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Abstract: Parental behaviour is a comprehensive set of neural responses to social cues. The neural
circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin
concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been
confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing.
Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male
mice. To understand the mechanism and function of neural networks underlying parental care
and aggression against pups, it is essential to understand the basic organisation and function of
the involved nuclei. This review presents newly discovered aspects of neural circuits within the
hypothalamus that regulate parental behaviours.
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1. Introduction

Maternal behaviour is a distinct sex-related factor in mammalian reproduction. Fe-
males exhibit maternal care after parturition, while males who encounter pups engage in
infanticide [1–3]. These behaviours depend on sexually dimorphic features of the brain
shaped by the effects of gonadal steroid hormones [4–7] and sex chromosomes [8–10]. It is
also proposed that epigenetic modifications, i.e., DNA methylation and histone acetylation
may regulate gene expression associated with brain sexual differentiation [11]. Brain dif-
ferentiation between the sexes occurs early in development, during the so-called ‘critical’
period, leading to differences in neural circuits, endocrine systems and behaviours [12,13]
that persist throughout the life of the animal. Gonadal steroids act on the molecular and
cellular levels to influence the neural structure and function of the brain. Males are exposed
to testicular steroids during this critical neonatal period, resulting in brain masculini-
sation. In the absence of testicular steroids, the brain is feminised. The differences in
sex-dependent reproductive behaviour are assumed to result from these differences in
exposure to gonadal steroids during the critical period. Parental care is a reproductive
behaviour that can change even in adults in response to alterations in the endocrine milieu
or social impetus. In rodents, parturient females display maternal care; virgin females,
who are less interested in pups and maternal care, are easily motivated after priming with
several exposures to pups [1]. While virgin males sometimes engage in infanticide [3],
males that are mating with gestating females exhibit parental behaviour [2,3]. Hormonal
circumstances change in adult females, dynamically altering serum oestrogen levels. In
female mice, inhibition of oestrogen receptor α in the medial preoptic area results in the
absence of maternal behaviours [14]. However, oestrogen replacement therapy in adult
male mice has no effect on their parental behaviours (unpublished data). Therefore, the
administration of hormones is not sufficient to induce parental behaviour.

In the author’s previous study, the social isolation of virgin mice induced parental
behaviour in both sexes [15]. In addition, changing the social context has consequences
on certain parental behaviours, such as males exhibiting parental nursing behaviour or
females ignoring pups. Although sex-dependent behaviours arise from differences in brain
differentiation, these behaviours are presumably open to alteration by social stimuli. These
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results suggest that the neuronal pathways involved in parental behaviour retain a high
proportion of plasticity, even in adults.

2. Parental Behaviour in Male Mice

Male mice who have mated and then cohabitated with gestating and delivering fe-
males have been observed to repress attacking pups and to exhibit parental behaviour [2].
We previously observed that parental behaviour in both virgin male and female mice
was induced by a very long period of social isolation. Social isolation prompts parental
behaviour in both sexes [15]. Studies have reported that social isolation can be a stress-
ful situation in rodents [16–20] and arise as a result of various behavioural changes, i.e.,
enhanced aggression [19], depression-like behaviour [20] and levels of impulsivity [19].
Moreover, social isolation changes various behaviours, such as aggressive or depression-
like behaviour [21,22]. Aggression using the resident-intruder test [22] revealed that
single-housed male mice showed more aggressiveness towards the intruder male mice
than the group-housed mice [23]. It is still controversial that isolation stress enhances
aggressive behaviour; however, it reduces the attacking of pups. These results suggest
that neural circuits in these events differ because of the distinct functional significance
in social behaviour. The synaptic machinery of the brain circuits involved in parental
behaviour change in response to social conditions. Social isolation in animals and humans
is considered as an intensive stressor, which impairs learning. Social isolation is thought to
induce changes in social behaviour by inducing neuroanatomical changes that alter the
function of the neuroendocrine system. Neuronal plasticity and synaptic remodelling of
the nervous system are retained in adulthood under certain conditions, such as isolation
stress [16–21,24–26]. In our previous study on MCH-tTA; TetO DTA bigenic mice, +/+
bigenic virgin males with abolished MCH neurons were more aggressive towards pups
presented as well as intruder males than the +/− controls. Therefore, the possible involve-
ment of neural circuits for aggressiveness towards pups and intruder males is identical to
that of responsiveness, including the MCH neuronal activity. Social isolation elicits presy-
naptic remodelling in the nucleus accumbens (NAc) neurons, including synaptic plasticity
in emotional behavioural responses [27], and changes the synaptic neurotransmission of
receptor subtypes in the dorsal raphe nucleus, resulting in altered neuroplastic connectivity
regarding social rewards [28].

