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Abstract: Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice, which is one
of the most severe bacterial diseases in rice in some Asian countries. The type III secretion system
(T3SS) of Xoo encoded by the hypersensitive response and pathogenicity (hrp) genes is essential
for its pathogenicity in host rice. Here, we identified the Min system (MinC, MinD, and MinE), a
negative regulatory system for bacterial cell division encoded by minC, minD, and minE genes, which
is involved in negative regulation of hrp genes (hrpB1 and hrpF) in Xoo. We found that the deletion of
minC, minD, and minCDE resulted in enhanced hrpB1 and hrpF expression, which is dependent on
two key hrp regulators HrpG and HrpX. The minC, minD, and minCDE mutants exhibited elongated
cell lengths, and the classic Min system-defective cell morphology including minicells and short
filamentations. Mutation of minC in Xoo resulted in significantly impaired virulence in host rice,
swimming motility, and enhanced biofilm formation. Our transcriptome profiling also indicated
some virulence genes were differentially expressed in the minC mutants. To our knowledge, this is
the first report about the Min system participating in the regulation of T3SS expression. It sheds light
on the understanding of Xoo virulence mechanisms.

Keywords: Xanthomonas oryzae pv. oryzae; MinCDE system; type III secretion system; virulence; motility

1. Introduction

Xanthomonas is a genus of Gram-negative bacteria that includes numerous species that
cause disease in over 400 different plant hosts, including rice, citrus, wheat, cabbage, tomato,
cassava, and pepper [1]. Xanthomonas oryzae pv. oryzae (Xoo) is widespread in Southern
China, West Africa, and Southeast Asian countries such as Thailand and Vietnam [2].
The phytopathogenic Xoo infects rice, causing bacterial leaf blight (BLB), which induces
worldwide output losses of up to 50% [3]. Xoo produces a variety of virulence factors,
including lipopolysaccharides (LPS), exopolysaccharides (EPS), extracellular enzymes,
toxins, adhesions, and effectors injected into host rice by the type III secretion system
(T3SS), and so on [4]. The Xoo T3SS that controls the pathogenicity in susceptible host rice is
encoded by a hypersensitive response and pathogenicity (hrp) gene cluster, which contains
27 genes including 10 hrp, 9 hrc (hrp conserved), and 8 hpa (hrp-associated) genes [5].

The expression of hrp genes of Xoo is significantly stimulated in planta, or in minimum
medium (XOM3), an artificial hrp-inducing medium, but inhibited in the nutrient-rich
medium [6]. The expression of Xoo hrp genes was regulated by two key regulators, HrpG
and HrpX. HrpG belongs to the OmpR-family response regulator of two-component regula-
tory systems. It has a response receiver (RR) domain at the N-terminus and a DNA-binding
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motif at the C-terminus [7]. HrpX binds directly to the plant-inducible promoter (PIP) box
consensus motif (TTCGC-N15-TTCGC), a cis-regulatory region [8]. HrpG acts as a positive
regulator of hrpX expression and is also a crucial regulator in some Xanthomonas species
or pathovars. In X. campestris pv. campestris (Xcc), HpaS has been demonstrated to act
as a sensor kinase for HrpG; however, there is no intact homolog of the hpaS gene of Xcc
in the genomes of Xoo strains [9]. In Xcc 8004, the sensor kinase RpfC can regulate hrpX
and T3SS genes expression in the nutrient broth and the host environment via the DSF
cell–cell communication system [10]. The global transcriptional regulator Clp has been
reported to bind the promoter regions of downstream targets zur, cellulases engXCA, and
fhrR, hence promoting the production of virulence-associated genes [11]. In X. citri subsp.
citri (Xcci) [12], Lon, an ATP-dependent protease, can degrade HrpG protein in the rich
medium; however, Lon was phosphorylated and lost its inhibitory impact on HrpG in host
plants [13]. Lon inhibits the expression of T3SS and flagellar synthesis and participates in
cell division and exopolysaccharide formation [13]. In Xoo, several components, including
GntR-family regulator Trh [14], and the two-component systems PhoP/PhoQ [15], have
been associated with hrpG expression. Moreover, KdgR, a negative regulator of hrpG,
has been reported to directly bind to the promoter regions of hrpG, thereby repressing
the transcription of hrp genes [16]. The other upstream regulators of T3SS in Xoo remain
unknown and need further investigation.

How a cell finds its middle has been studied for the last 50 years in Escherichia coli [17].
Two negative regulatory systems for cell division have been identified in E. coli. One is
the nucleoid occlusion (NO) system that prevents Z-ring formation over the nucleoid, and
the other is the Min system encoded by minC, minD, and minE genes, which inhibits the
formation of Z-ring at the poles [18]. A current model suggests that the concentration
gradient of MinC in a cell regulates the Z-ring position [19]. MinC is an inhibitor of FtsZ
and can directly interact with FtsZ, thereby inhibiting its polymerization [20–22]. MinD is
an ATPase that can bind and recruit MinC to the membrane [23]. MinE can stimulate the
ATPase activity of MinD, and thus detach it from the membrane [24]. As MinE assembles at
mid-cell, and cycles back and forth toward the cell poles, the dissociation of the MinC/MinD
complex results in the oscillation behavior of Min proteins in cells [19,22,25]. This causes a
concentration gradient of MinC/MinD complex to be highest at the cell poles and lowest at
mid-cell, thus allowing Z-ring formation at mid-cell in a narrow zone [19]. The Min system-
defective mutants share similar phenotypic characteristics: minicells and filamentous
cells [17]. The focus of past studies on the role of the Min system was to characterize its
oscillation and interaction with divisome-associated proteins.

Some current studies have suggested the involvement of the Min system in cellular
processes such as bacterial motility, colonization, and virulence. The minC mutants of
Proteus mirabilis and Helicobacter pylori significantly reduced swarming motility [26,27].
Neisseria gonorrhoeae (Ng) mutants without MinD or MinC exhibited decreased adherence
to urothelial cells [28]. MinCD complex of E. coli can attach to the membrane and assist in
segregating chromosomes [29]. The MinC oscillations from pole to pole also were observed
in Xcci, and similar to Min system-defective mutants in E. coli, the Xcci minC mutant could
form branching cells with aberrant extension and bulging at both poles [30]. A current
finding identified MinD of Xoo as a host-induced protein required for Xoo full virulence in
host rice [31], indicating that some mechanisms and pathways of Xanthomonas Min proteins
that regulate virulence during infection are unknown.

