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Abstract: Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness,
are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal
seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side
effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease
progression compared to their well-rested counterparts. A better understanding of the complex
relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more
than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that
neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of
inflammatory mediators and glial activation) may be a potential link between sleep deprivation and
seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation
and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in
the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked
by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.

Keywords: sleep; seizures; epilepsy; neuroinflammation; neurodegeneration

1. Introduction

Sleep is one of the most basic homeostatic processes of human life. It can be defined
as a condition of rest with suspended consciousness and is a necessary biological function
with numerous restorative effects on brain function. In 2015, the National Sleep Foundation
announced 7–9 h as the updated daily sleep duration recommended for healthy adults [1].
For specialized populations, such as the juvenile and elderly, more time in sleep is recom-
mended to maintain normal brain function. The increased sleep recommendation is partly
due to a greater “homeostatic sleep drive” which is the force that builds in the body for
sleep as the length of time awake increases. The recommendation for sleep time is based on
daily uninterrupted sleep. Unfortunately, sleep is often discontinuous due to interruptions.
Therefore, sleep quality, a more complex sleep index that accounts for the number of times
a person is awoken during rest (sleep depth), as well as a person’s subjective feelings of
well-restedness, are also important determinants of how sleep affects health outcomes.
Analyses of polysomnography parameters, spectral analytic data, and subjective sleep
estimations reveal that sleep depth is naturally reduced in older adults, and is deeper in
females than males [2]. However, high inter-individual and intra-individual variation was
observed in this study, which suggests the difficulty of stating precise reference values [2].
Nonetheless, consistent deviations from the recommended sleep duration and quality,
due to insomnia, sleep apnea, and excessive daytime sleepiness, collectively referred to
as “sleep disturbances”, are disproportionately prevalent amongst people with epilepsy
(PWE) compared to people without epilepsy.
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Epilepsy is a prevalent neurological disorder defined by the presence of spontaneous
recurrent seizures (SRS) affecting nearly 50 million people worldwide [3]. Although great
strides have been made over the past 20 years in clinical advances in treating epilepsy, it
remains the case that one-third of patients cannot be managed by the existing repertoire of
drugs and surgery. Furthermore, no effective strategy exists to prevent the development of
epilepsy for people at risk. People with epilepsy are burdened by spontaneous seizures,
consisting of widespread uncontrolled neuronal activity. Epilepsy can be a debilitating
condition not only because of the neuronal damage induced by spontaneous recurrent
seizures but also because of the stress that an epilepsy diagnosis can place on a patients’
social and emotional well-being. Due to the stressfulness of the condition, it is often debated
when discussing sleep disorders in PWE whether the increase in sleep disturbances is
caused by the occurrence of seizures, or whether spontaneous seizures lead to disturbances
in sleep patterns. In order to address the heightened risk for PWE to develop sleep
irregularities and disorders, the American Epilepsy Association convened the Sleep and
Epilepsy Workgroup (SEW) in May of 2019. The SEW consists of sleep and epilepsy
medical practitioners and scientists, as well as lay members of the epilepsy community,
who collectively work to better understand the root causes and mechanisms of sleep
disturbances in PWE. Importantly, members highlighted a need for further elucidation of
the interaction between sleep, biological rhythms, and seizures, especially in the context
of mortality. For example, Sudden Unexpected Death in Epilepsy (SUDEP), which is
the clinical term used to describe “sudden, unexpected, witnessed or unwitnessed, non-
traumatic, and non-drowning death that occurs in benign circumstances in an individual
with epilepsy” [4], is suspected to be associated with circadian rhythms and sleep [5].
Recent reports from the European Academy of Neurology, the European Sleep Research
Society, and the International League Against Epilepsy Europe [6] also emphasize the
importance of identifying and treating sleep disorders to control seizure frequency, improve
patient quality of life, and decrease mortality in PWE. Thus, it is of great importance to
demystify the connection between sleep disturbances and epileptic seizures. A potential
common link between sleep disturbances and epilepsy could be neuroinflammation, as
both seizures and sleep disruption individually produce a robust neuroinflammatory
response in the brain.

Neuroinflammation, which consists of glial activation and proliferation, as well as
the change in expression and release of inflammatory mediators after an initial insult
to the brain, is a contributing factor to the conversion of a normal brain to an epileptic
brain—a process termed epileptogenesis [7]. Although it is widely known that several
neuroinflammatory pathways are upregulated in epilepsy, mechanisms for effectively
detecting changes in neuroinflammation at the patient bedside are limited. Similarly,
pharmacologic agents that directly target the neuroinflammatory component of epileptic
seizures are not yet widely applied in the clinic. It is plausible that neuroinflammation
caused by sleep disruption synergizes with the underlying neuroinflammatory response
induced by seizures to produce a heightened injury in the brain that, in turn, worsens sleep
disturbances and epilepsy. Thus, sleep disruption-induced neuroinflammation is a likely
irritant to the epileptic brain and should be investigated as a mechanism for, and potential
treatment target against, epilepsy progression in PWE.

The current review focuses on the groundbreaking work done to clarify the contri-
bution of sleep disturbances to epilepsy progression, focusing on neuroinflammation as
a primary component of this process. Furthermore, multiple lines of evidence are pro-
vided supporting the application of anti-inflammatory treatments to combat both sleep
disruption-induced and seizure-induced neuroinflammation. Data from both preclinical
and clinical studies, as well as data from animal experiments, are discussed. Additionally,
medical therapies currently administered for epilepsy and comorbid sleep disturbances are
also highlighted.
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2. Sleep Disturbances in Epilepsy

Sleep is fundamental for good health and wellbeing, however, seizures and the use
of various antiepileptic drugs, along with stress, are important factors affecting sleep
quality in patients with epilepsy. Stress effects on sleep homeostasis are well-known
to result in a reduction of rapid eye movement (REM) sleep, slow-wave sleep (NREM),
and sleep efficiency, as well as increased awakenings [8]. Therefore, hyperactivation of
the hypothalamic–pituitary–suprarenal axis [9], its deregulation, and, more importantly,
alterations in the circadian rhythmicity of cortisol secretion [9–11], could underlie some
forms of epilepsy and the comorbid deregulation with mood [12]. Together with anxiety,
these factors are closely related, leading to a greater frequency of poor sleep quality
and insomnia [13]. Furthermore, deregulation of the hypothalamic–pituitary–suprarenal
axis causes a deficit in raphe-hippocampal serotonergic transmission, which can cause
depression. Hence, alterations in serotoninergic transmission may be a clinical link between
epilepsy and insomnia [14]. In addition to depressive mood and anxiety, perceived sleep
insufficiency has been found to be strongly linked to a higher frequency of poor sleep
quality and insomnia [13].

Sleep disorders negatively impact epilepsy and seizures can also aggravate certain
sleep disorders (Figures 1 and 2). This suggests that early diagnosis and treatment of
coexisting disorders can help improve a patients’ condition and control of seizures [15].
The many studies on the prevalence of sleep disorders in PWE conducted to date have
contradictory results. These differences have been attributed to the diverse groups of
patients studied, the types of antiepileptic drugs prescribed, the timing of seizures, the
frequency of excessive daytime sleepiness (EDS), the precise syndrome, and the occurrence
of nocturnal seizures [16–18]. Although data differ among studies, there is no doubt that
the comorbidities of epilepsy are diverse and severe. PWE have a high prevalence of sleep
disorders, such as insomnia, EDS, obstructive sleep apnea (OSA), restless leg syndrome,
and bruxism [11,19]. Any unaddressed comorbidity, regardless of the epileptic patient’s
status, can deteriorate her/his quality of life and lead to higher mortality. Each comorbidity
requires specialized medical attention, but the experts in the various fields involved may
have only limited interaction.

Pre-clinical studies have revealed alterations in sleep patterns marked by a dysfunction
in the regulation of sleep-wakefulness cyclicity. The effect of seizures on sleep has been
studied in cats and kindled rats. Cohen and Dement [20] found that electrically induced
generalized seizures in cats suppressed REM sleep. Raol and Meti [21] also studied
the sleep patterns of amygdala kindled rats and found that after the stimulation of five
consecutive seizures, rats had a decrease in REM duration, an effect that persisted for
28 days. Other studies in rats have shown that a single seizure, induced by either amygdala
or hippocampal kindling, can cause a decrease in REM sleep [22,23]. An animal model
using rats genetically predisposed to audiogenic seizures [24] evaluated the effect of
seizures on sleep architecture, reporting a prolonged reduction in fast-wave sleep (FWS)
concomitant with diminished slow-wave sleep (SWS), with no subsequent compensatory
increase in this phase of the sleep–wakefulness cycle [25]. This suggests that generalized
paroxysmal attacks provoke disorganization in the functioning of the systems that regulate
FWS, though the cerebral synchronization mechanisms in charge of SWS are affected to a
lesser extent. This disorganization is what seems to lead to the loss of sleep–wakefulness
cyclicity. In an animal model of epilepsy, WAG/Rij rats that displayed SRS were subjected
to sleep deprivation for 12 h and investigators observed an increase in sleepiness in the
first hours of sleep deprivation with a significant increase in peak wave discharges with
greater wakefulness [26]. During the last hours of sleep deprivation, the propensity to
sleep increased, inducing the rats to fall asleep more quickly. This reduced the number of
spike-wave discharges and as a result the number of peak-wave discharges decreased in
the epileptic rats subjected to sleep deprivation.
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Figure 1. Proposed mechanisms of sleep disruption that contribute to neuroinflammation and worsen neurodegeneration 
in the epileptic brain. After seizures, peripheral and brain-resident immune cells become active, release danger signals, 
and produce pro-inflammatory mediators, including cytokines, complement factors, prostaglandins, among others, trig-
gering a sustained vicious circle of neuroinflammation characterized by monocytic infiltration to the brain, astrocytic/mi-
croglial activation, and pro-inflammatory cytokine production, which ultimately leads to neurodegeneration. We propose 
that sleep disruption can act as a second inflammatory hit that increases seizure frequency and aggravates neuronal loss, 
thus favoring the progression of epilepsy. This figure was created with BioRender.com. 