3. Evidences of Neuromolecular Regulation of Parental Behaviour

The medial preoptic area (mPOA) [1–3] and anteroventral periventricular nucleus [29]
are critical components of the neural system governing parental behaviour. Candidate reg-
ulators of parental behaviour include neuropeptides galanin [30] and oxytocin (OT) [31,32].
Tyrosine hydroxylase is involved in maternal behaviour in females but not in males [29].
Galanin is expressed in the mPOA neurons, which are activated in both sexes by parenting
episodes involving pup grooming and retrieval behaviour [3]. OT-secreting neurons in the
paraventricular nucleus (PVN) play a crucial role in the onset and maintenance of maternal
behaviour in rodents. OT is subjected to nursing and facilitated parental behaviour [32,33],
and it then becomes feasible in participating with the auditory cortex in responding to pup
calls [31]. In humans, OT release [34] and OT itself improved parenting [35] in terms of the
formation of social memory [36,37].

4. Involvement of MCH Neurons in Parental Care

Projections from the PVN posterior to the lateral hypothalamic area (LHA) regulate
the melanin concentrating hormone (MCH) neurons [38], a neuromodulator that integrates
physiological functions [39–55]. Neural projection from OT neuron in PVN to MCH neuron
in LHA [38], which expresses OT receptor [38,50], is involved in mating, parenting and
social cognition. Moreover, the MCH receptor (MCHR) [51] is distributed throughout
the area that regulates reward including the NAc [47]. The MCHR distribution correlates
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with oxytocinergic projection and may be involved in the emotional reinforcement of
rewards [48].

The MCH, a 19-aminoacid cyclic peptide, was first characterised in salmon pituitary
extracts as a circulating factor that mediated colour changes in teleost fishes [56]. MCH is
distributed in the lateral hypothalamus, dorsomedial hypothalamus and zona incerta [57].
In mammals, MCH neurons play a crucial role as neuromodulators that integrate physiolog-
ical functions involving energy balance [39–41], sleep [42,49,50], olfaction [43], anxiety [44]
reward [45–48], and cognition [48,49]. The ablation of MCHR affects maternal behaviours,
especially impaired retrieving pups and increased attacking pups [58].

5. Effect of Congenital Ablation of MCH on Nursing Behaviour

Higher expression of the immediate early gene c-fos in the MCH neurons was observed
in virgin female and male ddN mice that showed nursing crouching behaviour than in
those that ignored their pups after social isolation [59]. To determine the neural rudiment
governing nursing behaviour, studies have been conducted in MCH-neuron knockout
animals, such as MCH-tTA; TetO diphtheria toxin A fragment (DTA) bigenic mice [59] using
the tet-off system (Figure 1). MCH neurons are specifically ablated in MCH-tTA; TetO
DTA +/+ bigenic mice, with the orexin neurons intact. The bigenic MCH-tTA; TetO DTA
+/+ bigenic female mice had a lower pup survival rate than did MCH-tTA; TetO DTA
+/− bigenic controls. The body weight of MCH-tTA; TetO DTA +/+ bigenic mice was
significantly lower in both sexes because of the physiological role of MCH neurons in food
intake [39] and energy metabolism [40,41]. No difference in food intake (Kcal/day) was
observed between MCH knockout mice and wild type controls [60]. The locomotor activity
of MCH knockout mice is significantly elevated as compared with controls, resulting in
reduced weight gain as a consequence of increased energy expenditure [59]. The virgin
MCH-tTA; TetO DTA +/+ bigenic females display less maternal care in regard to crouching
behaviour comparable to that of MCH-tTA; TetO DTA +/+ bigenic mothers (X2 = 11.29,
df = 1, p = 0.001), whereas virgin +/+ bigenic males exhibit aggressiveness toward their
pups (Figure 2). However, no significant difference in retrieving behaviour was observed.
Together, these findings indicated that the MCH neurons play a pivotal role in parental
nursing behaviour in mice.
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Figure 2. Cell-specific ablation of MCH neurons impairs nursing behaviour in both virgin female and
male mice. Percentage of parental behaviour or attack pups of virgin MCH-tTA; TetO DTA bigenic. +/+
and +/− female (left) and male (right) mice. The ratio of parental behaviour (crouching) in female mice
was analysed by Chi-squared test; X-squared = 9.56, df = 1, p = 0.002 (From Kato et al. [59]).