In this study, we screened two transposon mutants, 8–24 and 24–46, with up-regulated
expression of hrpF and hrpB1, using a Tn5 transposon mutagenesis, in which the transposon
was inserted into the Xoo PXO99A minC and minD genes, respectively. The Xoo PXO99A

Min system is composed of MinC, MinD, and MinE proteins that are encoded by the minC
(PXO_04463), minD (PXO_04464), and minE (PXO_04465) genes, respectively. We revealed
the link between the Min system and the T3SS expression of Xoo. We demonstrated the
negative effects of the Min system on T3SS expression through the HrpG–HrpX regulatory
pathway, and the involvement of the Min system in Xoo cell division, full virulence, swim-
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ming motility, and biofilm formation. Our findings propose new indications that the Min
system contributes to the virulence regulatory networks of Xoo.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Growth Conditions

Xoo wild-type PXO99A [32] and other Xoo strains were grown on nutrient-rich NA
plates, or in NB medium and minimal XOM3 medium with appropriate antibiotics at
28 ◦C [6,33]. E. coli strains were cultured on LB agar (LA) plates or in Luria-Bertani (LB)
medium with appropriate antibiotics at 37 ◦C. The following final concentrations of antibi-
otics were used: kanamycin (Km), 50 µg/mL; gentamicin (Gm), 25 µg/mL; spectinomycin
(Sp), 100 µg/mL. The bacterial strains and plasmids employed in this study are listed in
Table S1.

2.2. Construction of Mutant and Complementation Strains

All primers used in this study are listed in Table S2. We constructed the deletion
mutant of the Min system (minC, minD, and minCDE) using the suicide vector pKMS1 with
sacB gene by homologous recombination [34]. The specific primers amplified the upstream,
and downstream sequences of minC, minD, and minCDE were ligated into the pKMS1 to
create the pK–min-system construct. The plasmids were transformed into the Xoo wild-type
PXO99A by electroporation, respectively. The colonies were followed by the selection on
NA plates with 10% sucrose. The P∆min-system deletion mutants were selected by the
sensitivity to Km on the NA medium. The transposon mutant strains 8–24 and 24–46 with
highly hrpF and hrpB1 expression were selected, respectively. For complementation of the
P∆min-system, the fragments containing the minC, minD, and minCDE encoding regions
were amplified using the primer pairs (Table S2) and cloned into pML123 to obtain the
recombinant plasmids pML123-minC, pML123-minD, and pML123-minCDE, respectively.
Electroporation of the recombinant plasmids was transformed into the insertion or deletion
mutants to obtain the complemented strains CP∆minC, CP∆minD, and CP∆minCDE.

2.3. Synteny Analysis on Chromosomes

To determine whether Min system genes are conserved among Xanthomonas strains, we
use the SyntTax bioinformatics tool with the ABSYNTE algorithm to perform the synthetic
analysis (http://archaea.u-psud.fr/synttax/, accessed on 5 March 2022) [35], employing
10 Xanthomonas genomes as a reference, including Xoo PXO99A and PXO86, X. oryzae
pv. oryzicola BLS256 and RS105, X. axonopodis pv. commiphoreae LMG26789, X. vasicola
NCPPB902, X. citri subsp. citri 49, 29–1, and 306, and X. campestris pv. campestris 8004.

2.4. Microscopy

Wild-type PXO99A and the Min mutant strains were grown on NA plates at 28 ◦C.
Cells were washed twice with PBS and fixed to 1.5 mL tubes with 3% glutaraldehyde
overnight at 4 ◦C. After removing the blocking buffer and washing twice with PBS, the
cells were stationary for 1 h with 1% osmic acid at 4 ◦C. Then, the bacterial cells were
dehydrated with ethyl alcohol concentration and placed into a drying oven overnight
at 37 ◦C for CO2 drying. The microstructures of cells were observed by using scanning
electron microscopy (SEM). We utilized the ImageJ software to measure the lengths of the
cells. For transmission electron microscope (TEM) analysis, the experiment was employed
according to our previous protocol [36]. For fluorescence microscope observation, the Xoo
strains carrying pHM1-gfp with a highly expressed GFP were analyzed according to our
previous protocol [36].

2.5. Biofilm Formation Assay

Biofilm formation assay was determined as described previously [36]. Xoo strains
were grown for 12 h in NB medium and diluted with 1:100 to overnight culture in NB
medium. The bacterial cells were collected by centrifugation at 5000 rpm for 3 min. Then,
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we adjusted the optical density (OD) from 600 nm to 2.0 and incubated 5 mL bacterial
suspension in a test tube at 28 ◦C. Following three days of incubation, the supernatant was
carefully removed, and the adhering bacterial cells were stained with 6 mL 0.1% crystal
violet (CV) for 30 min. The CV-stained cells were washed twice with distilled water and
dried in a 37 ◦C incubator to observe the depth of the purple circle formed on the glass tube.
The stained cells were solubilized in 95% ethanol. The absorbance of samples at 590 nm
was determined using the Spectramax (Molecular Devices, Sunnyvale, CA, USA).

2.6. Swimming Motility Assay

The swimming motility assay of Xoo strains was performed on semi-solid medium
plates as previously described [36]. Xoo strains were grown in NB medium overnight at
28 ◦C, and the OD600 was adjusted to 0.3. Then, 2 µL Xoo bacteria were inoculated in the
center of the 0.3% semi-solid medium plates (1 g/L yeast extract, 10 g/L sucrose, 5 g/L
bacto peptones, and 3 g/L agar) by pipetting. Tested plates were incubated at 28 ◦C for
3 days. The diameter of circular zones was measured and evaluated.

