pollution on various life

history traits as well as the expression of insecticide resistance in An. arabiensis.

Methods

Materials

All experiments were performed in the Botha de Meillon insectary, National Institute for

Communicable Diseases, Johannesburg. Basic Anopheles colony rearing and feeding condi-

tions were as described in [28]. The baseline strain used in this study was SENN, which was

colonised from Sennar, Sudan, in 1980. This strain is mostly insecticide susceptible, with low-

level permethrin resistance [29]. The SENN DDT strain was selected from the SENN strain

and has been continuously exposed to DDT since 1995. It currently displays resistance to

DDT, permethrin, deltamethrin, λ-cyhalothrin and malathion [29, 30]. Resistance in this

strain is due to elevated detoxification enzymes as well as the L1014F mutation [31, 32] Ele-

vated oxidative stress enzymes have also been implicated in the construction of the resistant

phenotype [33].

Comparative metal-induced lethality in insecticide resistant and

susceptible An. arabiensis
Three representative metals were used in this study, based on previous research [10]. Ten per-

cent stock solutions of cadmium chloride, copper nitrate and lead nitrate were prepared. The

minimum lethal concentrations of these metal salts were determined by using standard WHO

larviciding protocols [34]. As lead was significantly less toxic, a slight variation in concentra-

tion range was used to determine the lethal dose of lead nitrate, with working concentrations

of 100–16000 ppm. The specific concentrations used for these experiments are given as supple-

mentary materials. Twenty-five fourth instar larvae were used per concentration, and 4 repli-

cates were performed as per WHO recommendations. Lethal concentrations inducing 50%

mortality (LC50) were determined by Probit analysis [35], using IBM SPSS v21(IBM Corp.

Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.).

The effect of metal pollution on larval development

The development of SENN and SENN DDT larvae when exposed to metal pollutants was

assessed. Newly emerged larvae, less than 24 hours old, were exposed to the maximum accept-

able toxicant concentration (MATC) of the relevant metal salts. Larvae reared in untreated

water served as a control. MATCs for the representative metal salts were defined in [22]

(0.36μg/L for cadmium chloride, 1.86μg/L for copper nitrate and 4.39μg/L for lead nitrate). All

larvae were fed the same amount of food. Larvae were monitored until pupation, and the per-

centage of pupation on the day of maximal pupation (the day the most pupae emerged; in this

study—day 9) was determined. This study was replicated three times from three different egg

batches, resulting in a total of 9 replicates, with a concurrent control (rearing in untreated

water) with each replicate.

The effect of larval metal pollution on adult longevity

To assess the effect of larval metal pollution on subsequent adult longevity, 100 24-hour-old

SENN and SENN DDT 1st instar larvae were exposed to the MATC of cadmium chloride, cop-

per nitrate or lead nitrate, with corresponding larvae in clean water serving as a control. The

larvae were fed the same amount of food as described in [31]. Adults that were obtained from

these treatments were used for longevity assays. Thirty males and 30 females were assessed for

Metal pollution and Anopheles arabiensis
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longevity. Cadavers were removed daily, and the adults were allowed ad libitum access to

10% sucrose, but never allowed a blood meal for the course of their lifetime. Survival was mon-

itored until all individuals were dead. This experiment was replicated 3 times from 3 different

cohorts. Longevity was assessed using the Kaplan-Meier estimator with the log-rank test used

as a measure of significance.

The effect of larval metal exposure on adult size

Fifty 24-hour SENN and SENN DDT 1st instar larvae were exposed to the MATC of either

cadmium chloride, copper nitrate and lead nitrate or clean water (control). The larvae were

fed the same amount of food until emergence as adults. The adults were harvested and cold-

killed. The wings were removed and affixed to a microscope slide. Wing-length was used as a

proxy for size, with the wing measured from the wing tip to the allula [36]. Wing-length was

measured at 200x magnification. This experiment was replicated three times from three differ-

ent cohorts, and means were compared by 1-way analysis of variance.