6. Effect of Optogenetic Stimulation Intensity on Behaviour

The nursing crouching behaviour was elicited by low-frequency (473 nm, 10 ms, 0.5 Hz,
1 mW) photo-stimulation through the optic fibres present in both sexes of channelrodopsin
2 (ChR2)-expressing MCH-Cre mice [59]. In contrast, no parental behaviour was observed,
in response to applied laser pulsed similar to the condition of rapid eye movement (REM)
sleep (475 ± 17.5 nm, 2.5 mW,10 ms, 10 Hz) [42]. The condition of the parental nursing
behaviour was a low-frequency stimulation (473 nm, 10 ms, 0.5 Hz, 1 mW), whereas that
of REM sleep induction was a high frequency stimulation (475 ± 17.5 nm, 2.5 mW, 10 ms,
10 Hz). ChR2-positive MCH neuron was denoted c-fos expression in the condition of
animals exhibiting parental nursing behaviour. In animals exhibiting crouching behaviour,
about 40% of the MCH neurons expressed ChR2, and 10% of the ChR2-positive MCH
neurons expressed c-fos [59]. A previous study of the ventromedial hypothalamus (VMH)
showed that mounting and attacking intruder males were elicited by different intensities of
the oestrogen receptor 1 (Esr1) in the ventromedial nucleus [61,62]. Optogenetic induction
of attack requires the presence of more Ers1 cells containing ChR2 than does the induction
of mounting behaviour. Therefore, optogenetic stimulation might coordinate the threshold
activity more robustly and coincide with tuned cells, inducing either attack or opposing
other behaviours. The number of Esr1 cells expressing ChR2 and c-fos was much higher in
case of induction of attack than that in case of mounting behaviour. These findings suggest
that each behaviour is dependent on the frequency and intensity of photo-stimulation.
Therefore, the type of behaviour elicited depends on the responsiveness of the neurons
regulating the particular behaviour. Sensory cues, required for activating distinct neuronal
populations in the same nucleus with different thresholds, are responsible for determining
specific behaviours. The strength of the optogenetic photo-stimulation corresponds to
signals from the accumulation of olfactory, auditory, haptic, visual and environmental cues.

Some of the neurons in the VMH, involved in mating, attacking or both are responsive
to appropriate stimulation in the nucleus. Low-intensity signals induce mating, while high-
intensity signals elicit attack behaviour [62]. We ask the question: Why do the functional
differences in the same nucleus lead to behaviour differences, and how do neurons in
the hypothalamus convey sensory information to induce inherent behaviours? The MCH
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neuronal state for behaviour is variably induced by photo-stimulation: Low stimulation
elicits nursing, and high stimulation elicits REM sleep. The neural circuit responsible
for this MCH-induced behaviour could communicate with other brain areas to integrate
each behaviour. The extraordinary event of the behaviour must be induced by different
reactivities of the responsible neurons.

7. MCH Neural Relay in PVN Oxytocin Neurons Is Involved in Nursing Behaviour

Further evidence shows that MCH neurons are regulated by OT neurons in PVN that
project anatomically posterior to LHA [38]. OT, a neurotransmitter synthesised in both the
PVN and supraoptic nuclei of the hypothalamus [63], regulates peripheral reproductive-
related functions and central actions in the brain. OT secretion from the posterior pituitary
gland induces uterine contractions during parturition and also acts on the muscle in the
mammary gland trabeculae to induce milk ejection during lactation [63]. Oxytocinergic
neurons are involved in a variety of central nervous system functions. Centrally and
peripherally secreted OT acts through the OT receptor. This receptor is distributed in
the ventral tegmental area (VTA) and NAc and is involved in feeding, sexual behaviour
and reward properties of social interactions and the formation of social bonds. OT has
been shown to facilitate the onset of maternal behaviour in rodents [31,32]. The possible
mechanism responsible for parental nursing behaviour is involved in the neural relay for
the LHA-PVN within the hypothalamus. Studies have shown that the periaqueductal grey
(PAG) in the midbrain is implicated in reproductive behaviour such as the females’ lordosis
behaviour and the maternal arched back crouching behaviour, whereas no effects were
recorded in the pup grooming behaviour [64–66].