2.7. Growth Measurement and Virulence Assay of Xoo

Xoo strains were cultivated in NB medium at 28 ◦C for 12 h and the OD600 was adjusted
to 0.05. Then, the samples were inoculated into fresh NB medium for shaken culture at
28 ◦C for 14 h. The bacterial OD600 values were evaluated every 2 h. As previous studies
described, pathogenicity investigations of Xoo were accomplished in the glasshouse at
a temperature of 25–28 ◦C. Briefly, Xoo strains were cultured in NB medium overnight
with appropriate antibiotics and collected by centrifugation. The collected cells were
resuspended with distilled water and the OD600 was adjusted to 0.3. Bacterial suspensions
were pressure-infiltrated into the leaves of susceptible rice IR24. The water-soaking regions
caused by Xoo were quantified using ImageJ software 3 days after infiltration. The OD600
of the suspensions was adjusted to 0.6 and inoculated in the rice IR24 by the leaf-clipping
method. Disease lesion lengths were observed to evaluate the virulence of Xoo strains
14 days after inoculation. There were three independent replications of these experiments.

2.8. RNA-Seq and Real-Time Quantitative RT-PCR (qRT-PCR) Analysis

The P∆minC, 8–24, and wild-type PXO99A strains were grown in NA medium and
adjusted to OD600 = 1.0. The total bacterial RNA was extracted using the EasyPure RNA
Kit (TransGen, Beijing, China) and reverse-transcribed to cDNA by the cDNA synthesis
kit (Takara, Dalian, China) as per the manufacturer’s protocols. Personalbio (Shanghai,
China) accomplished RNA-seq analysis using the Illumina Hiseq platform. The DEGs in
minC mutant strains were evaluated based on per million reads mapped (FPKM) values
and illustrated using the TB tools software as heatmaps [37]. The Xoo P∆minC, P∆minD,
P∆minCDE, and PXO99A strains were re-suspended with XOM3 medium and shaken
cultured at 28 ◦C for 12 h. Personalbio (Personalbio, Shanghai, China) evaluated RNA-seq
on the Illumina Hiseq platform. The expression of Xoo genes was analyzed by qRT-PCR
employing the ABI 7500 software and SYBR Green I Mix (TransGen, Beijing, China). cDNAs
were amplified using the specific primers (Table S1). The Xoo rpoD and gyrB genes were
used to normalize the qRT-PCR results, and the 2−∆∆CT method was used to calculate the
gene expression, as previously described. The GOseq R package analyzed DEGs’ Gene
Ontology (GO) enrichment. GO terms with a p-value of 0.05 were considered significantly
enriched. As previously described, we analyzed the Kyoto Encyclopedia of Genes and
Genomes (KEGG).

2.9. Western Blotting Analysis

The protein expression vectors pH1-hrpG::FLAG, pH3-hrpX::FLAG, and pH3-hrpB1::FLAG
were constructed in our previous study [6], then were electroporated into the Xoo PXO99A,
P∆minC, P∆minD, and P∆minCDE, respectively. Overnight, Xoo strains were grown in NB
medium at 28 ◦C and collected by centrifugation. Bacterial cells were rinsed with sterile
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water and resuspended at an OD600 of 2.0 in a type III-inducing XOM3 medium. These
XOM3 suspensions were incubated in the shaken culture at 28 ◦C for 12 h. Protein samples
were extracted from XOM3 suspension and separated by 10% SDS-PAGE. The proteins
were then transferred to a PVDF membrane for immunoblotting using the Flag tag and
anti-mouse IgG antibody (TransGen, Beijing, China). The membrane was visualized with
the EasySee Western Kit (TransGen, Beijing, China). We used the E. coli RNA polymerase
subunit (RNAP) antibody as the loading control.

2.10. GUS Assays

The promoter-probe vectors pHG2-hrpG, pHG2-hrpX, pHG2-hrpF, and pHG3-hrpB1
were constructed in our previous studies [6,33,36]. These plasmids were transferred into
the mutants P∆minC, P∆minD, P∆minCDE, and PXO99A by electroporation. The reporter
strains were grown in NA medium with appropriate antibiotics at 28 ◦C overnight. Then,
the Xoo cells were collected and cultured in the XOM3 medium for hrp induction. The
β-glucuronidase (GUS) activities were detected and calculated as previously described [6].

2.11. Southern Blotting Analysis

The deletion mutants P∆minC, P∆minD, P∆minCDE, and transposon mutants were
further confirmed by Southern blotting analysis according to our previous operation [36].
Total genomic DNA of the Min mutant strains was extracted using the Bacteria Genomic
DNA Kit (TransGen, Beijing, China) as the manufacturer recommended. DNA samples
of Xoo were digested aseptically for 6 h at 37 ◦C with the restriction enzyme BamHI
(Takara Bio, Kusatsu, Japan). Separation and transfer to Hybond N+ nylon membrane
using electrophoresis were carried out as described previously [36]. The digoxigenin
(DIG)-labeled minC, minD, and minCDE probes and the DIG Easy hybridization buffer
(Roche, Sweden) were used for membrane hybridization. The membrane was incubated by
detection buffer (Roche) and detected using a digital camera.

2.12. Statistical Analysis

All experiments were replicated at least three times independently. The statistical
software SPSS v24.0 (SPSS Inc., Chicago, IL, USA) was used to analyze the data, before
proceeding with Duncan’s test.