The effect of larval metal exposure on adult insecticide tolerance

SENN and SENN DDT larvae were used in this experiment. As SENN is significantly more

susceptible to insecticides an accurate lethal dose could not be determined. As such a lethal

time approach was adopted. Due to the aforementioned difference in resistance phenotype,

different timescales were employed to determine the lethal times. Two hundred and fifty

24-hour old 1st instar larvae were reared in the MATC of either cadmium chloride, copper

nitrate or lead nitrate, with control larvae reared in untreated water. The larvae were fed the

same amount of food until pupation. Adults were harvested at 3 days, and females were not

allowed to blood feed. The adults were then subjected to CDC bottle bioassay insecticide expo-

sures to determine lethal time to 50% mortality (LT50). SENN adult females were exposed to

either 0.001% malathion or deltamethrin for 2,4, 8, 16 or 32 minutes. SENN DDT adults were

exposed to 0.01% malathion or deltamethrin for 10, 20, 40 or 80 minutes. This experiment was

replicated three times from three different cohorts. Differences in LT50 between adult cohorts

arising from pollutant treatments were compared by 1-way ANOVA.

The effect of larval metal exposure on adult enzyme activity

SENN and SENN DDT larvae were prepared as for the adult insecticide tolerance experiments.

At 3 days old, non-blood fed adult females were cold-killed. Adults were homogenised in

either PCR grade water or 0.1M Potassium phosphate pH 7.0. Haeme peroxidase, glutathione

S-transferase (GST) and α- and β-esterase activity levels were assessed in order to determine

detoxification enzyme activities in association with exposure to heavy metals. Superoxide dis-

mutase, glutathione peroxidase and catalase activities were determined as representative of

oxidative stress defence enzyme activity. Enzyme activity by treatment was determined as

described in [37]. In brief, all assays employed a calorimetric assessment of enzyme activity.

Haeme perxoxidase activity was determined by tetramethyl benzidine peroxidation, GST

activity by rate of 1-Chloro 2–4 Dinitrobenzene conjugation with reduced glutathione, and

esterase activity by quantification of the hydrolosis of α and β-napthyl acetate to α and β-

napthol. These products were spectrophotometrically quantified at 650, 340 and 575 nm

respectively. Superoxide dismutase activity was determined using a commercial kit (Sigma

Aldrich: 19160) as per manufacturers’ instructions. Glutathione peroxidase activity was deter-

mined as function of Nicotinamide adenine dinucleotide phosphate (NADPH) consumption

measured at340nm and catalase activity determined as a function of hydrogen peroxide

Metal pollution and Anopheles arabiensis
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consumption measured at 570nm. All calorimetric analysis was performed on performed on a

Multiskan Ascent 96 well plate reader (Thermo Scientific).

Results

Insecticide resistant phenotype and comparative metal lethality

SENN DDT larvae showed significantly higher tolerance to metals, as measured by differences

in lethality. The respective LC50s of SENN DDT were 409.41, 212.87 and 4349.10 parts per

million (ppm) for cadmium chloride, copper nitrate and lead nitrate respectively as opposed

to 82.93, 50.53 and 504.36ppm respectively for SENN. SENN DDT LD50 values are signifi-

cantly higher than those of SENN (1-way ANOVA: p<0.01; df = 5; F = 401) (Fig 1).

The effect of metal pollution on larval development

For both strains, maximal pupation was reached on day 9, regardless of treatment. For SENN

DDT, the mean percentage of larvae that pupated on day 9 did not differ between treatments;

Fig 1. Relative toxicity of heavy metals on insecticide resistant and susceptible Anopheles arabiensis laboratory strains. The insecticide resistant An.

arabiensis strain SENN DDT showed a significantly higher tolerance for metal exposure than the insecticide susceptible SENN strain, based on LD50s.