 

Figure 2. Neuroinflammation as a potential link in the vicious cycle of sleep and epilepsy. This figure was created with 
BioRender.com. 
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produce pro-inflammatory mediators, including cytokines, complement factors, prostaglandins, among others, triggering a
sustained vicious circle of neuroinflammation characterized by monocytic infiltration to the brain, astrocytic/microglial
activation, and pro-inflammatory cytokine production, which ultimately leads to neurodegeneration. We propose that sleep
disruption can act as a second inflammatory hit that increases seizure frequency and aggravates neuronal loss, thus favoring
the progression of epilepsy. This figure was created with BioRender.com.
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Despite the fact that epilepsy affects sleep patterns, few clinical and pre-clinical
studies have evaluated the effects of lack of sleep on long-term disease outcomes. In
humans, sleep deprivation has been used as a procedure for electroencephalography
(EEG) activation for clinical diagnoses of anomalies in epilepsy. Comparative studies
show that sleep deprivation activates epileptiform discharges, ranging from 23 to 62% in
adult patients with definite or suspected seizures [27], because sleep deprivation increases
neuronal excitability [28] and precipitate EEG epileptiform discharges [29]. However, a
controlled study of patients with refractory partial epilepsy failed to show an effect of sleep
deprivation [30]. In this study, patients with refractory partial epilepsy were sleep deprived
on alternate nights for 8 days by staying awake between 10 pm and 6 am every other night
beginning on Day 2, whereas the control group received 8 h of sleep per night. The results
did not show a difference in the number of seizures or seizure latency, suggesting that
chronic sleep deprivation likely only increases the risk of seizures.

2.1. Insomnia

Insomnia is a sleep disorder in which patients have difficulty in falling or staying
asleep. Approximately 30% of adults in Canada complain of symptoms of insomnia and
10% experience insomnia chronically [31,32], while in the USA 27.3% of adults suffer
from insomnia [33]. In PWE, the studies indicate a prevalence of insomnia in the range
of 24–55% [34–39]. For instance, Khatami et al. [34] similarly reported insomnia in 34%
of PWE and 28% of controls for the ability to fall asleep, but insomnia associated with
sleep maintenance was, in contrast, more common among PWE compared to controls
(52% for PWE vs. 38% for controls). In their study, Quigg et al. [38] detected a significant
association between the severity of insomnia and certain characteristics of patients with
epilepsy, such as younger age, lesser disease duration, use of sleep medication, diagnoses
of comorbidities, sleep delay, daytime sleepiness, and depressive states. After controlling
for these covariables, the severity of insomnia maintained a strong association with the
status of seizures and quality of life. These findings indicate that insomnia is an important
comorbidity of epilepsy that is associated with the severity of seizures and poor control,
though not all studies relate insomnia to epileptic seizures [36,40]. Other studies, however,
have not reported an association between insomnia and the control of seizures [36], and
the only variable of epilepsy that increased the probability of moderate or severe insomnia
was AED polytherapy, which was considered a marker of drug-resistant epilepsy [40].
Overall, there appears to be a significant relationship between insomnia and poor control
of seizures [13,35].

Insomnia can be considered a non-adaptive behavior that results from interactions
among the cerebral activities that maintain sleep–wakefulness states. Cerebral activity
responding to stressful events can reinforce insomnia. For example, patients report that
emotional stress and sleep deprivation are commons triggers of seizures [38,41], and so
the hyperactivation hypothesis considers these to be important factors in the development
and maintenance of chronic insomnia [9]. Another possible participant in the neurobiology
of insomnia is deregulation of the hypothalamic–pituitary–suprarenal axis, specifically
alterations in the circadian rhythmicity of cortisol secretion. One consequence of insomnia
is sleep deprivation, which could be considered a stressful factor in itself, since excessive
wakefulness results in the forced activation of this axis [42], with a positive correlation
between insomnia and increased cortisol secretion [43,44]. However, evidence from other
studies contradicts this correlation, finding no differences in cortisol levels between in-
somniacs and control subjects [45]. Therefore, insomnia can occur as a direct consequence
of epilepsy itself or be secondary to associated factors, such as depression, the effects of
medications, or deregulation of the hypothalamic–pituitary–suprarenal axis [46].

2.2. Obstructive Sleep Apnea in Epilepsy

Obstructive sleep apnea (OSA) consists of episodes characterized by the partial (hy-
popnea) or total (apnea) closing of the upper airways. OSA episodes, which occur during
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sleep, can interrupt breathing, producing weak gas exchange and oxygen desaturation,
with periods of hypoxia and hypercapnia that generally provoke transitory awakenings [47].
Repeated awakenings due to OSA causes significant interruptions and fragmentation of
normal sleep that results in sleep deprivation due to prolonged wakefulness or poor sleep
quality, but also induces increases in glucose, free fatty acids, and plasma cortisol levels [48]
that raise the risk of suffering hypertension and metabolic or inflammatory disorders [49].
This indicates the importance of identifying and treating OSA in PWE, especially since
many of these patients cannot initially recognize, or interpret correctly, signs of sleepiness.
Therefore, efforts must be made to detect the presence of any underlying respiratory disor-
der related to sleep, such as OSA. To this end, physicians should ask patients about other
symptoms that may be associated with OSA, such as snoring, witnessed apneas, difficulties
with memory or concentration, uncontrolled headaches, treatment-resistant hypertension,
and fatigue [50].

OSA is a common sleep disorder that has a marked bidirectional comorbidity with
epilepsy [51–55]. Although this coexistence has been documented in several studies, the
precise pathophysiology of this comorbidity is not yet clearly understood. A meta-analysis
of 26 studies revealed a high prevalence of OSA (33.4%) in patients with epilepsy [56].
The prevalence of OSA in adults and children with epilepsy is 40 and 26%, respec-
tively. In relation to the type of seizure, reports suggest an incidence of OSA in 32.2% of
PWE that experience focal seizures and 28.2% in patients with generalized seizures [56].
These figures increase in patients with refractory epilepsy. One study of PWE reported
a higher prevalence of OSA in patients with refractory epilepsy (43.8% of 32 patients,
>1 seizure/month) compared to a group of patients with mild epilepsy (30.7% of 52 pa-
tients, 0–1 seizures/month) [57]. Another study reported a higher prevalence of OSA in
patients with refractory epilepsy compared to patients with controlled epilepsy [58]. A
recent analysis indicates that reduced REM sleep is a pronounced characteristic of both
OSA and drug-resistance in PWE, and that treating OSA not only restored REM sleep but
produced a concomitant improvement in seizure control [59]. Anticonvulsants, including
gabapentin, pregabalin, valproic acid, vigabatrin, and carbamazepine, have been associated
with weight gain, which can independently increase the risk of developing OSA [60].

2.3. Excessive Daytime Sleepiness in Epilepsy

The second edition of the International Classification of Sleep Disorders (ICSD-3)
defines excessive daytime sleepiness (EDS) as “the inability to maintain wakefulness or
alertness during the major waking episodes of the day, that results in involuntary lapses
of sleepiness or sleep” [61]. Data from some EDS studies suggest a high prevalence of
EDS in patients with epilepsy [16,34,35,58,62–65], although other reports found a similar
prevalence to controls (healthy adults) [66,67]. EDS is not classified as a disease or disorder
but rather as a symptom that occurs primarily in sleep disorders, such as narcolepsy, OSA,
and restless leg syndrome. The second edition of the ICSD states that EDS is interpreted
subjectively and may be confounded with tiredness or fatigue, so achieving an accurate
diagnosis is challenging. The instrument most often utilized in sleep research to subjectively
evaluate ESD is the Epworth Sleepiness Scale (ESS) [68]. This tool can be self-applied
quickly using eight typical situations of dozing based on a scale of 0–3 points for each
question for a maximum score of 24. For objective evaluations, the multiple sleep latencies
test (MSLT) and maintenance of wakefulness tests (MWT) are commonly used.

Some reports indicate ESS scores >10 in 18–47% of patients with epilepsy and 12–17%
of controls [16,64,65], with a trend towards higher ESS scores in patients with intractable
seizures [58]. However, very few studies analyze EDS subjectively as well as objectively. De
Almeida et al. [69] assessed EDS using both tests in 39 patients with temporal lobe epilepsy.
The most frequent complaints registered in that study were daytime sleepiness (85%), fre-
quent awakenings (79%), and nocturnal seizures (69%). Of the subjects included in the EDS
study, 13% had OSA, and ESS scores correlated with MSLT mean latencies. EDS was found
in 36% of participants (ESS score >10) [69]. EDS in PWE can have multifactorial origins [70],
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often related to lack of sleep subjacent to the effect of medication, alterations of circadian
rhythms that interrupt nocturnal sleep, OSA, and restless leg syndrome [18,53,62,71]. The
most common medical cause of EDS is OSA, though subjective and objective tests for EDS
correlate only weakly with measures of OSA severity [72].

