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Abstract

The circadian rhythm affects the biological evolution and operating mechanisms of organ-

isms. The impact of light on the circadian rhythm is a significant concern for both biology and

human well-being. However, the relation between different wavelengths, irradiances, and

circadian rhythm is unknown. In this study, we compared the effects of four different mono-

chromatic light-emitting diode (LED) light and two different irradiances on the circadian

rhythm of a wild-type Neurospora crassa. The results demonstrated that the circadian

rhythm of Neurospora crassa can be modulated by violet (λp = 393 nm), blue (λp = 462 nm),

and green (λp = 521 nm) light, regardless of the irradiances, in the visible region. Unexpect-

edly, for the yellow light (λp = 591 nm), the 2 W/m2 light had a more significant impact on cir-

cadian rhythm modulation than the 0.04 W/m2 light had. Considering the highest energy of

yellow light (2.25 eV) is lower than the High Occupied Molecular Orbital (HOMO)-Lowest

Unoccupied Molecular Orbital (LUMO) gap of WC-1 (2.43 eV). We speculate that there may

be other potential photoreceptors that are involved in circadian rhythm modulation. The

HOMO-LOMO gaps of these proteins are greater than 1.98 eV and less than 2.25 eV.

These results provide a strong foundation for a deeper understanding of the impact of differ-

ent light on the circadian rhythm and also shed light on the identification of new circadian

rhythm modulation photoreceptors.

Introduction

The circadian rhythm has been shown to be present in humans, animals, plants, and some

microorganisms [1–6] which is the result of adaption to geosynchronous. The circadian

rhythm affects the biological evolution and operating mechanisms of organisms [7, 8]. The sys-

tem of the internal circadian clock is formed by three parts that are the input, the central oscil-

lator, and the output, of these three the central oscillator is the most important. Generally, the

oscillator of circadian rhythm is considered to be influenced by two primary inputs that are

the light and temperature, respectively [9]. The impact of light and temperature is imposed

upon the internal rhythm through the oscillator which operates at the molecular level. The

internal rhythm that is generated by the oscillator is thereafter through the output pathway.
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Model organisms from the fungi, botany, insect and animal groups are usually used in the

study of the circadian rhythm [10]. Although those model organisms are evolutionarily differ-

ent, their oscillators are all based on a transcriptional-translational feedback loop (TTFL) [11–

14]. Neurospora crassa is a reliable and suitable organism [15, 16] to be used in circadian

rhythm studies because its genetics can be easily manipulated and its conidiation, which is usu-

ally regarded as a signal of its circadian rhythm, is easily observed [17–20]. The study of light

regulation in Neurospora has been becoming one of the important research topics. Corrochano

et al. have reported outstanding work on light regulation in Neurospora. They had done the

mutational analyses of photoadaptation [21], and the activation of conidiation by the blue light

[22]. Besides, blue light has been proved to enhance conidiation and other asexual develop-

ment processes, such as entrainment of the conidiation circadian rhythm [23, 24]. Wang et al.

showed that light and oxidative stress regulated the switch via light-responsive and ROS path-

ways in Neurospora crassa [25]. Bieszke et al. indicated that the green light receptor probably

regulated the conidial developmental processes as an adjunct to the blue light signaling path-

way [26]. Both these two studies [25, 26] described the existence of phytochromes and opsins

in the fungus. Those previous researches provide a nice point of view to discover the effects of

light on Neurospora crassa. As we can see the topic of light regulation in Neurospora gains a lot

of attention.

In this study, we focus on the relation between light and the circadian rhythm of Neuros-
pora crassa. The circadian rhythm of Neurospora crassa is mainly influenced by light and

temperature [9], which are two kinds of energy. However, the effect of temperature on the

circadian rhythm of Neurospora crassa is more complicated than that of light because the

temperature can have both physical and chemical impacts on the oscillator, such as influ-

encing the activity of the enzyme [27, 28]. On the other hand, the irradiance of the light field

is easier to quantify than the heat transferred by the temperature field to the sample. Thus,

the effect of light on Neurospora crassa can be quantified more accurately and studied more

precisely than the effect of temperature. The previous studies on the relation between

light and the circadian rhythm of Neurospora crassa paid more attention to other variables

and effects instead of the nature of the light sources, such as the spectrum, illuminance,

intensity.