Copper nitrate was the most toxic metal to both strains, while both strains showed a high tolerance to lead nitrate. Significant differences (p<0.05) are

indicated by an asterisk (�).

https://doi.org/10.1371/journal.pone.0192551.g001
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control 50%, cadmium chloride 46.7%, copper nitrate 52.3% and lead nitrate 38.3% (1-way

ANOVA: p = 0.47; df = 3; F = 0.93). In contrast, while lead nitrate did not result in a significant

decrease in pupation rate compared to the control (control: 65.3%; lead nitrate: 61.0%) (2-sam-

ple t-test: p = 0.62; df = 2.4; T = 0.57), copper nitrate (47.5%) and cadmium chloride (37.3%)

treatments did result in a significant decrease in mean percentage pupation at day 9 (copper

nitrate—2-sample t-test: p = 0.03, df = 3, T = 3.90; cadmium chloride– 2-sample t-test: p<0.01,

df = 3.3, T = 9.97) (Fig 2).

The effect of metal pollution at the larval stage on adult longevity

Larval metal exposure did not have a marked effect on adult longevity. No larval metal treat-

ments affected adult longevity in SENN males (Log-rank test: p = 0.70; χ2 = 1.42; df = 3) or

SENN females (Log-rank test: p = 0.35; χ2 = 3.30; df = 3) compared to untreated controls. Sim-

ilarly, SENN DDT females were not affected (Log-rank test: p = 0.51; χ2 = 2.31; df = 3). How-

ever, adult longevity in male SENN DDT was affected (Log-rank test: p<0.01 χ2 = 17.28;

Fig 2. The effect of metal pollution on larval development in insecticide susceptible and resistant Anopheles arabiensis. SENN and SENN DDT

larvae were reared in the maximum acceptable toxicity concentration (MATC) of cadmium chloride, copper nitrate and lead nitrate. Both strains had

the highest number of pupae emerging on day 9, regardless of whether they were reared in metal polluted or untreated control water. There was

variation in the total number that pupated on day 9. Larval cadmium chloride and copper nitrate treatment significantly reduced the percentage that

pupated on day 9 in the insecticide susceptible SENN strain, but not the resistant SENN DDT strain. Lead nitrate treatment did not affect pupation in

either strain.

https://doi.org/10.1371/journal.pone.0192551.g002
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df = 3) (Fig 3A). When examining each treatment individually it was found that this effect was

not due to larval copper treatment (Log-rank test: p = 0.85; χ2 = 0.04; df = 1) (Fig 3B) or lead

treatment (Log-rank test: p = 0.85; χ2 = 0.04; df = 1) (Fig 3C). The significant change was an

increase in male longevity after cadmium treatment (Log-rank test: p<0.01; χ2 = 11.97; df = 1)

(Fig 3D).

The effect of metal pollution at the larval stage on adult size

Larval metal pollution had no significant effect on the size of SENN adults, regardless of gen-

der (1-way ANOVA: males: p = 0.85, df = 3, F = 0.26; females: p = 0.03, df = 3, F = 3.59, Tukey’s

post hoc test, no significant pairwise difference, critical Q = 3.87). In contrast, SENN DDT

adult size was affected by larval metal pollution, although it differed by gender. SENN DDT

males were not affected (1-way ANOVA: p = 0.07, df = 3, F = 2.38). Copper nitrate and cad-

mium chloride larval exposure significantly decreased adult size in females (1-way ANOVA:

p = 0.01, df = 2, F = 4.94) (Fig 4).

Fig 3. The effect of larval metal exposure on adult longevity in insecticide susceptible and resistant Anopheles arabiensis. Larval metal exposure did

not affect adult longevity in insecticide susceptible SENN males or females, and did not affect the longevity of insecticide resistant SENN DDT females.