Effects of Anti-Epileptic Drugs on Excessive Daytime Sleepiness

Other investigators have interpreted EDS primarily as an adverse effect of treatment
with anti-epileptic drugs and frequent seizures [16,17], but the research indicates that
the effects of anti-epileptic drugs (AED) on daytime sleepiness depends on the drug pre-
scribed, dosage, and treatment time [35,62,73,74]. Research on the role of AED in EDS
show that patients who follow a stable medication regimen do not report more EDS [75,76].
Levetiracetam (Keppra) initially showed an ability to reduce sleep times and alter sleep
architecture, but as treatment advanced this effect declined [74]. In the case of a short
cycle of monotherapy with topiramate at 200 mg/day, no effect on daytime wakefulness
was detected after evaluation with MSLT and an assessment of visual reaction times in
14 patients [77]. Pregabalin improves control of seizures, increases REM sleep, and reduces
the N2 state, but also increases ESS scores, though these remain within normal limits,
suggesting mild daytime sleepiness [78]. One random, prospective, double-blind study
evaluated the effect of pregabalin at 300 mg/day vs. a placebo on polysomnographic vari-
ables in 17 patients with well-controlled partial seizures and reports of sleep disorders. This
study found that the pregabalin group had improved sleep continuity, fewer awakenings,
and enhanced wakefulness times after sleep onset with improvements on their scores for
the subjective scales applied [79]. Unfortunately, AEDs, including phenobarbitone, sodium
valproate, and levetiracetam, can cause daytime sleepiness.

2.4. Animal Studies

Many studies in rats support the notion that sleep alterations induce neuroinflamma-
tion. Depending on its duration, sleep deprivation can produce multiple physiological
effects, including increased plasma corticosterone levels [80–82]. This suggests that para-
doxical sleep deprivation (PSD) induces a stress response [83] as well as alterations in
inflammatory markers, including IL-1β, IL-6, IL-17, and TNF-α [81,84,85], thus contribut-
ing to the neuroinflammatory process at the central level [86,87]. In the rat hippocampus,
sleep deprivation for 48 and 72 h increased levels of the proinflammatory cytokines TNF-
α, IL-1β, IL-6, and IL-8, but reduced those of the anti-inflammatory cytokines IL-4 and
IL-10 [82]. Sleep restriction for 5 days increased levels of IL-1β and TNF-α mRNA in the
cortex, hippocampus, and basal forebrain of rats [88]. Similar results have been reported
after 21 days of sleep restriction [89]. In addition, sleep deprivation induces an increase
in the number of the microglia with larger cell bodies and thickening processes in the
hippocampus of rats after 5 days of sleep fragmentation [90], revealing the adoption of a
less ramified morphology, suggestive of immunological activation and presynaptic termi-
nal phagocytosis in the cortex of adolescent mice [86]. Evidence from studies of rabbits
indicates that 4 h of sleep deprivation induces increases in plasma IL-1β concentrations [91].
Moreover, chronic sleep restriction increases the density of immune-reactive microglia
marked with ionized calcium-1 (Iba1) in four of the ten brain regions involved in the
regulation of sleep/wakefulness, including the pre-limbic cortex, central amygdala, lateral
hypothalamus, and dorsal raphe nucleus [92]. Iba1 is involved in cytoskeletal reorgani-
zation and phagocytosis [93] and Iba1 protein levels are upregulated in the microglia in
response to pathophysiological stimuli, along with a higher expression of inflammatory
markers [94,95]. Thus, the increased Iba1 immunoreactivity observed in response to chronic
sleep restriction could suggest an inflammatory response [92].

Reports on microRNA (miRNAs, micro-regulators of gene expression in various cell
types and physiological processes, including microglial function) show that miR146a,
miR-27a, miR-181c, miR-203, miR-125b, miR-199, and miR-29b are related to the NF-κB
pathway during microglia activation [96]. In fact, some miRNA perform an important role
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in sleep regulation and can be expressed at distinct moments in various brain structures,
including the cortical areas that regulate sleep duration [97]. Interestingly, miR146a and
miR155 are both modified by the effects of paradoxical sleep deprivation [81]. miR146a
participates in microglial activation via NF-κB, while miR155 appears to be involved in
neuroinflammation by other mechanisms. These findings suggest that sleep deprivation
induces neuroinflammation by activating microglia. It has also been reported that during in-
flammation, cells in the choroidal plexus release extracellular vesicles into the cerebrospinal
fluid that contain four inflammatory miRNA, specifically miR-1a, miR-9, miR146, and
miR-155, which are captured by astrocytes and the microglia, and this, in turn, amplifies
the inflammatory response [98]. Overall, sleep deprivation induces an increase in cytosine
levels, an effect that could be mediated by microglia, wherein some miRNAs may amplify
the response and induce microglia Ml activation.

Astrocytes are also influenced by the effects of sleep deprivation. Observations show
that most of the excitatory synapses in the frontal cortex of mice are contacted by peripheral
astrocytic processes (PAPs). PAPs approach the synaptic cleft and expand after prolonged
wakefulness, presumably due to the need to eliminate glutamate and potassium ions.
Evidence suggests that astrocytes engulf axonal organelles and synaptic elements even in
healthy mice, such that their constitutive phagocytic activity contributes to the cleaning of
damaged cell components [99,100], likely in response to the neuronal activity associated
with wakefulness [101]. One pathway that mediates astrocytic phagocytosis is through
the MERTK receptor [101] by means of the action of its Gas6 ligand (specific growth
arrest protein 6). In response to acute sleep deprivation, MERTK and its Gas6 ligand are
upregulated in the cerebral cortex [102,103]. These findings suggest that the lack of sleep
can trigger astrocytic phagocytosis and cause microglia activation [86].

3. Circadian Rhythms in Epilepsy

Circadian rhythms refer to endogenously maintained physiological cycles with a
period of approximately 24 h that respond principally to the light–dark cycle. The most
obvious circadian rhythm in humans is the sleep–wake cycle. In humans, the circadian
system is made up of tissue-specific clocks, controlled by the master clock, the suprachi-
asmatic nucleus (SCN) of the hypothalamus [104]. The SCN has two molecular actors,
CLOCK (circadian locomotor output cycles caput) and BMAL1 (brain and muscle ARNT-
like protein1), which activate the expression of the genes Period (Per1–3), Cryptochrome
(Cry1/2), and Rev-erb alpha (reverse erythroblastosis virus alpha) during the day. Per/Cry
proteins start to accumulate in the cytoplasm and move to the nucleus to inhibit CLOCK
and BMAL1 transcriptional activity. The levels of mRNA and proteins within the SCN
oscillate with a quasi-24-h period. The SCN controls sleep, alertness, body temperature,
neuronal activity, metabolism, hormone levels (i.e., melatonin, cortisol), and other functions
in a circadian manner. Sufficient sleep, synchronized to the appropriate circadian phase (or
“biological night”) is important for hormonal homeostasis and function. Whereas sleep de-
privation and the associated dysregulation of metabolism and energy expenditure has been
linked to obesity, hypertension, stress hormone release, and cardiovascular death [105].
Furthermore, the imbalance of an individual’s biological time for optimal sleep caused
by neurological disorders, such as epilepsy, produces a broad category of sleep-related
dysfunctions, including difficulty falling asleep at night, poor quality of sleep, early awak-
ening, circadian rhythm disorders, and sleep-related respiratory disorders resulting in
daytime fatigue [10,106].

Bernard [107] proposed Molecular Oscillations and Rhythmicity of Epilepsy (MORE)
as a conceptual framework for studying and understanding the mechanisms underlying
the circadian rhythmicity of seizures and their probabilistic nature. Bernard proposed the
existence of circadian oscillators which induce time-dependent changes in the expression
of genes, proteins, and metabolites in different cells and organs of the body. Circadian
oscillators orchestrate and control the rhythmicity of numerous bodily functions, such as
eating and sleeping, and the molecular oscillations in one organ can influence the activity
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of the molecular oscillations in another organ. Although it is not known how seizures start
(the causal event), the MORE hypothesis proposes that a threshold must be reached for
a transition between normal and epileptic activity. The MORE hypothesis suggests that
molecular oscillations change the architecture of neuronal networks in a circadian fashion.
The molecular architecture is such that the activity of the neural networks is low in the
morning. For instance, in the morning the transcription of NF-kB is high in pyramidal cells
with a greater expression of receptors at pyramidal cell synapses and a lower astrocytic
production of ATP. On the other hand, in the afternoon NF-kB transcription and receptor
expression decreases, while mitochondria produce more ATP in astrocytes resulting in high
network activity. With this model, Bernard [107] propose that the determinants of seizure
rhythmicity may stem from molecular oscillations in any cell type in any organ and that
molecular circadian oscillations bring the neuronal networks of the epileptogenic zone near
seizure threshold at specific times. Seizures occur when internal (i.e., neuromodulators) or
external (i.e., sleep deprivation, stress) factors drive the network above the firing threshold.

Stress is related to an increase in the frequency of seizures that is correlated with
an increase in cortisol levels [108]. Sleep deprivation is considered a stressor, alters the
sleep–wake cycle, and induces an increase in plasma levels of cortisol and cytokines.
The increase in cortisol, among other factors regulated by the stress response, could
possibly drive the network above the threshold. Furthermore, evidence indicates that
circadian variation may mediate epileptic excitability in both humans and animals [109],
and that CLOCK/BMAL genes either directly or indirectly via their transcription factors
BMAL1/CLOCK can influence the expression of other genes that are causally involved in
epilepsy (e.g., PAR bZIP transcription factor, genes DBP, TEF, and HLF) [110,111], including
NRSF [112], NRF2 [113], CREB [114], and mTOR [115], which display altered expression
in epilepsy. In this regard, Li et al. [111] reported that CLOCK protein is substantially
reduced in excitatory and inhibitory neurons in epileptic tissue of patients with focal
cortical dysplasia and tuberous sclerosis complex. In mice, deletion of CLOCK in excitatory
pyramidal neurons but not inhibitory interneurons led to a lowered seizure threshold and
overt seizures during sleep [111], with altered electrophysiological properties of neuronal
microcircuits similar to epilepsy [116]. Taken together, these studies suggest that epileptic
excitability could be a direct consequence of the loss of CLOCK function in cortical neurons.