3. Results
3.1. Min System Participates in Negative Regulation of T3SS Expression

To identify novel T3SS regulators in Xoo, we selected two representative hrp genes,
hrpF and hrpB1, to construct the plasmid-borne reporters pHG2-hrpF and pHG3-hrpB1,
which contain the hrpF and hrpB1 promoter-uidA transcriptional fusion, respectively. The
hrpF gene was speculated to encode a translocator that transports the T3SE proteins into the
host cells [38,39]. The hrpB1 gene is the first one in the hrpB operon of the Xoo hrp cluster,
the promoter region of which contains a PIP box region that has been demonstrated to bind
and activate by HrpX [5]. We screened two mutant 8–24 and 24–46 from ten thousand Tn5
transposon mutants, and found that 8–24 with increased hrpF promoter-driven GUS activity
in XOM3, a hrp-inducing medium (Figure S1A), had a Tn5 transposon insertion at 541 bp
position of the minC gene (Figure 1A), as well as 24–46 with enhanced hrpB1 promoter-
driven GUS activity (Figure 1E), had a Tn5 transposon insertion at 411 bp position of the
minD gene (Figure 1A). In Xoo, the minC and minD genes along with the minC gene are
located in an operon, which is highly conserved in xanthomonads such as Xoo, Xcc and Xcci
(Figure S2). The minCDE genes encode Min system proteins that have been demonstrated to
prevent the formation of septa at cell poles by inhibiting the Z-ring, ensuring that bacterial
cell division occurs in the middle of cell, not at cell poles in E. coli, Bacillus subtilis, and
Pseudomonas aeruginosa [18,19,40]. Our PCR analysis, based on the cDNA and genomic
DNA of the wild-type PXO99A, showed that minC, minD, and minE, with the other two
genes, PXO_04462 and PXO_04466, are located in a transcription unit (operon) (Figure S3A).
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PXO_04462 encodes a putative Gcn5-related N-acetyltransferase (GNAT)-family protein
that includes a large number of members among eukaryotes and prokaryotes [41].
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Figure 1. The Xoo Min system negatively regulates hrpB1 expression. (A) Genomic location of Min
system on the Xoo PXO99A chromosome. Arrows indicate the Tn5 transposon insertion sites in
the nucleotides 541 of minC and the nucleotides 411 of minD, respectively. (B) The hrpB1 promoter-
driven GUS activity of Xoo wild-type PXO99A, 8–24, C8–24, P∆minC, and CP∆minC in XOM3 at 3 hr
post-induction. (C) Expression ratios of hrpB1 in 8–24, P∆minC, and CP∆minC compared to that in
Xoo wild-type PXO99A by qRT-PCR. (D) The abundance of HrpB1 proteins in PXO99A, 8–24, and
P∆minC by Western blotting. P∆hrpG as a negative control of HrpB1 protein expression. (E) The hrpB1
promoter-driven GUS activity of PXO99A, 24–46, P∆minD, and P∆minCDE in XOM3 at 3 hr post-
induction. (F) Expression ratios of hrpB1 in 24–46, P∆minD, and P∆minCDE compared to that in Xoo
wild-type PXO99A by qRT-PCR. (G) The abundance of HrpB1 proteins in PXO99A, 24–46, P∆minD,
and P∆minCDE by Western blotting. P∆hrpG as a negative control of HrpB1 protein expression. The
total protein extracts were analyzed by Western blotting using anti-FLAG antibodies. RNAP, RNA
polymerase subunit alpha from E. coli was used as a loading control. Relative protein abundance was
calculated by ImageJ software. Similar results were observed in two independent experiments. As
assessed by Duncan’s test, different letters indicate statistically significant differences, and the same
letter displays no significant differences (p < 0.05) between Xoo strains.

To confirm the increase in hrpB1 and hrpF expression in the transposon mutants,
we constructed the minC deletion mutant P∆minC, the minD deletion mutant P∆minD,
and the triple mutant P∆minCDE containing the deletion of minC, minD, and minE in
the background of Xoo wild-type PXO99A using the SacB-based markerless knockout
technique. The Southern blotting was performed in the mutant strains to prove the deletions
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(Figure S3B). Similar to the transposon mutant 8–24, P∆minC exhibited a significant increase
in GUS activity of hrpB1 and hrpF promoters, hrpB1 mRNA levels, and HrpB1 protein
expression levels compared with the wild-type PXO99A in XOM3 (Figures 1B–D and S1A).
The enhanced hrpB1 and hrpF expression of P∆minC could be fully restored to the wild-
type levels in CP∆minC, a complementary strain of P∆minC, which carries a functional
minC gene expressed by its native promoter in a low copy number plasmid pML123
(Figures 1B,C and S1A). However, the expression of minC in trans in 8–24 could partially
restore hrpB1 expression to wild-type levels (Figure 1B). Similarly, like the transposon
mutant 24–46, an increase in hrpB1 and hrpF promoter-driven GUS activity, hrpB1 mRNA
levels, and HrpB1 protein expression levels was observed in P∆minD and P∆minCDE
compared with that in the wild-type PXO99A (Figures 1E–G and S1B). These results indicate
that the Min system participates in the negative regulation of T3SS expression.

3.2. Min System Inhibits T3SS Expression through the HrpG–HrpX Regulatory Pathway

To further determine whether the Min system regulates hrpB1 and hrpF expression
through the key hrp regulator HrpG and HrpX, we analyzed the hrpG and hrpX expression
in minC and minD mutants and the triple mutant P∆minCDE. We measured the GUS activity
of the wild-type PXO99A, P∆minC, P∆minD, and P∆minCDE carrying the reporters pHG2-
hrpG and pHG2-hrpX, which contain transcriptional fusions of hrpG and hrpX promoters
with the uidA gene, respectively. A significant increase in GUS activity of hrpG and hrpX
promoter was observed in P∆minC, P∆minD, and P∆minCDE in comparison to that in
wild-type (Figure 2A,B). The enhanced hrpG and hrpX promoter-driven GUS activity of
P∆minC could be restored to the wild-type levels in CP∆minC. In addition, the GUS
activity of P∆minC, P∆minD, and P∆minCDE carrying the reporter pHG3-hrpG-post that
contains a post-transcriptional fusion of hrpG with the uidA gene, was measured. Similarly,
the mutants P∆minC, P∆minD, and P∆minCDE exhibited a dramatic increase in hrpG
expression-driven GUS activity (Figure 2C). We next investigated the HrpG and HrpX
protein expression in the mutants. The Western blotting assays showed that the HrpG and
HrpX expression levels were significantly enhanced in minC mutants 8–24 and P∆minC,
minD mutants 24–46 and P∆minD, as well as the triple mutant P∆minCDE compared with
that in the wild-type PXO99A (Figure 2D,E). These results suggest that the Min system
negatively regulates T3SS expression through the HrpG–HrpX regulatory pathway.