Alternatively, the stimulation of the projection to the PAG from the galanin neurons
results in pup grooming, albite with no effect on crouching in both sexes [30]. Maternal
behaviour could be regulated by the LHA–MCH neuronal input to the PAG. GABAergic
neurons in the LHA-to-PAG projection precipitate in predatory hunting in mice [66].
Whereas, the role of the MCH receptor in the PAG is yet to be determined. However, the
method whereby the neural circuit for these diverse parenting behaviours govern each of
the behavioural contents is still controversial.

8. OT Enhances the Neural Circuits of Rewarding from Pups

Previous studies have identified the mPOA as a critical region in the regulation of
parental behaviour [1–3,30,67–70]. OT neurons act on mPOA, VTA and NAc to prompt
parental behaviour. OT neurons in PVN receive the projection from the LHA [59]. In our
previous study, MCH-tTA; TetO DTA bigenic (+/+) female mice with the complete innate
ablation of MCH neurons displayed less attention towards pups and less maternal care
than MCH-tTA; TetO DTA +/− bigenic controls, which was similar to MCH-tTA; TetO DTA
+/+ bigenic mothers, that display significantly lowered crouching than the +/− controls.
Moreover, the virgin +/+ bigenic females showed significantly lowered crouching than
MCH-tTA; TetO DTA +/− bigenic controls. MCH neurons are ablated partially using Cre
recombinase-dependent DTA, which abolishes approximately 73% of MCH neurons in
virgin females. Virgin females with partially ablated MCH neurons exhibit crouching
behaviour for less time than green florescent protein controls. The MCHR expression is
necessary to the reward circuitry of the NAc as is the anatomic integrity of the oxytocinergic
projection of the mesolimbic system; these findings indicate a possible alliance between
these factors in the emotional reinforcement of rewards for parenting. The MCHR is
expressed in the olfactory regions, neocortex, hippocampus, NAc, amygdala, ventromedial
hypothalamic nucleus and locus coeruleus. OT receptor expression [71], coupled with
MCHR in the NAc has a synergistic effect on inherent rewarding, contributing to the
execution of parental behaviour [72]. Therefore, MCH neural networks along with OT
signalling in reward circuitry facilitate pup survival.

Maternal rewards system may contribute to maternal nursing systems. Relationships
between maternal depression and OT levels were demonstrated previously [73]. MCH–
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LHA projects closely to OT–PVN, which is the stimulation that induces parental behaviour
along with increasing plasma OT levels [59]. The recurrent process between the PVN
projection to LHA and the LHA projection to PVN are assumed to be tuning properties
for continuous parenting crouching behaviour. Almost all MCH neurons expressed OT
receptor mRNA; however, OT neurons faintly expressed the MCH receptor [38,50].