Immune system changes throughout the day are influenced by both sleep and the
circadian clock [117]. Immune cells reach their maximum output early at night and then
progressively reduce until their nadir in the morning [118]. Cytokines, including IL-1,
IL-6, and TNF, reach maximum levels during the nocturnal period [119,120]. In particular,
it has been demonstrated that systemic levels of IL-6 have a biphasic circadian pattern
with two zeniths around 5:00 a.m. and 7:00 p.m. and two nadirs at around 8:00 a.m. and
9:00 p.m. [121]. Furthermore, nocturnal sleep is necessary for increasing IL-6 levels, indi-
cating that its circadian pattern reflects the homeostatic impulse to sleep like a somnolence
mediator [122]. Similar immune changes occur in growth hormone release, for which levels
peak close to the beginning of nocturnal sleep, but contrasting with cortisol, for which levels
reach a minimum before sleeping and peak between 7:00 a.m. and 9:00 a.m. Although the
purpose of these variations is unknown, sleep deprivation and stress have demonstrated an
ability to change cytokine and cortisol release patterns and can significantly affect immune
function in humans.

Being able to profile and predict the rhythmicity of seizures as they relate to the sleep–
wake cycle can lead to improvements in seizure control and the treatment of sleep-related
comorbidities. Studies of the chronobiology of epilepsy have determined that epileptic
seizures tend to recur at certain times of day and that the pattern of seizures varies with
the pathophysiology of the epileptic syndrome [109,123]. The occurrence of seizures at
specific times of the day has been consistently observed for centuries in individuals with
epilepsy. Seizures differ in their distribution between sleep and wakefulness depending on
the location of the epileptic focus [124]. In the case of the circadian rhythm of the seizures,
they depend on the type of epilepsy (generalized or focal) as well as the seizure initiation
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site (frontal or temporal) [125–127]. Patient age and the type of seizure experienced
(e.g., tonic, myoclonic, clonic, or hyper-motor) also plays a role in the diurnal seizure
pattern [125–128]. For example, generalized seizures mainly occur during wakefulness
and daytime in children and adults, whereas in the case of mesial temporal lobe seizures,
studies indicate that the seizures present a bimodal distribution with a first peak in the
late afternoon and a second peak in the morning [129,130]. Nocturnal seizures occur at
night [131], but frontal lobe seizures are most likely to occur during sleep and in the evening
or early morning hours, whereas parietal seizures peak between 4:00 a.m. to 7:00 a.m. and
occipital seizures peak between 4:00 p.m. and 7:00 p.m. [130]. Therefore, knowing the time
of onset of seizures could be helpful in planning therapy (chronotherapy). For example,
Guilhoto et al. [132] administered a higher dose of nocturnal antiepileptic medications
for 17 children with nocturnal/morning seizures, resulting in a 50–90% reduction of
seizures. Medical experts and practitioners are slightly cautious regarding the use of
chronotherapy in epilepsy due to the mixed melatonin effects where some studies suggest
an anti-convulsant effect of melatonin administration to PWE and other studies suggest a
pro-convulsive effect. Nevertheless, more studies are needed to validate chronotherapeutic
approaches to epilepsy.

Neuronal networks generating wakefulness, NREM sleep and REM sleep give rise to dif-
ferent physiological characteristics influencing the likelihood of seizure occurrence [133,134].
NREM sleep is a state of EEG synchronization possibly leading to sleep seizures and
interictal epileptiform abnormalities. In contrast, REM sleep is characterized by EEG
desynchronization and loss of skeletal muscle tone. Desynchronization of the EEG impedes
seizure propagation and the expression of interictal epileptiform discharges (IEDs) during
REM sleep and wakefulness. In 1981, Lugaresi and Cirignotta described patients with fre-
quent attacks in light NREM sleep, characterized by violent movements of the limbs, neck
and trunk, with dystonic and tonic features [16]. The attacks, called hypnogenic paroxys-
mal dystonia, were short in duration and lacked epileptiform EEG features but responded
to carbamazepine therapy. This activity was also described in children with a pattern of
continuous spike waves during NREM sleep called electrical status epilepticus during
slow wave sleep [135,136], supporting an epileptic origin within the frontal lobe, named
nocturnal frontal lobe epilepsy (NFLE). Seizures in NFLE may also originate from the
temporal lobe, insula, and posterior regions [137]. Usually, during NREM sleep, seizures
and interictal epileptiform abnormalities are more frequent. It has also been observed that
awakenings tend to activate certain types of epilepsies, such as juvenile myoclonic epilepsy,
possibly suggesting that hypersynchronization during awakening is a cause of seizures.

On the other hand, Epilepsy on awakening (EA) is characterized by idiopathic gener-
alized tonic-clonic seizures (IGE), related to the age of the patient. IGEs occur mainly on
awakening (independent of the time of day). These patients have a second seizure peak (al-
most at evening) [138]. In these disorders, seizures are more prominent during the first 2 h
after awakening. They are idiopathic or hereditary in 84–90% of patients [124,139], usually
beginning before the age of 15, and seizure control is common by age 25 [140]. The GTC
seizure can be the only symptom experienced by patients or can be combined with other
subsyndromes of idiopathic generalized epilepsy in childhood or adolescence. In patients
with EA the EEG shows characteristics of idiopathic generalized epilepsy (generalized
spike-wave frequent, foca1 abnormalities rare, and photosensitivity increased).

4. Sleep Disruption and Neuroinflammation
4.1. Sleep Deprivation-Induced Neuroinflammation

The mechanisms that underlie sleep are not restricted to specific neuronal circuits
located in specialized neuroanatomical regions but rather appear to involve various cellular
and molecular mediators that interact in the brain. In addition to neurons, glial cells are
recognized as important contributors to the regulation of sleep–wake cycles, and pioneer-
ing studies have revealed a key role for astrocytes and microglia in the homeostasis of
sleep [86,141–143]. Glia mediators, including adenosine and pro-inflammatory cytokines
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interleukin (IL) -1β, IL-6, and the tumor necrosis factor alpha (TNFα), are known to directly
affect sleep pressure, duration, and intensity [144,145]. Activated microglia have two states:
M1 (pro-inflammatory) or M2 (anti-inflammatory), depending on the nature of the inflam-
matory stimulus. Microglia release cytokines in response to the ATP released by astrocytes
and neurons, which acts on the purinergic P2X7 receptors in microglia to induce NREM
sleep [146]. We also know that peripheral cytokines released by immune cells can enter
the CNS along diverse pathways and act on regions of the brain. For example, the anterior
hypothalamus promotes sleep [147,148] under physiological conditions and in response
to neuroinflammation and infection [149,150]. In this regard, some studies report that
systemic or intracerebroventricular administration of IL-1β and TNF-α increases NREM
sleep [151,152], while this stage of sleep is reduced when IL-1β signaling is blocked [153].
In contrast, administering the anti-inflammatory cytokine IL-10 during the light (inac-
tive) sleep phase inhibited NREM sleep in rabbits [154], possibly through its inhibitory
effects on IL-1β and TNF-α production in microglia [155]. One proposal is that TNF-α
has somnogenic actions, attracts the microglia Ml process to dendrites and synapses, and
thus modulates sleep–wake cycles. Other work has demonstrated that TNF-α increases
the expression of Homer1a, an immediate early gene, which plays a key role in synaptic
plasticity [144] and modulates the sleep–wake cycle by influencing the expression of orexin
in neurons. This neuropeptide (also called hypocretin) regulates excitation, wakefulness,
and appetite [156]. Adenosine metabolism also appears as an endogenous regulator of
sleep–wake cycles and a stabilizer of synaptic activity, as the high expression of adenosine
receptors in glial cells [144,145] and the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α
present a rhythmic expression that reaches a maximum in the middle of the light sleep
phase [144].

Microglia, as the resident immune cells of the brain, are essential for maintaining
cerebral homeostasis, especially through phagocytosis of apoptotic cells, cell debris, and
less active synapses throughout the life cycle. In cases of illness, trauma, lesions, and
inflammation the microglia action is considered the first cerebral response [157]. These
immune cells can proliferate, migrate, transform morphologically, and increase their phago-
cytosis, as well as release of inflammatory mediators, reactive oxygen species (ROS) and/or
trophic factors, to promote cerebral immunity in cooperation with astrocytes and peripheral
immune cells [158]. Microglia also respond by orchestrating neuroinflammation through
interaction with the peripheral immune cells that invade the brain, especially if the blood–
brain barrier (BBB) is compromised [86,92,159]. This occurs in conjunction with vascular
cells, astrocytes, and neurons [160]. Acute or chronic alteration of sleep can lead to a
pro-inflammatory state, even in the absence of an evident infection or lesion [161,162]. In
humans and rodents, the lack of sleep can produce an elevated white blood cell count,
increase circulating levels of CRP, IL-1β, IL-6, and TNF-α [159,161,162], and increase the
permeability of the BBB [159,162]. This increased permeability of the BBB to circulating
molecules seems to be due to the interruption between the interaction of brain endothe-
lial cells with pericytes [163] (Figure 1). Pericytes are positioned on the wall of capillary
blood vessels and contribute to blood–brain barrier stabilization through the induction of
endothelial tight junctions and the establishment of gap junctions with brain endothelial
cells [164]. The evidence indicates that a lack of sleep reduces the expression of markers
of the pericyte–endothelial cell interaction (e.g., PDGFR-β and connexin) in microvessels,
with detachment of the pericytes from the capillary walls located in the cerebral cortex
and hippocampus [165], induced by the low degree of inflammation due to lack of sleep.
Together, these actions contribute to the neuroinflammatory environment produced by
sleep deprivation (Figure 1).