SENN DDT males, however, did show an increase in longevity after larval metal treatment (A). That change was not due to copper nitrate (B) or lead

nitrate (C) treatment, but was due to larval cadmium treatment (D).

https://doi.org/10.1371/journal.pone.0192551.g003
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The effect of metal exposure at the larval stage on adult insecticide

tolerance

Exposure to metal pollution at the larval stage had a marked effect on subsequent insecticide

tolerance in adult mosquitoes. In the SENN DDT strain, exposure of larvae to all three metal

treatments significantly increased adult insecticide tolerance. For malathion, lead treatment

resulted in a 2.2 fold increase in LT50 (2 sample t-test: p<0.01, df = 3.8, T = -17.11), copper

treatment in a 4.0 fold increase (2 sample t-test: p<0.01, df = 2.1, T = -14.87) and cadmium in

a 5.5 fold increase (2 sample t-test: p<0.01, df = 4, T = -9.30). Similarly, for deltamethrin lead

treatment resulted in a 2.5 fold increase in LT50 (2 sample t-test: p = 0.04, df = 3.8, T = 3.96),

copper treatment in a 1.4 fold increase (2 sample t-test: p = 004, df = 5, T = -2.72) and cad-

mium in a 5.5 fold increase (2 sample t-test: p<0.01, df = 3.8, T = -6.10) (Fig 5A).

For the SENN strain, although exposure to copper nitrate did not result in a significant

increase in adult LT50 (2-sample t-test: deltamethrin- p = 0.21, df = 2.4, T = -1.71; malathion:

p = 0.13, df = 3.5, T = -1.97), cadmium chloride did result in a significant increase in LT50

(2-sample t-test: deltamethrin-p = 0.0.1, df = 5.0, T = -4.45; malathion: p = 0.02, df = 5.0, T =

-3.44), as did lead nitrate (2-sample t-test: deltamethrin- p = 0.02, df = 6.0, T = -3.19; mala-

thion: p = 0.02, df = 5.5, T = -3.49) (Fig 5B).

The effect of larval metal treatment on adult detoxification enzyme activity

The effect of larval metal treatment on subsequent adult detoxification enzyme activity was

varied. For GST activity, larval metal exposure had no effect on SENN females (2 sample t-test:

cadmium- p = 0.12, df = 43.4, T = -1.56; copper- p = 0.50, df = 45.7, T = 0.68; lead- p = 0.19,

Fig 4. The effect of larval metal exposure on adult size in insecticide susceptible and resistant Anopheles arabiensis. Although larval metal

treatment had no significant effect on adult size in the insecticide susceptible SENN strain, it did result in significant changes in the size of adults of the

resistant SENN DDT strain. SENN DDT males that emerged from larvae exposed to lead nitrate were significantly smaller than those reared in

untreated water. Similarly, SENN DDT females that eclosed from larvae that were exposed to copper nitrate and cadmium chloride were significantly

smaller than adult females reared in untreated water. Significant differences from the control (p<0.05) are indicated by an asterisk (�).

https://doi.org/10.1371/journal.pone.0192551.g004
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df = 45.8, T = 1.32) or males (2 sample t-test: cadmium- p = 0.82, df = 44.7, T = -0.22; copper-

p = 0.66, df = 46.0, T = -0.45; lead- p = 0.90, df = 45.5, T = -0.12). This was also true for SENN

DDT males (2 sample t-test: cadmium- p = 0.92, df = 45.3, T = 0.10; copper- p = 0.07,

df = 43.3, T = -1.84; lead- p = 0.41, df = 45.9, T = -0.82). There was a significant effect on

SENN DDT females where all larval metal treatments decreased GST activity (2 sample t-test:

cadmium- p<0.01, df = 46, T = 4.46; copper- p<0.01, df = 46, T = 3.83; lead- p = 0.19, df = 46,

T = 7.17) (Fig 6A).

Cytochrome P450 activity was the most affected by exposure of larvae to metals. Although

SENN males showed no significant changes (1-way ANOVA: p = 0.45, df = 3, F = 0.90), cad-

mium treatment did result in a significant increase in P450 activity in SENN females (2 sample

t-test: cadmium- p = 0.01, df = 45.3, T = -3.03; copper- p = 0.56, df = 41.6, T = -0.59; lead-

p = 0.08, df = 45.8, T = 1.18). For SENN DDT, lead treatment did not induce significant

changes, while cadmium and copper treatment resulted in significant increases in enzyme

activity in females (2 sample t-test: cadmium- p = 0.03, df = 43.9, T = -2.19; copper- p<0.01,