3.3. Min System Is Involved in Positive Regulation of Two Key Virulence Regulators RpfG and Clp

To further explore whether the known key virulence regulators, including the quorum-
sensing system RpfF/RpfC/RpfG, two hrpG positive regulators Trh and XrvA, the tran-
scriptional regulator Clp, and the hrpX rather than hrpG positive regulator Zur, were
involved in the MinCDE-T3SS regulatory pathway, we first analyzed the hrpG promoter
activity in the mutants defective in the genes encoding the regulator mentioned above. The
quantitative GUS assays indicated that the hrpG expression was significantly enhanced
in the quorum-sensing mutants P∆rpfF, P∆rpfC, and P∆rpfG, and the clp mutant P∆clp
than that in the wild-type PXO99A (Figure 3A). However, the hrpG promoter-driven GUS
activity was lower in the trh and xrvA mutants P∆trh and P∆xrvA, and no differences in the
hrpG promoter-driven GUS activity were observed between the zur mutant P∆zur and the
wild-type PXO99A (Figure 3A), which is in agreement with the previous studies [14,42].
Similar results were obtained by the Western blotting assays in which the HrpG expression
levels were dramatically higher in P∆rpfF, P∆rpfC, P∆rpfG, and P∆clp than that in the
wild-type PXO99A, suggesting that RpfF/RpfC/RpfG and Clp functions as a hrpG negative
regulator. We next investigated the mRNA levels of rpfF/rpfC/rpfG, clp, trh, and xrvA
in the Min mutants by qRT-PCR. The results showed that the mRNA levels of rpfG were
significantly reduced in P∆minC, P∆minD, and P∆minCDE, but the mRNA levels of clp
were lower in P∆minC and P∆minD, and not in P∆minCDE, compared with the wild-type
(Figure 3C). However, the rpfF, rpfC, and trh mRNA levels in the Min mutants were almost
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the same as that in the wild-type. From these results, we speculate that RpfG and Clp might
be involved in T3SS regulation by the Min system in Xoo.
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Figure 2. The Min system negatively regulates the expression of hrpG and hrpX. (A) The hrpG
promoter-driven GUS activity of Xoo wild-type PXO99A, P∆minC, CP∆minC, P∆minD, and P∆minCDE
in XOM3 at 3 hr post-induction. (B) The hrpX promoter-driven GUS activity of PXO99A, P∆minC,
CP∆minC, P∆minD, and P∆minCDE in XOM3 at 3 hr post-induction. (C) The hrpG expression-driven
GUS activity of PXO99A, P∆minC, P∆minD, and P∆minCDE harboring a post-transcription hrpG::uidA
fusions in XOM3 at 12 hr post-induction. (D) The abundance of HrpG proteins in PXO99A, 8–24,
P∆minC, 24–46, P∆minD, and P∆minCDE by Western blotting. The data revealed that mutation of
Min system increased the HrpG protein levels by more than 3.16-fold. (E) The abundance of HrpX
proteins in PXO99A, 8–24, P∆minC, 24–46, P∆minD, and P∆minCDE by Western blotting. P∆hrpG
as a negative control of HrpX protein expression. The data revealed that mutation of Min system
increased the HrpX protein levels by more than 2.68-fold. The total protein extracts were analyzed by
Western blotting using anti-FLAG antibodies. RNAP, RNA polymerase subunit alpha from E. coli was
used as a loading control. Relative protein abundance was calculated by ImageJ software. Similar
results were observed in two independent experiments. As assessed by Duncan’s test, different letters
indicate statistically significant differences, and the same letter displays no significant differences
(p < 0.05) between Xoo strains.

3.4. Deficiency of the Min System Causes Aberrant Cell Morphology and Division

It has been reported that cells with Min system deficiency fail to prevent the Z-ring
from localizing to the cell poles and have aberrant cell division resulting in forming
filamentous cells, minicells, or branching [27,30]. We investigated the cell size and shape of
the Min mutants defective in minC, minD, and minCDE by transmission electron microscopy
(TEM), scanning electron microscope (SEM), and fluorescent microscope (FM). The TEM
observation showed that the cell elongation and asymmetric division of 8–24, P∆minC,
P∆minD, and P∆minCDE were evident when compared to the wild-type PXO99A, which
are normal rod-shaped cells (Figure 4A). P∆minC exhibited the classic Min-defective cell
phenotypes: minicells and short filamentation observed in other bacteria such as Xcci with
the minC deletion [30], whereas the complementary strain CP∆minC looked normal, like
the wild-type (Figure 4B). Although the short filaments were observed in P∆minD and
P∆minCDE, the occurrence frequency of short filamentations in the minC mutants 8–24 and
P∆minC was higher than that in P∆minD and P∆minCDE. Similar phenotypes of minicells
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and short filamentations were obtained in 8–24, P∆minC, P∆minD, and P∆minCDE carrying
a highly expressed green fluorescent protein (GFP) by FM (Figure 4A), indicating that the
alterations (short filamentations and minicells) are typical in Min mutants.
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clp expression levels in the Min mutants. (A) The abundance of HrpG proteins in PXO99A, P∆trh,
P∆xrvA, P∆zur, P∆rpfC, P∆rpfG, P∆rpfF, and P∆clp by Western blotting. The total protein extracts
were analyzed by Western blotting using anti-FLAG antibodies. RNAP, RNA polymerase subunit
alpha from E. coli was used as a loading control. Relative protein abundance was calculated by ImageJ
software. Similar results were observed in two independent experiments. (B) Expression ratios of
rpfG in P∆minC, P∆minD, and P∆minCDE compared to that in Xoo wild-type PXO99A by qRT-PCR.
(C) Expression ratios of clp in P∆minC, P∆minD, and P∆minCDE compared to that in PXO99A by
qRT-PCR. Similar results were observed in more than three independent experiments. As assessed
by Duncan’s test, different letters indicate statistically significant differences, and the same letter
displays no significant differences (p < 0.05) between Xoo strains.

To define the length distribution of the Min mutants, we divided the cell populations
into four categories based on their cell body lengths: <0.5 µm, minicells; 0.5–1 µm; 1–2 µm;
and >2 µm. The standard deviation for each population was obtained after averaging
under SEM conditions. The wild-type PXO99A cells had a mean length of 1.43 ± 0.28 µm
(n = 265) and did not form minicells. The minC insertion mutant 8–24 had a mean length of
1.79 ± 1.26 µm (n = 259). The shortest minicell of 8–24 was 0.176 µm, and the frequency
of minicells was about 7.72%, whereas the most extended cell was 9.135 µm, and the
proportion of filamentous cells was about 33.59% (Figure S4 and Table 1). The minC deletion
mutant P∆minC possesses a mean length of 1.32 ± 0.633 µm (n = 268), with filamentous
cells recording for 11.94% and minicells accounting for 2.99% (Figure S4 and Table 1). The
recovered strain CP∆minC possesses a mean length of 1.58 ± 0.50 µm (n = 264) without the
minicells, indicating similar morphology (cell shape and cell length variation) to the wild-
type PXO99A. Minicells were almost absent in P∆minD (n = 257) and P∆minCDE (n = 258),
while the ratios of cells length than 2 µm (18.29% and 13.18%) in P∆minD (n = 257) and
P∆minCDE (n = 258) were significantly longer than that in the PXO99A (Figure S4 and
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Table 1). These results indicated that mutation of min genes, especially the minC gene,
causes aberrant morphology and asymmetric division of Xoo cells.
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of wild-type PXO99A, 8–24, the minC mutant P∆minC, the minD mutant P∆minD, and the minCDE
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electron microscopy (TEM) and fluorescence microscopy (FM). Scale bars: 1, and 0.5 µm. (B) Minicells
and short filamentations, the classic Min-defective cell phenotypes, were observed in the minC mutant
P∆minC by SEM. Scale bars: 0.5 µm.