In humans, sleep deprivation due to age, work-related stress, stress caused by social
or family obligations, or sleep disorders like narcolepsy, insomnia, and sleep apnea are
associated with negative effects on health and a deterioration in cognition [144]. The
elderly experience a phenomenon called sleep fragmentation, and some reports indicate
that they present a chronic, low-grade inflammatory state [146] expressed as an increase of
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inflammatory mediators, such as central and peripheral IL-6 [166], with greater production
of reactive oxygen and nitrogen species [167] and suppression of anti-inflammatory me-
diators and antioxidants [166]. A similar syndrome is caused by chronic sleep loss in the
young, suggesting that short or insufficient sleep is associated with low-grade inflamma-
tion [161,168,169]. Clinical studies of sleep disorders, including narcolepsy (characterized
by excessive daytime sleepiness), sleep/wakefulness fragmentation, hallucinations, sleep
paralysis, and nocturnal sleep conditions, show that patients with narcolepsy have high
levels of IL-6 and TNFα subtly deregulated in plasma and LCR, consistent with markers
of microglia reactivity [170,171] and low levels of chemokine receptor type 1 and type 3
(CCR1 and CCR3) derived from the microglia /macrophages in samples of peripheral
blood [172,173]. This reduced expression of chemokine receptors could lead to a defect in
microglial recognition and phagocytosis of damaged cells, resulting in a delayed resolution
of acute inflammation. This suggests that microglia-mediated inflammation could trigger
the loss of hypocretin neurons in cases of narcolepsy [174].

Research indicates that people who do shift work or have long work hours experience
health risks at different levels, including risks to the immune system [175,176]. According to
ICSD-3, the disorder caused by shift work is characterized by insomnia or somnolence [61].
Shift work has been found to induce continuous sleep deprivation, stress, and changes in
the natural circadian pattern that can affect an individuals’ immune responses [177–179].
However, there are few studies on this topic and the results are contradictory [180,181].
In an early study of this subject, Nakano et al. [177] conducted follow-up on pink- and
grey-collar shift workers and daytime shift workers (fixed and rotational to both). The
study demonstrated that these shift workers showed reduced mitogen proliferation of T-
lymphocytes to phytohemagglutinin-P and concanavalin A, especially those who worked
fixed night shifts. Nagai et al. [179] found that shift workers had reduced amounts of
natural killer cells (NK), CD16+ and CD56+, and that night workers had an increase in
CD3+ and CD4+ in comparisons performed at two moments (day shift and night shift).
Natural killer cell activity was associated with an increase in fatigue compared to daytime
workers. One cohort study involving over 10,000 workers at companies in Holland showed
that shift workers, especially those who worked the night shift, had a higher risk of
infections (e.g., colds, flu, gastroenteritis) than those who worked daytime shifts [178].

The role of sleep in modulating immune function in humans has been tested previously
by observing the prolonged effects of sleep deprivation on various immune parameters.
Findings show that acute sleep deprivation (50–64 h) is associated with a temporary
increase in NK activity and higher T-CD4+ lymphocyte, CD8+, monocyte, granulocyte,
and NK cell counts [119,182–184]. However, in subjects in whom a partial lack of sleep was
induced by restricting sleep time to 4 h/night, NK cell activity decreased to an average of
72%, compared to participants who slept throughout the night [185]. Studies of chronic
deprivation—the most common form seen in clinical practice—have also shown reductions
in the activity of NK CD16+, CD56+, and CD57+ cell counts, and IL-2 levels [185–188]. It
is well known that these lymphocytes participate in innate immunity, are important in
defending against viruses and intracellular bacteria, and are involved in the response to
tumor cells [189,190]. The reduced functioning of NK cells is also associated with a greater
risk of developing cancer [191]. Likewise, restricting sleep to 4 h/night has led to the
production of inflammatory cytokines, which play an important role in the development of
cardiovascular and metabolic disorders [85].

Experimental studies have evaluated whether sleep loss induces inflammation the
following day. One meta-analysis reported that neither total nor partial nocturnal sleep
deprivation nor chronic sleep restriction reliably increased IL-6, TNF-α, or CRP—three
circulatory markers of inflammation [192]. Those results, however, contrast with evidence
from assessments of upstream cellular and genomic inflammatory processes. Indeed, par-
tial night-time sleep deprivation activates inflammatory signaling pathways, such as those
involving nuclear factor-κB (NF-κB), activator protein 1 (AP-1), and signal transducer and
transcription activator (STAT) family proteins [193–195], while also increasing levels of mR-
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NAs that encode pro-inflammatory cytokines, and TLR4-stimulated monocyte production
of IL-6 and TNF-α [85,192]. It has been suggested that acute sleep loss or short sleep dura-
tion activates inflammatory signaling pathways, though the translation of these molecular
signals into increases in inflammatory peptides may not occur until later, or may require a
more persistent period of sleep loss [193]. In an effort to elucidate the mechanisms that lie
beneath the connection between sleep deprivation, the immune response, and metabolic
processes, one epidemiological study in humans identified genes and pathways through
microarrangements of the complete genome by experimentally simulating sleep restriction
during one work week in which sleep was limited to 4 h/night for five nights [169]. Results
indicated that this experimental restriction of sleep altered the expression of genes related
to the immunological function, including activation of B lymphocytes, TLR-4, STAT1 cells,
and the production of IL-8 via the signaling of NF-kB. Of the ten most down-regulated
genes, TBX21 and LGR6 correlated negatively, but TGFBR3 correlated positively with
insufficient sleep. Observations of the TBX21 and TGFBR3 transcriptions showed that
they are mediators of the immune system, while LGR6 and STX16 have been repeatedly
associated with the progression of cancer. Partial sleep restriction affects the regulation of
the signaling pathways related to the immune system. Some of these changes seem to be
lasting and may explain, at least in part, how prolonged sleep restriction can contribute to
pathological states associated with inflammation, such as cardiometabolic diseases [169].
However, additional studies are necessary to better understand this relationship.

4.2. Hypoxia Induced Neuroinflammation in Obstructive Sleep Apnea

OSA is characterized by recurrent episodes of pharyngeal collapse during sleep
that result in intermittent hypoxia due to repeated sequences of oxygen desaturation–
reoxygenation. This condition is recognized as a chronic, low-grade systemic inflammatory
disease, particularly due to its hypoxic component. A growing body of evidence shows that
hypoxia induces a neuroinflammatory response that has an essential role in neuronal dam-
age. Hypoxia has been associated with an antioxidant imbalance and changes in oxidative
mitochondrial phosphorylation, which results in greater amounts of reactive oxygen and
nitrogen species (ROS, RONS), NADPH oxidase, inflammation, and secondary oxidative
damage to lipids, proteins, and DNA [196,197]. Hypoxia is associated with high plasma
levels of CRP and pro-inflammatory factors, such as IL-6 and TNF-α, which could con-
tribute to excessive daytime sleepiness [121]. Indeed, increased levels of cyclooxygenase-2
(COX-2) and TNF-α messenger RNA have been described in the brains of rats and mice
exposed to intermittent hypoxia [198,199]. The intermittent hypoxia component of OSA
causes low-grade neuroinflammation in the dorsal hippocampus of mice, including early,
though transient, cytokine elevations, delayed but long-term microglia Ml changes, and
altered cytokine responses to lipopolysaccharide (LPS) inflammatory challenges [200,201].
In addition, significant astrogliosis has been observed in the cortex and hippocampus of
rats exposed to intermittent hypoxia. This condition also induces greater permeability of
the BBB [202], allowing circulating cytokines, specifically IL-1α, IL-1β, IL-6, and TNF-α,
to cross the BBB and enter the brain [203]. Inflammation alters the function of the BBB
as cytokines increase the disorganization of the narrow unions and the permeability of
the BBB itself, resulting in the activation of glial cells, specifically microglia, towards the
M1 phenotype, which produces oxidative stress and the release of pro-inflammatory cy-
tokines (Figure 1) [204]. During microglia Ml activation, various signaling molecules and
transcription factors, including HIF-1α, NF-κB, and STAT1, are regulated under hypoxic
conditions [205,206]. HIF1α and NF-κB are well-studied transcription factors that are
interrelated and organize a complex inflammatory cascade [207–209] and induce classic M1
polarization due to exposure to IFN-γ or LPS [95]. Studies using primary microglial cul-
tures under hypoxia have shown that the mouse microglia cell line BV2 results in activation
of the HIF1α pathway, which induces the polarization of microglia to the M1 state [206].
Another idea is that the STAT1 signaling pathway is a fundamental transcription factor
that regulates the transition of the microglia into the M1 phenotype, and that the oxidative
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stress that derives from the hypoxic atmosphere contributes to activating STAT1 in the
microglia Ml cells. Evidence from BV2 microglia of wild-type mice and null cells of STAT1
cultured under hypoxic conditions shows that silencing of the STAT1 protein affects the
expression of iNOS and CD68, revealing the central role of the STAT1 signaling pathway
in the microglia Ml activation during hypoxia [210] and in mediating the translocation of
NF-kB p65 to the nucleus, thereby inducing inflammatory events in a model of spinal cord
injury [211].