Fig 5. The effect of larval metal exposure on the insecticide tolerance of insecticide susceptible and resistant Anopheles arabiensis females. Larval

metal exposure resulted in increased tolerance of malathion and deltamethrin in the insecticide resistant SENN DDT strain. All larval metal treatments

resulted in a significantly increased lethal time (LT50s) in adult females (A). Larval treatment with cadmium chloride and lead nitrate resulted in a

significant increase in malathion and deltamethrin tolerance of adult females of the insecticide susceptible SENN strain. Copper nitrate did not result in

a change in tolerance to either insecticide in the SENN strain. Significant changes from the control (p<0.05) are indicated by asterisk (�).

https://doi.org/10.1371/journal.pone.0192551.g005
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df = 43.1 T = -4.04; lead- p = 0.82, df = 44.6, T = 0.22). Although cadmium treatment did not

increase P450 activity in females, copper and lead treatment did result in an increase in

enzyme activity (2 sample t-test: cadmium- p = 0.35 df = 45.54, T = -0.94; copper- p<0.01,

df = 45.9, T = -4.33; lead- p<0.01, df = 42.9, T = -3.32) (Fig 6B).

Alpha esterase activity was not affected by larval treatment with metals in either of the

strains (1-way ANOVA: SENN males—p = 0.20, F = 1.56, df = 3; SENN females—p = 0.12,

F = 1.99, df = 3; SENN DDT males—p = 0.14, F = 1.89, df = 3; SENN DDT females—p = 0.20,

F = 1.56, df = 3). Beta esterase activity was not increased in SENN males (1-way ANOVA:

p = 0.14, F = 1.82, df = 3) or SENN DDT females (1-way ANOVA: p = 0.09, F = 2.27, df = 3).

In contrast, larval metal treatment did increase beta esterase activity in SENN females (1-way

ANOVA: p = 0.02, F = 3.85, df = 3) and SENN DDT males (1-way ANOVA: p = 0.01, F = 4.24,

df = 3).

Fig 6. The effect of larval metal exposure on the detoxification enzyme activity of insecticide susceptible and resistant Anopheles arabiensis adults.

Glutathione S-transferase (GST) activity was significantly decreased in SENN DDT females after all metal treatments, but no other treatments resulted

in changes in GST activity (A). Cytochrome P450 activity, however, was significantly affected by certain treatments. SENN females showed a significant

increase in activity after larval cadmium exposure. SENN DDT adult males showed significantly increased P450 activity after larval copper nitrate and

lead nitrate exposure, while SENN DDT female enzyme activity was significantly increased after cadmium chloride and lead nitrate exposure (B).

Neither α-esterase activity (C) nor β-esterase activity (D) was significantly altered in adults after larval metal exposure. Significant changes from control

treatment (p<0.05) are indicated by asterisk (�).

https://doi.org/10.1371/journal.pone.0192551.g006
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The effect of larval metal treatment on adult oxidative stress enzyme

activity

Larval metal exposure did not have a significant effect on the catalase activity of SENN females

(1-way ANOVA: p = 0.13, df = 3, F = 1.95) or males (1-way ANOVA: p = 0.18, df = 3,

F = 1.65). Similarly, SENN DDT males did not show increased catalase activity (1-way

ANOVA: p = 0.31, df = 3, F = 1.21). In contrast, SENN DDT female catalase activity was

strongly affected by larval cadmium and copper exposure (1-way ANOVA: p<0.01, df = 3,

F = 138), but not lead exposure (1-way ANOVA: p = 0.24, df = 1, F = 1.42) (Fig 7A).