Table 1. Statistical analysis of cell lengths of the Min mutants and the Xoo wild-type.

Strain Minicells
Percentage

Filamentous Cells
Percentage Mean Cell Length (µm) Minimum (µm) Maximum (µm)

PXO99A 0% 4.15% 1.432 ± 0.281 0.791 2.717
8–24 7.72% 33.59% 1.793 ± 1.260 0.176 9.135

P∆minC 2.99% 11.94% 1.318 ± 0.628 0.233 4.630
CP∆minC 0% 17.05% 1.579 ± 0.496 0.582 3.820
P∆minD 0.40% 16.80% 1.521 ± 0.462 0.500 4.155

P∆minCDE 0.80% 13.18% 1.426 ± 0.402 0.405 3.672

3.5. Effect of Min System on Bacterial Virulence, Motility, and Biofilm Formation

In Xoo, the T3SS is essential for bacterial pathogenicity on susceptible host rice and
triggering HR on nonhost. To verify whether the deletion of min genes affects Xoo vir-
ulence, we inoculated the Min mutants and relative complementary strains on IR24, a
susceptible rice variety, by the leaf-clipping method. The result showed that all mutants
could cause the water-soaked lesions on IR24 (Figure S5A), whereas the minC insertion
mutant 8–24 exhibited a significant decrease in lesion length on IR24 when compared to the
wild-type PXO99A, and the deletion mutants P∆minC, P∆minD, and P∆minCDE displayed
a weaker reduction in virulence on IR24 (Figure 5A). The corresponding complementary
strains CP∆minD and CP∆minCDE, in which the minD and minCDE genes were expressed
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in trans, could be retained the wild-type ability to cause lesion length on IR24, indicating
that the Min system is required for Xoo full virulence on host rice. The inoculation assays
on tobacco indicated that the absence of the Min system did not affect the capacity of Xoo
to trigger HR on nonhost tobacco (Figure S5B).
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Figure 5. MinC affects Xoo virulence, biofilm formation, and swimming motility. (A) Lesion
lengths of the leaves of IR24 caused by Xoo wild-type PXO99A, 8–24, P∆minC, P∆minD, CP∆minD,
P∆minCDE, CP∆minCDE, and P∆hrpG at 14 days post-inoculation by leaf-clipping. Bacterial sus-
pensions (OD600 = 0.6) were inoculated in the leaves of susceptible rice IR24. P∆hrpG as a negative
control strain without pathogenicity on rice. Similar results were observed in two independent
experiments. (B) Swimming motility of PXO99A, 8–24, P∆minC, 24–46, P∆minD, and CP∆minD on
NA medium with 0.15% agar. Swimming zones were measured and evaluated after bacterial growth
on the NA plates for 3 days. As assessed by Duncan’s test, different letters indicate statistically
significant differences (p < 0.05) between Xoo strains. (C) Biofilm formation of PXO99A, 8–24, P∆minC,
24–46, P∆minD, and P∆minCDE on glass test tube surfaces after 3 days of incubation The biofilm
formation was visualized by crystal violet staining, then was quantified by measuring the absorbance
at 590 nm. The tests were repeated three times. As assessed by Duncan’s test, different letters indicate
statistically significant differences (p < 0.05) between Xoo strains.

It has been shown that Min system proteins prevent the septa formation at the cell
pole by inhibiting the Z-ring [19,30]. Taking into account that the swimming motility of Xoo
is dependent on a polar flagellum, we explored the role of the Min system in Xoo swimming
motility, and conducted the swimming motility assays in which the Min mutants were
inoculated on the semi-solid NA medium with 0.15% agar. Similar to the transposon mutant
8–24, the minC deletion mutant P∆minC did not exhibit any significant swimming motility,
but the minD mutants 24–46 and P∆minD, as well as the triple mutant P∆minCDE showed
slightly reduced swimming motility compared to the wild-type PXO99A (Figure 5B). The
complementary strain CP∆minD nearly reverted swimming motility to wild-type levels
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(Figure S5C). Because swimming motility has been indicated to be related to biofilm
formation, we sought to characterize the biofilm formation of the Min mutants. The
crystal violet staining assays showed that the minC mutants 8–24 and P∆minC produced
more significant biofilm than the wild-type PXO99A, and the triple mutant P∆minCDE
had slightly larger biofilm than PXO99A; however, the minD mutants 24–46 and P∆minD
produced no differences in biofilm with the wild-type PXO99A (Figure 5C). These results
demonstrate that merely the mutation of minC significantly affects the swimming motility
and biofilm formation of Xoo, indicating that each of the min genes plays a different role in
swimming motility and biofilm formation.

3.6. The Transcriptome Profiling Reveals Virulence-Relevant Genes Affected by MinC

To further explore the function of minC in Xoo virulence, we analyzed the differen-
tially expressed genes (DEGs) in the minC mutants 8–24 and P∆minC compared with the
wild-type PXO99A. Based on standards of log2 (fold change) ≥1 or ≤−1 (p value < 0.05),
we screened 198 and 106 DEGs in P∆minC and 8–24, respectively (Figure S6A). Heatmap
analysis displayed the base mean DEGs in wild-type PXO99A, P∆minC, and 8–24 strains
(Figure 6A,B). Three genes (PXO_04154, PXO_04552, and PXO_04756) were significantly
down-regulated in 8–24 (Figure 6A). PXO_04756 was reported to have a role related to
cardiolipin synthesis. Furthermore, the expression of 99 genes, including two copies of
clpA (PXO_06136 and PXO_01030), was significantly up-regulated. ClpA was annotated
as an ATP-binding subunit of the Clp protease. In P∆minC, 14 and 184 genes were sig-
nificantly down-regulated and up-regulated, respectively (Figure S6A). Six hrp genes,
hrpD6 (PXO_03410), hpaA (PXO_03408), hpaB (PXO_03412), hrcU (PXO_03402), hrpD5
(PXO_03409) and hrpE (PXO_03411), and the TCS genes raxH (PXO_04467) and raxR
(PXO_04469) were all up-regulated in the minC mutant P∆minC (Figure 6C). The expression
levels of these genes were dramatically higher in 8–24 than in wild-type PXO99A. Fur-
thermore, the cytokinesis-related gene zipA (PXO_00742) was also significantly enriched.
In P∆minC and 8–24, Venn diagram analysis revealed that 78 up-regulated DEGs and
2 down-regulated DEGs were overlapped, demonstrating the precision of the RNA-seq.