The development of semiconductor optoelectronics [29] has led to the invention of more

advanced and varied forms of lighting. The light-emitting diode (LED) is a very good example

because LED is environmentally friendly, easy to control its parameters, besides, LED has

long-life use and provides a good quality of light [1, 30]. More importantly, LED has a narrow

full width at half maximum (FWHM) and produces less heat [31]. Thus, LED is an ideal illu-

mination source for accurate investigation on the effects of light on Neurospora crassa. In this

study, we explore the relation between wavelength, irradiance, and circadian rhythm of Neu-
rospora crassa.

The lighting inside biological incubators is usually fluorescent lamps. Fluorescent lamps

create visible light by using ultraviolet light to activate the fluorescent powder coated inside the

glass tube and it provides a fairly diverse light spectrum (Fig 1a). Therefore, it is hard to inves-

tigate the effects of different wavelengths influencing the circadian rhythm of Neurospora
crassa by using traditional fluorescent lamps. In this study, we replaced fluorescent lamps with

monochromatic LED light (S1 File) with narrow FWHM, which means the specific relation

between different wavelengths of light and the circadian rhythm of Neurospora crassa can be

researched precisely. Furthermore, LED produces less heat during the experiment so that the

thermal disturbance is minimized. Moreover, the stability of LED can be used for long-term

intervention experiments.
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Materials and methods

This study employed four monochromatic LEDs with different wavelengths: monochromatic

violet, blue, green and yellow (Fig 1b). The effects of different spectral irradiance on Neuros-
pora crassa were also examined. The four LEDs were adjusted at two different irradiance levels

Fig 1. The spectra of the fluorescent lamp and LEDs. (a) The spectrum of the fluorescent lamp. (b) The spectrum of

the LEDs. Left to right: violet (FWHM = 15.7 nm), blue (FWHM = 23.7 nm), green (FWHM = 33.9 nm) and yellow

(FWHM = 20.5 nm) LEDs. We replaced the fluorescent lamp with the monochromatic LED for the light intervention

experiment.

https://doi.org/10.1371/journal.pone.0266266.g001
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for light interventions, which were 2 W/m2 and 0.04 W/m2. The spectrum and irradiance were

accurately measured by the illuminometer at the Race Tube position of Neurospora crassa.

The ras-1bd of Neurospora crassa [32] was selected as the sample in this study because of its

unique advantages. For example, the ras-1bd can grow on the basic culture medium without

other special conditions, and the conidiation of Neurospora crassa can be easily observed and

tested during its growth process. Moreover, the ras-1bd can reflect the conidiation development

of the Neurospora crassa without other genetic influences [33]. These characteristics make ras-
1bd an ideal choice for this research.

We intended to test whether the sample can be affected by different wavelengths and be

synchronized from the natural circadian rhythm of the sample, which is approximately 22

hours per period [34], to 24 hours per period cycle. The LED lighting installed in the incubator

was set to 12 hours on and 12 hours off schedule. In order to regulate the lighting time pre-

cisely, an Arduino single chip was used to control the LEDs. In this study, there were two

experimental groups and one control group (Table 1). Both experimental groups were sub-

jected to illumination by violet, blue, green, yellow monochromatic LEDs (only one mono-

chromatic light per experiment) with the spectral irradiance being set to 2 W/m2 and 0.04 W/

m2 respectively, because 2 W/m2 and 0.04 W/m2 of LEDs were the maximum and minimum

irradiance due to the space and distance inside of the incubator. The control group was left in

total darkness.