9. Social Isolation Modifies GABAergic Transmission

Extended periods of social isolation can affect parental behaviour by inducing neu-
roanatomical changes. The expression of the immediate early gene c-fos in the MCH
neurons increased during parental nursing behaviour of mice after social isolation [59].
MCH neurons in the LHA contain and release γ-aminobutyric acid (GABA) [59,74] as well
as express GABA-synthesising enzymes GAD65 and GAD67 [59,75,76]. MCH neurons
also contain and release glutamate in the lateral septum [77,78]. In the amygdala neural
circuits, GABAergic and glutamatergic neurons in the VTA specifically tune each rewarding
and aversive motivational predicaments [79]. mPOA, which is indicative of GABAergic
neurotransmission, governs parental behaviour, whereas glutamatergic neurons in the
same nucleus are associated with anxiety-like behaviour [80]. Glutamatergic neurons in the
mPOA regulate anxiety-like behaviour, while GABAergic neurons contribute to anxiolytic
effects, i.e., parental behaviour, indicating that the mPOA in the same nucleus plays a
crucial role in reconciliation of opposite behaviours. Moreover, the mPOA projections to
the neurons in midbrain reward circuits may prompt parental behavior with accommo-
dation for dopamine release [80]. Therefore, GABAergic and glutamatergic neurons play
a prominent role in opposing effects on the social behaviour. These results suggest that
the same nucleus governs opposite positive or negative behaviours by discriminating the
neurotransmission of the nucleus. Social isolation, which prompts parental behaviour for
several resting weeks, could change the statement of the brain neurotransmission. In fact,
conditions, such as accrues to excitatory neurotransmission of GABA neurons result in a
profound depolarising shift in magnocellular neurosecretory cells that secrete OT in the
PVN [81]. Our previous study has shown that MCH fibre expressing enhanced yellow
fluorescent protein projected close proximity to the OT neuron in the PVN. The MCH
neuron was revealed to express GABA, which innervates as a neurotransmitter and forms
synapses with OT neurons [59]. Moreover, GABA agonist musicimol injected into the
PVN increases c-fos in the OT neurons. More c-fos expressing OT neurons were observed
in the socially isolated female and male mice than the co-habituated female and male
mice [59], indicating that the MCH neuron could regulate excitatory OT neurons in the
PVN. Although GABA principally functions as an inhibitory neurotransmitter in the brain,
excitatory GABAergic activity is identified in MCH neurons during development [82].
In mature neurons, but the excitatory action of GABA under stress conditions has been
elucidated [83–86]. Social isolation might be presumed to be a validated stressor and to
elicit changes in the synaptic organisation action in the rodent brain [16,28].

Therefore, social isolation stress may change the mode of GABAergic excitation. The
projection from LHA to PVN under social, reward-context associations are responsible for
the LHA–PVN-evoked OT releases implicated in parenting augmentation. Therefore, social
isolation may change the mechanisms underlying the modality of GABAergic excitation.
Abolishing MCH neurons may induce the superiority of glutamatergic circuit, thereby,
stimulating broad area commitment to infanticide in the brain. Moreover, the impairment
of OT neurons showed acceleration aggression. The balance between GABA and glutamate
utilisation in the MCH neurons in some aspects of parental and opposing behaviours
remains to be elucidated.

10. Aggressive Behaviour towards Pups

Pheromonal signals are received by neurons in the vomeronasal organ (VNO) [87] and
the main olfactory epithelium within the nasal cavity [88]. In rodents, olfaction is known to
be important for the identification of conspecifics and sex differentiation. The excision of the
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olfactory bulb results in defects in aggressive behaviour, indicating that olfactory perception
is involved in dictating aggressiveness. A body of evidence implicates neural networks
in the governing of aggressive behaviour, including a social behaviour circuit involving
the mPOA, medial amygdala (MeA), bed nucleus of the stria terminalis (BNST) [89],
lateral septum, anterior hypothalamus, VMH and PAG [65]. Social signals detected by the
olfactory bulb are subsequently transmitted to specific brain regions: MeA and then to the
VMH or BNST [90]. The VMH is downstream of the MeA, which in turn disinhibits the
VMHvl glutamatergic neuron induction of aggressive behaviour; for example, this circuitry
guides the behaviour in which male mice attack male intruders but not females [91,92].
Distinguishing between females and males is also accomplished through the detection of
semiochemicals, some of which are major urinary proteins [93,94]. These chemicals are
detected by sensory neurons in the VNO in a sex-dependent manner [95–97]. For example,
during infanticide by virgin male mice, pheromonal signals from pups via the VNO are sent
to the accessory olfactory bulb, then to the MeA and relayed to the anterior hypothalamic
area/VMH and BNST. The VNO neurons presumably are involved in the detection of
pheromonal signals related to parental care [3]. Knockout of cation channel subfamily C
member 2 (Trpc2) in male mice causes impaired VNO-input signalling, resulting in reduced
attacking of pups, indicating that VNO signalling elicits the attacking of pups [98–100].
Our previous study reports that Trpc2 KO mice spent more time licking the pups and
crouching after social isolation. However, retrieval behaviour increased only in response to
social isolation and was not affected by Trpc2 KO. These results indicate that not all the
social signals are transmitted by the VNO [101].