We investigated DEGs for GO enrichment in P∆minC and 8–24, respectively
(Figures 6D and S6B). All DEGs were classified into three main categories based on their
putative function. The findings revealed that the majority number of DEGs enriched
in biological processes in 8–24, with significant enrichment in the homeostatic process
(GO:0042592), including three up-regulated DEGs, copB (PXO_03131), cutC (PXO_01619),
and ferripyoverdine receptor (PXO_03287). These results suggest that MinC can regulate
DEGs expression by altering the function of the homeostatic process. As with 8–24, P∆minC
concentrated a significant proportion of the DEGs in biological processes. The DEGs up-
regulated in P∆minC are highly enriched in functions associated with protein maturation
(GO: 0051604) and transferase activity involved in the alkyl or aryl transfer (GO: 0016765).
The interaction between MinC and transferase activity genes might occur in stress response
modulation and differential stability. These genes are possibly associated with the virulence
mediated by MinC.

The KEGG pathway would be used to categorize further and study the biological
functions of these DEGs. Among these pathways, a p-value ≤ 0.05 was necessary for
analysis. DEGs are implicated in various pathways. The DEGs influence six critical
pathways in strains 8–24 (Figure S6C), including cell growth and death, immune disease,
and infecting diseases. Similarly, DEGs in P∆minC were considerably more abundant in
primary immunodeficiency (ko05340) of immunological disorders (Figure 6E). In P∆minC,
the uracil-DNA glycosylase gene (UDG, PXO_03712) expression was increased significantly.
UDGs exist in different bacteria and possess base activity to excise damaged bases in DNA.
Furthermore, they can increase heat resistance. These results suggest the potential stress
resist functions of MinC in Xoo.
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Figure 6. Analysis of the differentially expressed genes (DEGs) in PXO99A versus in P∆minC and 8–24.
(A) The log2Foldchange of DEGs in 8–24 and (B) P∆minC was plotted against the p-value. Statistically
significant differentially expressed genes, with a log2Foldchange ≥ 1 or ≤ −1, are depicted as the
red and green dots, respectively, and insignificant as grey dots. For each organism, the shade of
the color represents the level of gene expression. Dark blue dots represent T3SS-associated genes.
Light blue dots represent cell division-associated genes. (C) Heatmap of gene expression of the
differentially expressed genes (DEGs) in minC mutants 8–24 and P∆minC. The color gradient indicates
the normalized base mean values of DEGs (high expression (red) and low expression (purple)).
(D) GO analysis of DEGs in P∆minC mutant. The abscissa axis represents the GO category, and the
ordinate axis represents the value of significance (p < 0.05). (E) KEGG analysis of DEGs in P∆minC
mutant. The abscissa axis represents the KEGG pathway, and the ordinate axis represents the value
of significance (p < 0.05).
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4. Discussion

The Min system comprising three proteins, MinC, MinD, and MinE, is conserved
among genera of rod-shaped bacteria, and its function in cell division has been well studied
in E. coli and B. subtillis. However, most studies focused on understanding its role in
interaction with other divisome proteins such as FtsZ, whereas other roles in cellular
processes including virulence, bacterial motility, and colonization were not explored. In
this study, we found that apart from involvement of the Xoo Min system in cell division, the
Min system also participates in the regulation of T3SS expression, bacterial full virulence,
swimming motility, and biofilm formation, suggesting that the function of Min proteins is
not strictly confined to cytokinesis; more cellular functions must be elucidated.

Generally, the Min system mutation leads to abnormal morphology such as minicells,
short filamentations, and branching in bacteria [17,30]. Our microscopy observations
showed that the 8–24, P∆minC, P∆minD, and P∆minCDE mutants exhibited obvious cell
elongation and asymmetric division. The aberrant cell division phenotypes including
minicells and short filamentations were observed in 8–24, P∆minC, P∆minD and P∆minCDE,
especially in the minC 8–24 and P∆minC mutans, which are classic Min-defective cell
phenotypes, and also similar to cell shapes of the minC-defective mutants in Xcci 306 and
Helicobacter pylori [27,30], indicating that the Xoo Min system indeed plays a key role in
cell division. However, some branching cells comprising less than 20% of total cells were
observed in the minC mutant of Xcci 306 [30], which were not observed in our microscopy
assays. Branched cells impair the divisome formation, the nucleoid organization, and
the incorporation of peptidoglycans. The phenotype of branching cells reported in the E.
coli Min mutants was dependent on the growth medium used in the experiments [43,44].
Almost no branching cells were observed in the minC mutant of Xcci when the rich NYG/CB
media were used [30]. We speculated that the absence of branching cells in the Min mutants
of Xoo might be the reason for the nutrient-rich NB medium employed in our assays.

Some studies in pathogenic bacteria have shown that Min proteins are essential for full
virulence. The minD mutant of the pathogenic enterohemorrhagic E. coli (EHEC) reduced its
adherence to the human epithelial tissues [45]. Both mutations of minC and minD in Neisseria
gonorrhea, a sexually-transmitted bacterium, reduced its ability to adhere to and invade
urethral epithelial cells, but did not alter its potential to produce other virulence factors [46].
Our results showed that the minC insertion mutant 8–24 exhibited an attenuated virulence
in rice, whereas the deletion mutants P∆minC, P∆minD, and P∆minCDE displayed a weaker
reduction in virulence. We speculate that the different phenotypic effects on virulence
between 8–24 and P∆minC could be related to the mutation sites in the minC gene in
these two mutants. We deleted the middle open reading fragment of minC in P∆minC,
but the Tn5 transposon was inserted in the 3’-terminal of minC in 8–24. This suggests
that the C-terminal domain of MinC is important for the function of MinC in bacterial
virulence. Similarly, a current study in Xoo PXO99A has shown that MinD was significantly
downregulated during its interaction with host rice IR24, and the average lesion lengths
caused by the minD mutant were significantly shorter than those caused by the wild-type
PXO99A [31]. Taken together, these results indicate that MinC and MinD are essential for
Xoo full virulence in susceptible host rice.