OSA induces cognitive deterioration caused mainly by neuroinflammation and oxida-
tive stress triggered by intermittent, chronic hypoxia. Earlier studies demonstrated that
mitochondrial reactive oxygen species are fundamental in tissue lesions related to hypoxia
and that damage to the mitochondria seems to activate the inflammasome (NLRP3), a
multiprotein cytosolic complex formed by the NLRP3 protein, the apoptosis-associated
speck-like protein that contains a caspase recruitment domain (ASC) adapter protein and
procaspase-1, which permits activation of the pro-inflammatory caspases that transform
the interleukin-1beta precursor (pro-IL-1beta) into the active form in response to cellular
danger signals [212]. Since the microglia are resident immune cells in the CNS, the IL-1β
cytokines processed by caspase-1 could be released by the microglia under pathological
conditions, thus aggravating the progression of neuroinflammation and cognitive deterio-
ration [213]. In this regard, NLRP3 inflammasome-mediated activation of the microglia
may play a key role in neuroinflammatory conditions and in inhibiting activation of the
NLRP3 inflammasome to attenuate neuroinflammation and improve neurological function
in the case of a brain lesion [214]. In addition, the deficiency of NLRP3 acts as a protector
by improving the selective autophagy of damaged mitochondria because, under conditions
like hypoxia, mitochondrial respiration is deficient and causes damage by producing ROS.
This is considered a conserved auto-degradation process, negatively regulated by the
NLRP3 inflammasome [215]. As a result, deactivation or pharmacological blocking of the
NLRP3 gene may be a potential therapeutic strategy for the associated neurocognitive
deterioration secondary to OSA.

5. Targeting Neuroinflammation in Epilepsy

Growing evidence in human epileptic brain tissue and in animal seizure models in-
dicates that neuroinflammation contributes to the development of epilepsy [7,216–222].
While acute inflammation can be beneficial and promote neural tissue repair, chronic inflam-
mation is detrimental and induces neurotoxicity and neuronal hyperexcitability [221,223].
Furthermore, seizure activity per se induces brain inflammation [219].

The peripheral immune system plays a similar role in epileptogenesis [221]. However,
inconsistent findings have been reported on peripheral (blood, serum, plasma, and CSF)
markers of inflammation in PWE. For instance, Wang et al. [224] showed that interictal
elevated serum IL-6, IFNγ, IL-17a, IFNλ3, and CSF IL-6, IL-17a, IFNλ3 levels were associ-
ated with seizure severity in PWE. In contrast, Alvim et al. [225] found reduced cytokine
(IL-2, IL-4, IL-6, IL-10, IL-17, TNF-α, and IFNγ) levels in plasma, while neurotrophic
factor (BDNF, NT3, and NGF) levels were elevated in PWE compared to healthy controls.
Moreover, Zhong et al. [226] reported elevated CRP levels in peripheral blood from PWE
compared to healthy controls. A similar increase in CRP and cytokine plasma levels were
observed in pilocarpine-treated rats when compared to a saline group [227,228].

An inflammatory crosstalk exists between the periphery and the brain after seizures
(Figure 1) [221]. Riazi et al. [229] and De Caro et al. [230] demonstrated that intestinal
inflammation increases CNS excitability and seizure susceptibility in pentylenetetrazol
(PTZ)-treated rodents. Similarly, Ho et al. [231] showed that LPS-induced peripheral
inflammation worsens hippocampal microglial activation and enhanced pro-inflammatory
cytokine production in KA-treated rats.

Multiple signaling pathways play a role in the neuroinflammatory response associated
with epilepsy, including danger signals release, pro-inflammatory cytokine production,
and glial activation (Figure 1) [7,216–222].
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5.1. Danger Signals and Pro-Inflammatory Cytokines

High mobility group box-1 (HMGB1), a ubiquitous nuclear protein, is one of the
many danger signals released by immune cells or necrotic cells after brain injuries. Several
studies have reported elevated HMGB1 levels in the serum/plasma/CSF [232–235] and
brains [233,236] of epileptic patients or animal seizure models [113,237], correlating with
higher risk and severity of epilepsy. Once released into the extracellular space, HMGB1 pro-
motes the recruitment of immune cells to the injury site. HMGB1 binds to its receptors such
as toll-like receptor 4 (TLR4), triggering the activation of the nuclear factor kappa-B (NF-κB).
The TLR4/NF-κB signaling pathway, in turn, activates the inflammasomes—multiprotein
complexes that induce pro-inflammatory cytokine production. Pro-inflammatory cytokines,
such as IL-1β, act as neuromodulators by interacting with glutamate receptors, e.g., N-
methyl-D-aspartate (NMDA) receptors, leading to neuronal hyperexcitability [238–241]. In
epilepsy patients, HMGB1 is known to mediate microglia activation and pro-inflammatory
cytokine production via the TLR4/NF-κB pathway (Figure 1) [233,242].

5.2. COX-2/Prostaglandin E2 Signaling Pathway

Besides inflammasome activation and pro-inflammatory cytokine production, seizures
induce other inflammatory mediators, such as cyclooxygenase-2 (COX-2). COX-2, a crit-
ical mediator of the inflammatory response, is constitutively expressed in hippocampal
and cortical neurons. Within hours after status epilepticus (SE) onset, COX-2 is induced
in neurons, and its upregulation persists up to several days after SE [243]. COX-2 in-
duction is associated with neurotoxicity and neurodegeneration in epilepsy [244]. This
enzyme synthesizes prostaglandins from arachidonic acid, which propagate neuroinflam-
mation [245]. Genetic deletion of COX-2 in forebrain neurons reduced neurodegeneration
in the hippocampal CA1 region, pro-inflammatory cytokine expression, gliosis, leukocyte
infiltration, and brain blood barrier (BBB) leakage, with no effect on seizure intensity after
pilocarpine-induced SE [246]. To date, several selective COX-2 inhibitors have been shown
to be neuroprotective for epilepsy management [247]. However, many COX-2 inhibitors
produce severe adverse effects in PWE, such as cardiotoxicity, and worsen mortality in
animal seizure models [248,249]. Therefore, prostaglandin receptors antagonists emerge as
promising therapeutic agents to treat epilepsy [218,223,245]. Prostaglandin E2 (PGE2) is the
most abundant, and pharmacological inhibition of its receptor, EP2, using novel selective
antagonists has been shown to improve survival, weight recovery, cognitive deficits, and
reduced neuroinflammation, gliosis, and neurodegeneration in various animal seizure
models [250–253].

5.3. Glia

In addition to danger signals, seizures cause the extracellular release of toxic molecules,
such as ATP, reactive oxygen species (ROS), or glutamate, which can also activate mi-
croglia. Activated microglia produce pro-inflammatory mediators (e.g., cytokines, comple-
ment factors, prostaglandins, among others), which in turn transform resting astrocytes
into reactive astrocytes [254]. Activated microglia and reactive astrocytes proliferate,
display a reactive phenotype characterized by morphological and biochemical changes,
and produce pro-inflammatory mediators (Figure 1). Increased numbers of Iba1-positive
microglia/macrophages and GFAP-positive astrocytes have been observed in the hip-
pocampus correlating with severe neuronal loss after SE [255–257] and in the brain of
PWE [258,259]. Recently, Sano et al. [257] found that microglia are the first to be activated,
followed by reactive astrocytes and increased susceptibility to seizures. Moreover, reactive
astrocytes contribute to neuronal hyperexcitability not only as active players in the neuroin-
flammatory response but also through the dynamic regulation of neurotransmission and
water/potassium homeostasis [260–262]. For instance, chronic seizures dysregulate astro-
cytic glutamate receptor/transporter expression and function in PWE and animal seizure
models (Figure 1) [263]. Astrocyte swelling and edema can often occur and cause the re-
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lease of neurotoxic molecules, leading to neuronal hyperexcitability, seizure development,
and epileptogenesis [260].

Besides their role in neuronal excitability and inflammation, recent studies have shown
that glia cells can also be protective [260,264]. On the one hand, Wu et al. [265] demonstrated
that microglial depletion in SE mice worsened acute seizures and neurodegeneration, and
increased spontaneous recurrent seizures (SRS) frequency. Particularly, the ENIGMA-
Epilepsy Working Group showed that transient microglial depletion in the early disease
phase (i.e., until day 7 after spontaneous seizure onset) prevented neuronal loss and
cortical thinning after SE in mice [259]. Interestingly, blockade of microglial proliferation
during the chronic disease phase (i.e., starting day 58 until day 71 post-SE) resulted in
SRS reduction [266]. Moreover, Zhao et al. [267] showed that mTOR-deficient microglia
exposed to an excitatory injury in vitro lose their proliferative and inflammatory responses,
as well as fail to effectively engulf damaged neurons. Additionally, Alam et al. [268]
validated that impaired microglial autophagy, which acts downstream of mTOR, leads
to increased seizure susceptibility and causes severe seizures. Together, these findings
strongly suggest that mTOR signaling in microglia is neuroprotective and antiepileptogenic.
On the other hand, Sano et al. [257] showed that pharmacological inhibition of microglial
activation prevented subsequent reactive astrocytes, aberrant astrocyte calcium signaling,
and enhanced seizure susceptibility. Their findings indicate that the therapeutic target to
prevent epilepsy after SE should be shifted from microglia in the early phase to astrocytes in
the late phase of the disease. Although the protective/restorative role of reactive astrocytes
has been shown after cerebral ischemia and traumatic brain injury [260,269], further studies
are needed to determine whether reactive astrocytes promote neuron survival or tissue
repair in chronic epilepsy.