In order to control the variable, all the samples were put inside the incubators and main-

tained at a consistent temperature of 25˚C. The experiment started from shorter wavelength

light to longer wavelength light (violet, blue, green, yellow light). The samples of Neurospora
crassa were placed in the starting point of the Race Tubes [35]. The samples grew from these

starting points to the end of the Race Tubes over the course of the experiments. Each mono-

chromatic light experiment had 6 independent Race Tubes, the growth lengths were observed

and marked by black spots every 12 hours. Meanwhile, after the experiment, the samples in the

Race Tubes were scanned to obtain the image. Based on a method of recording and analysis of

rhythms from the previous work [36], we developed our Python program. After getting the

scanning photo of the Race Tubes, we put it into a Python program. Firstly, we turned this

RGB figure into a grey figure. Then we used a certain piece of the program to recognize the

black spots which we marked during the experiment. Once we got the coordinates of every

black spot, the growth front of mycelium and the place where the conidiation is densest in the

image can be analyzed. We used the picture-process method in our Python program to obtain

the density-curve of conidiation. Then, filtering, smoothing, and finding peaks processes were

done for these curves by using relative functions in the scipy.signal toolkit. The peak of the

curve represented the maximum of conidiation, and the peak array reflected the periods of

conidiation. Thus, the circadian rhythm of Neurospora crassa can be calculated. After that, we

used SPSS (IBM Corporation, USA) for data analysis. The experimental group 1, experimental

group 2 and control group had 24 Race Tubes respectively. The independent-sample t-test is

used to analyze the difference between the experimental group and the control group. The p-

value less than 0.05 was considered significant.

Table 1. Experimental parameters.

Number of replicates Spectral irradiance Light conditions Temperature Periods

Experimental group 1 N = 24 2 W/m2 12 h on / 12 h off 25˚C 6 days

Experimental group 2 N = 24 0.04 W/m2 12 h on / 12 h off 25˚C 6 days

Control group N = 24 N/A Total darkness 25˚C 6 days

https://doi.org/10.1371/journal.pone.0266266.t001
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Results and discussions

After the light intervention, there were three different types of growth results that represented

the circadian rhythm period of 24 hours, 22.3 hours, 21.7 hours, respectively (Fig 2).

The results illustrated (Table 2 and Fig 3) that the original circadian rhythm of the sample

was 21.7 hours (control group). Following the light intervention, the results of the experimen-

tal groups showed that the violet, blue, and green light with irradiances of 2 W/m2 and 0.04

W/m2 were able to modulate the circadian rhythm of the sample from 21.7 hours to 24 hours

successfully. On the other hand, neither 2 W/m2 nor 0.04 W/m2 of yellow light could repro-

gram the circadian rhythm of the sample from 21.7 hours to 24 hours (Fig 3). However, the cir-

cadian rhythm did change to 22.3 hours under 2 W/m2 yellow light which was found to be

statistically significant compared to the control group (p<0.001), and there were no remark-

able differences between the circadian rhythm (21.8 hours) of the sample under 0.04 W/m2

yellow light and the control group (p = 0.421).

Fig 2. Growth results of the samples. The samples were placed on the starting points on the far-left side of the Race Tube. It grew up from the

left side to the right side to the end of the Race Tube. The orange sections in the picture mark the conidiations. The black spots on the Race

Tubes were the growth length of the sample, which were marked every 12 hours. There were three different types of growth results, and the

arrows indicated a black spot at 24 hours, 72 hours and 120 hours. Type 1 (yellow arrows) showed that a 24 hours period of circadian rhythm,

the three arrows were always in the middle of conidiation. Type 2 (white arrows) indicated that a 22.3 hours per period, the second arrow

approached conidiation, and the third arrow was included in conidiation. Type 3 (red arrows) was around 21.7 hours per period, the second

arrow was included in conidiation, the third arrow exceeded conidiation.

https://doi.org/10.1371/journal.pone.0266266.g002

Table 2. The circadian rhythm (hours±SEM) and the statistical results compared with the control group.

Irradiance: 2 W/m2 Irradiance: 0.04 W/m2 Control

Violet Blue Green Yellow Violet Blue Green Yellow Darkness

Average 24.0 ±0.1 24.0 ±0.1 24.2 ±0.1 22.3 ±0.2 24.2 ±0.1 24.0 ±0.2 24.1 ±0.2 21.8 ±0.3 21.7 ±0.1