The MCH-tTA; TetO DTA +/+ bigenic virgin males with ablated MCH neurons were
more aggressive toward the pups. In the resident-intruder test, the MCH-tTA; TetO DTA
+/+ bigenic virgin mice, exhibited more male–male aggression than did MCH-tTA; TetO
DTA +/− bigenic controls [59]. Ablation of MCH neurons also leads MCH-tTA; TetO DTA
+/+ bigenic male mice to exhibit more aggressiveness against other male mice and pups,
suggesting that MCH neurons disinhibit the olfactory circuit and sensory integration from
the olfactory bulb. This result is similar to that observed with neural circuit modulation
that results in male attack on pups and intermale aggressive behaviour [102]. The MeA is
evidenced as an inhibitor of maternal behaviour [103–107]. Moreover, MCHR in the MeA
is assumed to be implicated in maternal aggression towards intruder male [107]. The VNO
and main olfactory bulb may be substantially involved in male–male aggressive behaviour
prompted by pheromones [100] and play decisive roles in conferring infanticide in mice.
The MCH-tTA; TetO DTA +/+ bigenic virgin mice were able to mate because of their ability
to discriminate sex due to their preserved VNO function. Neural circuits for attacking pups
may be involved in relaying from MCH neurons in the LHA (MCH–LHA) to OT neurons
in the PVN (OT–PVN) in rodents [59].

The ablation of MCH neuron excitability to PVN may prevent the induction of OT
secretion. In contrast, MCH-tTA; TetO DTA +/+ bigenic female mice ignore the pups,
indicating that the effect of abolishing MCH neurons differed in some degree between
females and males. OT transmits signals involved in social interactions, such as parental
and pair bonding; abolishing OT facilitates aggressive behaviour [108]. Presumably, OT
acts on the mPOA, which induces parental behaviour in rats [109,110].

Another proposed mechanism is effects on OT, which acts to regulate the salience of
external social cue rather than affiliative behaviours [111–113], which is a critical role of OT
in the event of the discriminate mode of an emotional action in a conspecific [114].

11. Parental Licking Behaviour

Optogenetically-evoked crouching behaviour requires around 10% of the ChR2-
expressing and MCH cells that express c-fos. The photo-stimulation of ChR2 MCH neurons
significantly increased crouching behaviour, but did not affect licking behaviour [59].
Therefore, the relative contribution of MCH neurons to licking behaviour may be minimal.
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Mice contact pups at first and pup-licking is assumed to be dictated by emotive excitation
or apprehension [115,116].

Optogenetic stimulation of galanin neurons in the mPOA induces retrieving and
pup grooming rather decreasing attacking pups [30] and had no effect on other parental
behaviours. Genetical ablation of galanin neurons in the mPOA induces pup attacking
in virgin females but not in mating-experienced females and males. Therefore, the brain
centre for pup retrieving and grooming behaviour is in the mPOA, and galanin is one
of the molecules involved in parenting pup grooming. Pup grooming behaviour is also
affected by GABAergic neurons in the posterodorsal (MeApd) in females [78]. The effect
of photo-stimulation on retrieving pups and crouching is less than that on pup grooming.
Higher GABAergic neuron activity in the MeApd induces the attacking of pups, while
low activity of these neurons prompts parenting in male mice. Opposing behaviours, such
as parenting and aggression, are centred in different regions of the brain. For example,
MeApd facilitates parenting behaviour, while aggression is colinear with the quantitative
responses of GABAergic neurons in the brain.

12. Conclusions

Parental behaviour is composed of sequential behaviour events induced by an associ-
ated nucleus for each event that is stimulated by a social cue. In this chapter, I proposed
that the key brain regions and molecules involved in regulating parental behaviour reside
in the POA, the focus of much research on this topic. Genetic ablation of MCH neurons in
transgenic, MCH-tTA; TetO DTA +/+ mice results in impaired nursing parental behaviour.
Virgin MCH-tTA; TetO DTA +/+ bigenic males engaged in infanticide toward the pups,
while females ignored pups. A neural circuit from the LHA–MCH to PVN–OT was re-
vealed in this study, and MCH reward neural circuitry, together with OT signalling, is a
requisite for parental behaviours that promote pup survival.
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