5.4. BBB Leakage

The BBB, composed of endothelial cells, astrocytes, pericytes, and microglia, acts
as a selective barrier between the periphery and the brain [270]. Seizure-induced in-
flammation causes structural and functional changes in the brain, such as BBB leakage
(Figure 1) [218,262,271,272]. BBB leakage results in leukocyte infiltration to the brain and
the release of mediators that increase vascular permeability, such as vascular endothe-
lial growth factor and transforming growth factor β (TGF-β) [221]. In vivo and in vitro
exposure to albumin, a model of BBB leakage, activates TGF-β receptor in astrocytes,
resulting in downregulation of potassium channels and NMDA glutamate transporters,
which ultimately leads to epileptiform activity [273]. In human brain pericytes, TGF-β
attenuated the expression of key chemokines and adhesion molecules involved in leuko-
cyte infiltration [274,275]. Leukocyte infiltration promotes glial activation and the induc-
tion of pro-inflammatory cytokine expression, which exacerbates neuronal damage after
pilocarpine-induced SE [276] and in PWE [277]. These findings suggest that blockade of
leukocyte infiltration could be a therapeutic strategy to prevent seizure-induced sequelae.
Moreover, conditional ablation of EP2 receptors in immune myeloid cells and systemic
administration of a novel EP2 receptor antagonist prevented monocyte infiltration and BBB
leakage, reduced pro-inflammatory cytokines, accelerated weight regain, and ameliorated
behavioral deficits after SE [276,278].

5.5. miRNAs

Emerging research suggests an important role for numerous upregulated/downregulated
miRNAs in seizure-induced neuronal death/apoptosis, excitatory/inhibitory neurotrans-
mission, and neuroinflammation [235,279]. For example, Aronica et al. [280] observed
elevated hippocampal miR-146a levels at 1 week that persisted up to 3–4 months after SE
in rats, and in PWE with hippocampal sclerosis, reactive astrocytes were the main source,
suggesting that miRNAs can modulate the astrocytic inflammatory response triggered by
epilepsy. Additionally, Zhang et al. [281] demonstrated that treatment with a miR-146a
antagonist was protective against SE by reducing pro-inflammatory cytokine expression,
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including IL-1β, IL-6, and TNF-α, through NF-κB activation. Similarly, inhibition of miR-
103a prevented astrocytic activation and improved neuronal survival in the hippocampus
of SE rats by regulating BDNF expression [282]. Moreover, Lu et al. [283] showed that
miR-27a-3p inhibitor alleviated seizures, prevented neuronal apoptosis by increasing anti-
apoptotic Bcl2 and decreasing pro-apoptotic Bax and Caspase3 expression, and reduced
pro-inflammatory cytokine expression, including IL-1β, IL-6, and TNF-α, in the hippocam-
pus of SE rats. In vitro assays showed that miR-27a-3p inhibitor effects were mediated
via mitogen-activated protein kinase 4 [283]. In contrast, Fu et al. [284] found decreased
serum/hippocampal miR-34c-5p levels in patients with drug-resistant epilepsy and in
drug-resistant SE rats correlating with elevated HMGB1 and IL-1β expression and severe
hippocampal neuronal loss. Together, these findings indicate that miRNAs can serve as po-
tential targets for the treatment of epilepsy and as molecular biomarkers of epileptogenesis;
however, the delivery and safety of miRNA inhibitors remain challenges [235,279].

Therapies interfering with HMGB1/TLR4, NF-κB, IL-1β, COX-2, PGE2/EP2, and
TGF-β signaling pathways, and other inflammatory targets have been proposed to treat
epilepsy [7,218,221,254]. Table 1 summarizes studies using drugs with anti-inflammatory
effects exhibiting anticonvulsant activity in PWE and in animal seizure models.

Table 1. Drugs with anti-inflammatory effects used in clinical and pre-clinical studies to treat epilepsy.

(A) Clinical studies

Drug Mechanism/Target Pathology Outcome Ref

Ibuprofen COX-2 inhibitor Febrile seizures

Reduced recurrence of a
febrile seizure

This study lacks
inflammation analysis

[249,285]

Dexamethasone

Glucocorticoid with
anti-inflammatory and
immunosuppressant

properties

Drug-resistant
pediatric epilepsy

Epileptic
encephalopathy with

continuous
spike-and-wave during

sleep

Reduced number of seizures
Common side effects:

increased body weight,
anxiety, and insomnia

[286,287]

Minocycline

Suppresses microglial
activation and reduces

pro-inflammatory
cytokine release

Astrocytoma and
drug-resistant epilepsy

Reduced seizure frequency
This study lacks

inflammation analysis
[288]

Aspirin COX-2 inhibitor Partial epilepsy
Reduced seizure frequency

This study lacks
inflammation analysis

[249,289]

Anakinra IL-1 receptor agonist Intractable seizures

Reduced number of seizures
Changes in IL-1β/IL-10 ratio

produced by peripheral
blood monocytes

[290]

Tocilizumab IL-6 receptor inhibitor New onset refractory
status epilepticus

No recurrence of status
epilepticus

IL-6 levels were normalized
2 out of 7 patients

experienced severe adverse
events related to infection

[291]
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Table 1. Cont.

(A) Clinical studies

Drug Mechanism/Target Pathology Outcome Ref

Cenobamate

Sodium channel
inhibitor and positive
allosteric modulator of
GABAA ion channels

Uncontrolled focal
(partial)-onset epilepsy

Reduced seizure frequency
This study lacks

inflammation analysis
[292,293]

Neurosteroids

Pleiotropic actions,
including modulation
of neuronal excitability
and anti-inflammatory

properties

Catamenial epilepsy

Tuberous Sclerosis
Complex

Progesterone was beneficial
in reducing seizures in

women with perimenstrual
exacerbation; its

anti-epileptic effects are
mainly mediated by

allopregnanolone (ALLO),
which interacts with the

GABAA receptor
Ganaxolone (GNX), a

synthetic analog of ALLO,
reduced seizure frequency

These studies lack
inflammation analyses

[294–296]

Ketogenic diet
Pleiotropic actions,

including modulation
of neuronal excitability

Absence epilepsy
Drug-resistant epilepsy

Reduced seizures
These studies lack

inflammation analyses
[297–301]

(B) Pre-clinical studies

Celecoxib COX-2 inhibitor Pilocarpine

Delayed latency to seizure
onset

Prevented neuronal death
and microglia activation in

the hippocampus
Decreased in hippocampal
levels of pro-inflammatory
cytokines, oxidative stress
markers, and suppressed

MGB1 translocation

[223,302,303]

Indomethacin COX-2 inhibitor Pilocarpine Decreased IL-1β and TNF-α
expression [304]

Aspirin COX-2 inhibitor Pilocarpine

Reduced spontaneous
recurrent seizures, memory

loss, and aberrant
neurogenesis

These studies lack
inflammation analyses

[249,305,306]

Ibuprofen COX-2 inhibitor Pentylenetetrazol

Increased latency to seizure
and reduced seizure duration

Reduced proliferation of
astrocytes by increasing

autophagy

[307]

Fingolimod (FTY720)

Immunosuppression
via modulation of

sphingosine-1-
phosphate
receptors

Lithium–Pilocarpine
Excitotoxicity in vitro

Kainic acid

Inhibited neuroinflammation,
reduced neuronal loss,

activation of microglia and
astrocytes, and attenuated

spontaneous seizures

[308,309]
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Table 1. Cont.

(B) Pre-clinical studies

Dexamethasone

Glucocorticoid with
anti-inflammatory and
immunosuppressant

properties

Pilocarpine

Lithium–Pilocarpine

Reduced SE severity and
abolished mortality

Decreased number of
circulating T-cells

Reduced BBB damage
Reduced hippocampal

inflammatory cytokines,
prostaglandin E2, and

cyclooxygenases
Attenuated astrogliosis

markers

[286,310]

TG6-10-1 EP2 receptor antagonist
Organophosphorus-

induced SE
Kainate

Reduced hippocampal
neurodegeneration, blunted
the inflammatory cytokine

burst, and reduced
microglial activation

[252,311]

TG8-260 EP2 receptor antagonist Pilocarpine

Reduced hippocampal
neuroinflammation and
gliosis, but no effect on

neuronal injury nor BBB
breakdown

[253]

Neurosteroids

Pleiotropic actions,
including modulation
of neuronal excitability
and anti-inflammatory

properties

Pentylenetetrazol
Amygdala kindling

Kainic acid

Reduced levels of ALLO in
the hippocampus correlates

with seizure frequency
Exogenous treatment with
progesterone, ALLO, and
GNX suppressed seizures
Progesterone and ALLO

inhibit inflammatory
signaling pathway

TLR4/NFκB and NLRP3
inflammasome activation

and pro-inflammatory
cytokine production in

multiple models of brain
injury

[295,312–318]

Ketogenic diet

Pleiotropic actions,
including reduction of
reactive oxygen species

and neuronal
excitability, and

enhanced production of
high-energy molecules

Excitotoxicity in vitro
Lithium–Pilocarpine

LPS

Improved neuronal survival
in vitro

Reduced glutamate and
enhanced GABA synthesis in

the brain, suppressing
seizures

Reduced levels of
pro-inflammatory cytokines
in blood and brain after LPS

injection
Regulated NF-κB activation
and pro-inflammatory gene
expression in macrophages

and microglia

[297,319–324]

6. Evidence for Sleep Deprivation-Induced Neuroinflammation in Epileptic Rodents

Multiple studies demonstrate that sleep disturbances activate the immune system.
Once activated, the immune system triggers an inflammatory response, which, depending
on its magnitude and time course, can induce either a longer sleep duration or a disruption
of sleep [147,193]. The relationship between sleep and epilepsy is complex and bidirectional.
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On the one hand, sleep deprivation is known to exacerbate seizures, and on the other
hand, some seizures occur predominantly during sleep. Moreover, antiepileptic drugs
can interfere with sleep health causing either excessive daytime sleepiness or worsening
seizure frequency. To date, only a few preclinical studies have addressed this complex
relationship, therefore, there is an unmet need to elucidate the underlying mechanisms
of sleep disturbances as biological drivers that worsen epilepsy outcomes. Besides its
behavioral and genetic effects, sleep deprivation provoked an imbalance in pro-oxidant
and antioxidants, NOX-2 and eNOS were increased, while catalase was reduced in the
epileptic cortex [325]. Furthermore, sleep deprivation synergized with epilepsy to elevate
miR-146a expression, an important inflammatory modulator [326]. Compelling evidence
indicates that the interleukin-1 receptor (IL-1R) mediates epilepsy-induced sleep disruption
in IL-1R deficient mice, which exhibited less NREM sleep when compared to sufficiently
rested counterparts [327]. However, inconsistent findings regarding the effects of sleep
deprivation on levels of neuroinflammatory markers in the epileptic brain have been
reported. For example, Mohammed et al. [328] observed an increase in lipid peroxidation
and pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, and a reduction in AchE. In
contrast, Aboul et al. [329] reported elevated oxidative stress markers and pro-inflammatory
cytokine expression in the hippocampus of paradoxical sleep-deprived rats, whereas TNF-
α was reduced in epileptic rats after sleep deprivation. Despite these inconsistent findings
about whether sleep deprivation enhances or diminishes inflammatory markers, it is clear
that neuroinflammation play a key role in epilepsy outcomes. Interestingly, microglial
marker Iba1 was elevated in central autonomic brain regions from epilepsy patients who
suffered sudden unexpected death (SUDEP) compared to epileptic and non-epileptic
controls. These findings support an important role for microglial activation in SUDEP
and might indicate a relevant mechanism underlying cardioregulatory failure during a
seizure [330]. Further studies examining the impact of sleep deprivation on microglial
activation should be conducted to understand other events that affect the inflammatory
environment in the epileptic brain.