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.421

https://doi.org/10.1371/journal.pone.0266266.t002
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In this study, the circadian rhythm of the sample was reset from 21.7 hours to around 24

hours by the violet (λp = 393 nm), blue (λp = 462 nm), and green (λp = 521 nm) light LEDs

which were switched between light and dark mode on a 12-hour schedule. These results were

in close agreement with previously published work of circadian clock of wild type. There were

some biological responses from around 400 nm to 500 nm [37]. This interruption to the light

input signal caused the inner biological clock of the sample to synchronize with the external

environment. Neurospora crassa has two kinds of LOV (light, oxygen, or voltage) domains of

the blue-light photoreceptors. These are the White Collar-1 (WC-1) and Vivid (VVD), respec-

tively [38]. WC-1 is the main photoreceptor in Neurospora crassa, and is an important protein

that affects circadian rhythm. The WC-1 can be combined with flavin adenine dinucleotide

(FAD) to respond to light signaling [37]. The peak value of the FAD absorption spectrum is

450 nm, which indicates that WC-1 is the most sensitive to blue light, the cut-off wavelength of

light absorption of FAD is around 510 nm [39, 40]. Thus, the gap between the Highest Occu-

pied Molecular Orbital and the Lowest Unoccupied Molecular Orbital (HOMO-LUMO gap)

of FAD is about 2.43 eV.

According to the spectrum of LEDs in Fig 1b. The energy ranges corresponding to the

green light (λp = 521 nm) and yellow light (λp = 591 nm) are 2.07–2.70 eV and 1.91–2.25 eV,

respectively. The highest energy of green light (2.70 eV) is higher than 2.43 eV (WC-1), so the

green light can be absorbed by WC-1. On the other hand, the highest energy of yellow light

(2.25eV) is lower than the HOMO-LUMO gap of WC-1, so the WC-1 definitely cannot absorb

yellow light, however, the circadian rhythm results showed that yellow light with 2 W/m2 can

Fig 3. The results of circadian rhythm periods (Mean ± SEM). The violet, blue, and green light can modulate the

circadian rhythm of the sample from 21.7 hours to around 24 hours, but that yellow light weakens the modulating

effect. Both the circular and square points from the left to right represent the violet, blue, green and yellow light. The

black triangle is the control group.

https://doi.org/10.1371/journal.pone.0266266.g003
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induce the circadian periods of sample to be slightly longer than their original periods

(p<0.001). Therefore, in addition to WC-1, we speculate that there are other proteins that are

also involved in the modulation of the circadian rhythm of the sample. Although these proteins

cannot affect the circadian rhythm as much as WC-1, they can partly modulate circadian

rhythm, and absorb yellow light. According to the energy range (1.91 eV-2.25 eV) of yellow

light, we consider that the HOMO-LUMO gap of the potential proteins is lower than 2.25 eV,

which makes it possible to absorb the yellow light.

Furthermore, according to the yellow light results, the yellow light with 2 W/m2 can induce

the circadian periods of the sample, while the yellow light with 0.04 W/m2 cannot change the

circadian rhythm at all. This illustrated that the irradiance was not the key factor to affect the

circadian rhythm of Neurospora crassa when the energy was high enough (violet light, blue

light and green light), however, the irradiance was important to influence the circadian rhythm

when the energy was low (yellow light). The irradiance-dependence of the effect of the yellow-

light intervention could be explained by the poor but non-negligible overlap between the

absorption spectrum of the potential proteins and the emission spectrum of the yellow LED,

which results in a relatively low electron transition probability from the HOMO level to the

LUMO level. Therefore, an irradiance of sufficient magnitude is required to affect the circa-

dian rhythm of Neurospora crassa in the yellow light case.

Conclusion

We investigate the relation between the wavelength and circadian rhythm of Neurospora
crassa. The effective wavelength range that can modulate the circadian rhythm of Neurospora
crassa is from violet to green light. In this range, the circadian rhythm of Neurospora crassa is

only related to the wavelength of light, and independent of the irradiance of light (both 2 W/

m2 and 0.04 W/m2). Furthermore, although yellow light cannot modulate the circadian

rhythm of Neurospora crassa as effective as violet light, blue light, and green light, 2 W/m2 yel-

low light can also affect the circadian rhythm of Neurospora crassa. Thus, we speculate that

there are other proteins (in addition to WC-1) that must be present to modulate the circadian

rhythm based on the calculation between the HOMO-LUMO gap of WC-1 and yellow light

energy. This study has found a significant variation between the wavelength of light and the

circadian rhythm of Neurospora crassa. These results will provide a strong foundation for a

deeper mechanism study.
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