Larval metal exposure variably affected Glutathione peroxidase activity. For the SENN

strain peroxidase activity was decreased in males (1-way ANOVA: p<0.01, df = 3, F = 8.61)

and females treated with copper and cadmium (1-way ANOVA: p<0.01, df = 2, F = 10.0), but

not lead (1-way ANOVA: p = 0.19, df = 1, F = 1.77). In contrast, peroxidase activity was varied

in SENN DDT. For SENN DDT males, lead and cadmium treatment did not have a significant

effect on peroxidase activity (1-way ANOVA: p = 0.78, df = 2, F = 0.25), but larval copper treat-

ment resulted in a significant decrease (1-way ANOVA: p = 0.05, df = 1, F = 3.84). For SENN

DDT females, cadmium treatment did not have a significant effect on peroxidase activity

(2-sample t-test: p = 0.39, df = 46, T = 0.86), but copper treatment did result in a significant

increase in activity (2-sample t-test: p = 0.02, df = 46, T = -2.41) as did lead treatment (2-sam-

ple t-test: p<0.01, df = 46, T = -6.07) (Fig 7B).

Superoxide dismutase activity was most affected by larval metal treatment. For SENN

females, cadmium treatment did not have a significant effect (2-sample t-test: p = 0.39, df = 46,

T = -0.86), while copper and lead treatment resulted in a significant increase in peroxidase

activity (1-way ANOVA: p<0.01, df = 2, F = 35.9). For males, all three lead treatments resulted

in a significant increase in enzyme activity (1-way ANOVA: p = 0.02, df = 3, F = 3.41). Simi-

larly, all three metal treatments significantly increased peroxidase activity in both SENN DDT

males (1-way ANOVA: p<0.01, df = 3, F = 12.6) as well as females (1-way ANOVA: p<0.01,

df = 3, F = 6.28) (Fig 7C).

Discussion

Metal pollution is one of the most important anthropogenic pollutants Anopheles mosquitoes

are exposed to, both in urban and rural areas. Members of the Anopheles gambiae complex are

known to breed in unpolluted, temporary bodies of water [7]. These include important malaria

vector species that have adapted to these polluted environments [8, 11, 12] and these adapta-

tions are likely to affect life history traits of epidemiological importance [2, 13].

The concentrations of the metals chosen in this study represent amounts that are legally tol-

erable tolerated in water bodies, showing that even these amounts exert a significantly measur-

able biological effect on vector mosquitoes i.e.in water bodies. data from this study suggest that

increased pollution augments the expression of insecticide resistance in resistant populations.

Although this study did not show an overall effect on adult longevity which is therefore

unlikely to affect transmission dynamics [38, 39], the data do indicate that insecticide resistant

individuals are advantaged under polluted conditions owing to their enhanced detoxification

capabilities. This is because insecticide resistant mosquitoes have a higher capacity to cope

with pollutants as demonstrated by significantly higher lethal doses of all three metals. This

confirms the findings of Poupardin et al. [13]. Importantly, besides being able to survive higher

doses of larval metal exposure, insecticide resistant mosquitoes also do not show increased

costs to fitness (such as reduced adult longevity) following exposure to metal pollutants as

compared to insecticide susceptible mosquitoes [40]. This dynamic suggests that metal-pol-

luted environments may inadvertently select for or enhance resistance to insecticides in vector
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populations, which could affect subsequent malaria transmission intensity in insecticide-based

control settings depending on the strength of the resistance phenotypes concerned.

In terms of life history traits there appears to be a size trade-off in adult insecticide resistant

individuals which do not appear to be associated with decreased larval development time i.e.

Fig 7. The effect of larval metal exposure on the oxidative stress enzyme activity of insecticide susceptible and resistant Anopheles arabiensis
adults. Larval metal exposure had a highly variable effect on the three classes of oxidative stress defence enzymes. Catalase was least affected by larval

metal exposure, with only SENN DDT females showing increased activity after larval copper nitrate and cadmium chloride exposure (A). Glutathione

peroxidase activity showed the greatest variability after larval metal treatment. In the insecticide susceptible SENN strain, all three larval metal

treatments significantly decreased peroxidase activity in adult males. In SENN females, although copper nitrate treatment significantly decreased

peroxidase activity, cadmium treatment significantly increased adult peroxidase activity. In contrast, larval metal treatment had no effect on adult

peroxidase activity in males of the resistant SENN DDT strain, while lead nitrate treatment resulted in a significant increase in activity in females (B).