7. Management of Sleep Disruption in Epilepsy

An early diagnosis and treatment of specific sleep disturbances in PWE are key for
improving clinical outcomes and quality of life [6,19]. Here, we summarize the approaches
that have been used to improve sleep quality and to manage insomnia, OSA, and excessive
day sleepiness in PWE (Figure 2).

7.1. Surgery

Surgical treatment (anterior temporal lobectomy) of refractory epilepsy significantly
improved sleep quality [331], as well as increased total sleep time and REM sleep by
reducing the number of seizures [332]. Similarly, Zansmera et al. [333] demonstrated that
epilepsy surgery improved sleep quality, sleep architecture, and OSA, resulting in reduced
excessive daytime sleepiness among patients with refractory epilepsy.

7.2. Ketogenic Diet

A steady energy level may reduce seizures in some PWE. The ketogenic diet, a
dietary treatment consisting of a high fat and low protein/carbohydrate content, has been
shown to be beneficial for intractable epilepsy [297–301] through multiple mechanisms of
action, including an increase in ketone bodies with anticonvulsant and anti-inflammatory
effects [321]. For instance, being on a ketogenic diet decreased sleep and improved sleep
quality in children with intractable epilepsy [334]. Moreover, there is an ongoing clinical
trial based at the University of Wisconsin, Madison aimed at studying the effects of the
ketogenic diet on sleep in adults with epilepsy (NCT04193891).
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7.3. Positive Airway Pressure

Recent studies have found a positive association between OSA and SUDEP risk in
PWE, suggesting that screening symptoms for OSA could reduce epilepsy-related mortality,
and lead to more effective treatments [335,336]. Positive airway pressure (PAP) is the gold
standard of treatment for OSA in PWE [337]. Numerous studies demonstrate that PAP
therapy mitigates OSA symptoms and improves seizure control [56,337–342]. Nevertheless,
additional studies are necessary to discern the relative efficacy of different forms of PAP
(i.e., bilevel PAP, nasal continuous PAP). Furthermore, retrospective studies suggest that
tonsillectomy and adenoidectomy are effective surgical treatment options for people with
epilepsy and comorbid OSA; however, the general efficacy of this type of treatment for
reducing seizure frequency and severity on a large scale is still under investigation, as the
efficacy of surgery depends on the severity of sleep apnea [343]. These results strongly
emphasize the importance of treating OSA in PWE. Despite clinical evidence favoring its
effectiveness in improving OSA and reducing seizures, PAP therapy long-term adherence
can be challenging for PWE. For instance, a retrospective study found that PWE were less
adherent to PAP therapy than controls with OSA but without epilepsy, and PWE were
more likely to have a higher number of residual apneas following PAP [344]. A more recent
longitudinal study (follow-up period of 5 years) reported a better PAP adherence in newly
diagnosed patients, mostly females, and patients with a lower number of total seizures
or lower seizure frequency [345]. However, in some cases patients are unable to tolerate
PAP [346] and alternative therapies are needed.

7.4. Melatonin

The role of melatonin, a pineal hormone involved in the regulation of the sleep–wake
cycle, has been extensively investigated as an alternative treatment for sleep disorders in
PWE, especially pediatric patients [347,348]. Unfortunately, findings have been inconsistent
and contradictory regarding its effectiveness in increasing sleep efficiency and reducing
seizures. In children with intractable epilepsy, administration of melatonin improved
bedtime resistance, sleep duration, sleep latency, excessive daytime sleepiness, and sleep
apnea [349]. In contrast, an additional study reported that children with epilepsy treated
with melatonin showed improvements in diurnal seizure frequency, without changes in
sleep parameters [350]. Moreover, Jain et al. [351] observed a decrease in sleep latency after
treatment with melatonin without changes in seizure frequency. Melatonin is a pleiotropic
agent with anti-inflammatory, antioxidant, and neuroprotective properties, which may
explain its mixed effects with an ability to reduce seizure activity in some PWE [352].

7.5. Chronotherapies

Chronotherapies and personalization of treatment schedules to accommodate sleep-
related epilepsy also provides a useful avenue for personalized seizure prevention [126,353,354].
For example, Guilhoto et al. [132] observed that a higher dose of antiepileptic drugs (AEDs)
at night led to seizure freedom in 64.7% (11/17) of patients, and 88.2% (15/17) experienced
reduced seizure frequency. Clinical efforts must be done to integrate chronotherapy in
comprehensive epilepsy care [353], however, further studies with higher numbers of
patients and various types of seizures are needed to get a clearer picture of the beneficial
effects of chronotherapy in epilepsy.

7.6. Cognitive Behavioral Therapy

Cognitive behavioral therapy (CBT) for insomnia has shown some promising results
in PWE [355]. However, inconsistent results suggest that more research is needed to clarify
optimal approaches, ideal duration of treatment, time course of potential improvement, and
best target population [356]. For example, a randomized controlled trial found significant
improvements in sleep quality, insomnia severity, sleep hygiene behavior and sleep onset
latency in the treatment group (n = 160) [357]. In this trial, CBT also improved anxiety,
depression and quality of patient’s life [357]. In contrast, a recent pilot study reported
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that CBT failed to improve sleep quality and excessive daytime sleepiness in a total of
11 patients with epilepsy [358]. Additionally, there is an ongoing clinical trial based at the
Cleveland Clinic aimed at studying the effects of a computerized CBT on insomnia severity
index in adults with epilepsy (NCT03632889).

7.7. Pharmacological Therapies

The effects of various AEDs on sleep efficiency have been previously revised [359–361].
Some AEDs might affect sleep quality and architecture, causing sleepiness or drowsiness
while others can lead to insomnia [362]. However, the effects of AEDs appear to vary in
direction and magnitude between patients [15]. Therefore, it is noteworthy that providers
carefully evaluate the impact of AED choice on each patient’s quality of sleep and make
adjustments accordingly. Although not currently listed as a therapy to manage sleep
disruption in epilepsy, we propose that targeting neuroinflammation with novel anti-
inflammatory agents might be an innovative therapy for sleep disruption in PWE (Table 1,
Figures 1 and 2).

8. Conclusions and Future Directions

Sleep is essential for cleaning the brain and maintaining its normal functioning. People
with epilepsy often have a reduced sleep duration and poor sleep quality. Nocturnal
seizures, psychosocial stress, and the effects of antiepileptic drugs, are the main underlying
causes of sleep disturbances in people with epilepsy. The most common sleep disturbances
are insomnia, obstructive sleep apnea, and excessive daytime sleepiness, which negatively
impact seizure frequency and quality of life (discussed above). Unfortunately, there are
methodological limitations for epilepsy patients in the clinic, including a lack of a detailed
medical history, inaccurate tools to diagnose sleep problems, and misinterpretation of
apneic events as seizure activity, to name just a few. If untreated, sleep disturbances lead to
cognitive decline, impaired memory, and comorbid psychiatric conditions (e.g., depression,
anxiety, and thoughts of suicide) that worsen sleep quality and epilepsy [11].

The molecular and cellular mechanisms underlying sleep disturbances in epilepsy
include but are not restricted to neuroinflammation. Damaged neurons release danger
signals, which trigger peripheral and brain inflammatory responses, promoting loss of
BBB integrity, leukocyte infiltration into the brain, microglial and astrocytic activation, and
pro-inflammatory mediator production. Numerous clinical studies demonstrate that PWE
and comorbid sleep disturbances have higher levels of inflammatory markers, correlating
with a higher frequency of seizures as compared to PWE who experience good-quality
sleep. There are limited studies combining animal seizure models with sleep deprivation;
however, findings showed that sleep deprivation similarly increases seizure frequency
and exacerbates neuroinflammation. Therefore, therapeutic agents targeting inflammatory
signaling pathways could be promising candidates for disease modification in treating
epilepsy and should be further investigated for their efficacy in controlling seizures and
sleep disturbances in PWE. The findings summarized in this review suggest that routine
assessments of systemic inflammatory markers could be useful for identifying existing
sleep disturbances in PWE. Furthermore, additional preclinical and clinical studies are
urgently needed to definitively clarify the role neuroinflammation plays in the relationship
between sleep disturbances and epilepsy progression. With further investigation of this
mechanistic pathway, the field will get closer to achieving the ultimate goal of finding
useful disease-modifying agents for patients with epilepsy.
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