Our swimming motility assays showed that the mutants with inactivation of minC,
minD, or minCDE showed reduced swimming motility as compared to the wild-type
PXO99A. However, the minC mutants 8–24 and P∆minC nearly lost swimming motility,
indicating that MinC plays a critical role in swimming motility. This result is in agreement
with some studies in Proteus mirabilis and H. pylori [26,27]. Both minC mutants in these
two bacteria exhibited reduced swarming motility. It has been determined that alteration
in cell morphology might affect motility. Although the mutations of minC, minD, and
minCDE resulted in elongation in cell lengths, a minC mutation alone was found to lose
swimming motility. Therefore, we speculate that asymmetric division may affect bacterial
motility whereas, more to the point, some underlying mechanisms or connections between
MinC and flagellar biosynthesis are essential for swimming motility. Current studies
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have indicated some relation between the Min system and flagella regulators, such as
FlhG and FlhDC, a master regulator for flagellar synthesis [17,26,47]. These findings also
indicate that Xoo is an ideal model bacterium to study the role of cell division proteins in
motility function.

In this study, we discovered that the Min system is extensively conserved in seven
species of the genus Xanthomonas, and the minCDE gene cluster co-transcribed with
the flanking genes PXO_04462 and PXO_04466. A similar study has been observed in
pathogenic N. gonorrhea, in which the minCDE gene cluster is transcribed with oxyR, which
encodes a redox-response transcriptional regulator (LysR-NodD family) that can directly
bind the promoter regions of some catalase genes such as katA [28]. The mutation of
N. gonorrhea oxyR led to defective cell division and enhanced minD expression [28]. The
Xoo PXO_04462 gene encodes a putative GNAT-family protein. The C-terminal domain
of the GNAT family contains an acetyl-CoA binding fold that transfers the acetyl group
from acetyl-CoA to a variety of N-terminal amino groups. The mutation of the GNAT
gene in Dickeya zeae MS2 has been shown to decrease virulence in potatoes [48]. We have
constructed the deletion mutants of PXO_04462 and PXO_04466. Whether these two genes
are involved in cell division inhibition and expression of minCDE genes needs to be ex-
amined further. Moreover, we found that raxR-raxH, a pair of genes associated with a
two-component system directly orthologous to Pseudomonas colS-colR [49,50], was located
upstream of the minCDE operon in Xoo. Our RNA-seq data showed that the expression of
raxH and raxR was significantly higher in the minC mutants than that in the wild-type. It
has been determined that, in response to Zn2+ stress, RaxH-RaxR regulates the arnT-lpxT-
eptA gene cluster to participate in lipid A remodeling enzyme synthesis [49,51]. Therefore,
we hypothesized that the Xoo Min system might be involved in other cellular processes
associated with stress response.

Our study demonstrated that the Min system inhibited the hrp genes (hrpB1 and hrpF)
expression through HrpG and HrpX in XOM3. To our knowledge, this is the first report
about the Min system participating in the regulation of T3SS expression in Xoo. This finding
is further confirmed by the RNA-seq data, by which we found that hrpD6 (PXO_03410),
hpaA (PXO_03408), hpaB (PXO_03412), hrcU (PXO_03402), hrpD5 (PXO_03409), and hrpE
(PXO_03411) were induced in the minC mutants 8–24 and P∆minC. These results are
consistent with a current finding that MinD was significantly downregulated during early
interaction of Xoo with host rice IR24 [31]. As the reduced MinD expression causes increased
expression of hrp genes, it is logical for inducible expression of hrp genes in the early stage of
interaction with host rice. Our results showed that the mutations of minC, minD, or minCDE
caused an increase in hrp genes (hrpF and hrpB1), but the mutants P∆minC, P∆minD, and
P∆minCDE displayed a weaker reduction in virulence. We speculate that high expression
of hrp genes does not necessarily cause an increase in bacterial virulence on the host plant.
For example, in our previous study, a metB mutant of Xoo PXO99A exhibited the enhanced
hrpG expression in XOM3, but showed impaired virulence in host rice, as the metB gene is
the EPS and LPS synthesis-related gene [52]. Our results showed that rpfG and clp were
down-regulated in the minC and minD mutants, whereas hrpG was up-regulated in the rpfG
and clp mutants. RpfG is a response regulator of the two-component system RpfG/RpfC
with the capacity of degrading c-di-GMP, and Clp is a homologue of cyclic AMP receptor
protein (CRP) with the ability to bind c-di-GMP [53,54]. Therefore, DSF and c-di-GMP (or
cAMP) signal pathways were speculated to participate in T3SS expression regulated by the
Min system in Xoo. Our RNA-seq data also indicated that MinC regulates the expression of
two copies of clpA. ClpA, a Clp protease, has been demonstrated to be a virulence factor
in Xoo and protect the cytoplasm against the detrimental effects of stressful conditions
imposed by host defense mechanisms and environmental events [55]. Taken together, we
speculate that negative regulation of T3SS expression by the Min system in Xoo is complex,
and that a combination is involved in multiple signaling pathways.
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5. Conclusions

In this study, we identified the Xoo Min system (MinC, MinD, and MinE) functioning
as a negative regulator for T3SS expression through the key hrp regulators HrpG and HrpX.
The mutations of minC, minD, and minCDE resulted in cell elongation and asymmetric
division; meanwhile, mutation of minC in Xoo resulted in significantly impaired virulence
in host rice, swimming motility, and enhanced biofilm formation. Our transcriptome
profiling also indicated that some virulence genes were differentially expressed in the minC
mutants. To our knowledge, this is the first report about the Min system participating in the
regulation of T3SS expression. It provides some evidence for the complex T3SS regulatory
networks and sheds light on the understanding of Xoo virulence mechanisms.
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