Superoxide dismutase activity was the most uniformly affected, with only lead treatment failing to elicit a significant increase in superoxide dismutase

activity (C). Significant changes from the control (p<0.05) are indicated by an asterisk (�).

https://doi.org/10.1371/journal.pone.0192551.g007
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insecticide resistant mosquitoes that eclose from pollutant exposed larvae are generally smaller.

The direct effect of this size differential on malaria transmission is unclear because there are

hypotheses that suggest that smaller adults blood feed more frequently (so as to augment their

energy reserves and complete their gonotrophic cycles) causing a higher intensity of transmis-

sion, as opposed to larger adults that may feed less frequently but are also longer-lived, thereby

increasing their transmission potential. [36, 41–44]-44]

It is worth noting that the increased tolerance to insecticide following metal pollutant expo-

sure in both insecticide resistant and susceptible strains mirrors findings from Kenya where

the presence of lead correlated positively with the presence of An. gambiae and Ae. aegypti lar-

vae [10]. The high lethal doses tolerated by An. arabiensis, as well as the fact that lead does not

affect larval development while augmenting insecticide tolerance, is an important consider-

ation because lead exposure generally affects crucial life history traits in exposed mosquitoes.

When examining the biochemical basis of these responses, it appears that the key detoxifi-

cation enzymes are the cytochrome P450s and β-esterases. No significant changes were noted

in the α-esterases following exposure to metal pollutants and the only significant change in

GST activity was decreased activity in insecticide resistant females. Beta esterases were not

affected in the insecticide susceptible strain, but increases were noted in males and females of

the resistant strain. For the cytochrome P450s, cadmium exposure induced an increase in the

activity of insecticide susceptible females. For insecticide resistant mosquitoes, two of three

treatments increased cytochrome P450 activity in both males and females. Cytochrome P450

activity is crucial in metal tolerance. Metal tolerant An. gambiae females generally showed

increased CYP6 expression, while males typically showed decreased CYP6M2, CYP6P3 and

CYP6Z1 expression [23]. It is important to note that the data from this study was obtained

from metal naïve populations as opposed to metal tolerant strains, in contrast to the Musasia

et al. [23] study. This study suggests that an interplay between the Phase I enzymes the β-ester-

ases and the cytochrome P450 proteins may be the key mediators in increased insecticide tol-

erance in adults eclosed from larvae exposed to metal pollutants.

Oxidative stress defence plays an important role in insecticide resistance [30, 45] with

increased oxidative stress defence playing a key role in insecticide tolerance [33]. Understand-

ing the effect that larval metal pollution has on adult oxidative stress response is therefore

important, not only because of the potential effect on the expression of insecticide resistance

in adult mosquitoes, but also because metal pollution is also a major source of oxidative stress

in numerous organisms [46]. Glutathione peroxidase activity displayed a sex-specific induc-

tion in adults after larval metal exposure. While pollutant exposure reduced peroxidase activity

in susceptible males, it increased the activity in females. Similarly, in resistant females, activity

was significantly increased, while no changes were noted in males. Superoxide dismutase activ-

ity was increased in all treatments except cadmium treatment in susceptible females. Increased

defence against oxidative stress following exposure to metal pollutants likely advantages adult

mosquitoes in an insecticide polluted environment because defence against oxidative damage

also inadvertently leads to enhanced expression of certain insecticide resistance phenotypes

via increased expression of GSTs [33].

It is concluded from this study that there is an enzyme-mediated positive link between tol-

erance to metal pollutants and insecticide resistance in adult An. arabiensis mosquitoes. Fur-

thermore, exposure of larvae to metal pollutants may have operational consequences under an

insecticide-based vector control scenario by increasing the expression of insecticide resistance

in adults, and by affecting certain life history traits. Of the three metals examined, copper

nitrate was the most toxic, while neither insecticide resistant nor susceptible larvae were

unduly affected by exposure to lead.
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