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The role of thioredoxin 1 in the mycophenolic
acid-induced apoptosis of insulin-producing cells

KH Huh"?%, Y Cho'®, BS Kim"®, JH Do', Y-J Park', DJ Joo"?, MS Kim"? and YS Kim*">*

Mycophenolic acid (MPA) is one of many effective immunosuppressive drugs. However, MPA can induce cellular toxicity and
impair cellular function in p-cells. To explore the effects of MPA and the relation between MPA and Trx-1, we used various
methods, including an Illumina microarray, to identify the genes regulated during pancreatic f-cell death following MPA
treatment. INS-1E cells (a pancreatic p-cell line) and isolated rat islets were treated with MPA for 12, 24, or 36 h, and subsequent
microarray analysis showed that (Trx1) gene expression was significantly reduced by MPA. Further, Trx1 overexpression
increased the cell viability, decreased the activations of c-jun N-terminal kinase (JNK) and caspase-3 by MPA, and attenuated
ROS upregulation by MPA. Furthermore, siRNA knockdown of Trx1 increased MPA-induced cell death and the activations of
p-JNK and caspase-3, and MPA significantly provoked the apoptosis of insulin-secreting cells via Trx1 downregulation. Our
findings suggest that the prevention of Trx1 downregulation in response to MPA is critical for successful islet transplantation.
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Mycophenolic acid (MPA) is a potent, noncompetitive,
reversible inhibitor of inosine-5-monophosphate dehydro-
genase (IMPDH), a key enzyme in the purine de novo
synthetic pathway of guanosine nucleotides,’? and is widely
used to prevent rejection after solid organ or islet transplanta-
tion.®* MPA effectively induces cell-cycle arrest in the late G
phase in lymphocytes and more potently inhibits lymphocyte
proliferation than the proliferations of other cell types.'>®
However, prolonged guanosine triphosphate (GTP) depletion
induces the apoptosis of insulin-secreting cells.®® Recently, it
was suggested that MPA-mediated GTP depletion blocks
DNA synthesis and induces f-cell death,®”'" but the
mechanism responsible for MPA-induced f-cell death was
not determined. We previously reported the specific depletion
of GTP via the MPA-induced apoptosis of insulin-secreting
cells (HIT-T15, RIN-5, INS-1E, and isolated rat islets) and also
confirmed that co-treatment with GTP completely blocked
MPA-induced cell death, which suggest that MPA inhibits de
novo GTP synthesis and depletes GTP.""'2"3 |n addition, we
identified genes expressionally altered during MPA-induced
p-cell death and grouped these genes by cellular function. In
particular, the expressions of 386 genes in INS-1E cells and of
234 genes in primary rat islet cells were found to be
significantly altered by MPA as determined using an lllumina
cDNA microarray.'® Further, the expressions of some genes,

such as, RhoGDI-x, Thioredoxin 1 (Trx1), Bcl2-related
protein, and programmed cell death 2 (pdcd 2), are known
to be closely related to MPA-induced f-cell death.®1415
Trxs are small (~12kDa) proteins that are found in several
types of cells. These proteins operate in combination with Trx
reductase and nicotinamide adenine dinucleotide phosphate
(NADPH) as protein disulfide/dithiol reducing systems.'®'” In
mammals, three members of the Trx family have been
identified, namely, Trx1, Trx2 (the mitochondrially localized
form), and Sptrx (sperm Trx, also designated p32TrxL)."'®"?
Trx1 is a multifunctional protein that is present in the
extracellular milieu, cytoplasm, and nucleus, and has distinct
roles in these environments.?° The cellular activity of Trx1 is
regulated by its total expression, localization (nucleus or
cytosol) and protein—protein interactions, and by posttransla-
tional modification.?! In the extracellular environment, Trx1
exhibits chemokine-like activity,>? whereas in the cytoplasm,
by scavenging reactive oxygen species (ROS) and activating
transcriptional factors, Trx1 is involved in a wide range of
cellular responses, such as cell proliferation, apoptosis, and
protection.2>2® The harmful effects of oxidative stress are
considered to be especially relevant for -cells because they
express only low levels of antioxidant enzymes, such as
superoxide dismutase (SOD, which converts superoxide
radicals to H,O,), catalase, cellular glutathione peroxidase
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(Gpx-1, which detoxifies H,0,), and Trx.2”?® Further, the
preventions of autoimmune and STZ-induced diabetes by
Trx1 overexpression in f-cells suggest that Trx1 has
important effects on f-cell destruction in type 1 diabetes
(T1D) and on genetic susceptibility to T1D,2”?° and indicate
that Trx1 has a critical role during -cell death in T1D.

The objective of this study was to investigate the apoptotic
effect of MPA on insulin-producing cells and to examine the
role of Trx1 in this process. To explore these effects of MPA,
we used various methods, including an lllumina microarray, to
identify those genes regulated during pancreatic f-cell death
following MPA treatment. In order to identify the effects of Trx1
downregulation on MPA-induced apoptosis, we observed the
effects of Trx1 overexpression and knockdown on MPA
treatment in rat INS-1E cells (an insulin-producing cell line). In
addition, we examined the relationship between Trx1 expres-
sion and ROS generation during MPA-induced apoptosis in
INS-1E cells.

Results

The identification of genes modulated by MPA using a
microarray. Previously, we reported differentially expressed
gene profiles during MPA-induced f-cell death.'® For this
analysis, INS-1E cells and isolated primary islets from rats
were treated with 40 uM MPA for 24 h or 48 h. INS-1E cells
and isolated islets were analyzed using an lllumina RatRef-12
Expression BeadChip. Previous analysis identified genes
related to the apoptosis signaling pathway and showed that
decreased RhoGDI-o to Rac1 binding increased Ract
activity.'®3° Accumulating evidence indicates that Rac1 has
a negative modulatory effect on the metabolic dysfunction of
islet p-cells, especially with respect to the regulation of Nox
activation.®' Further, recent studies have implicated Nox in
the constitutive generation of ROS following the long-term
exposure of f-cells to various stimuli known to cause

metabolic dysregulation.3>* In the present study, we

grouped genes by molecular function and then focused on
the oxidoreductase group, which accounted for many
differentially expressed genes. It was found that 19 genes
belonging to the oxidoreductase group were expressed at
high values (> +twofold versus control cells) (P<0.05,
n=4). In particular, this analysis confirmed that Trx71 gene
expression was decreased by MPA (Table 1). These findings
suggest that the downregulation of Trx1 by MPA in INS-1E
cells is associated with MPA-induced f-cell apoptosis.

Changes in Trx1 expression during MPA-induced
apoptosis. To confirm our microarray results, quantitative
real-time PCR (qPCR) was performed after treating INS-1E
cells with 10 uM MPA for 12, 24, or 36 h. In order to rescue
GTP depletion after MPA treatment, 100 uM of GTP was
co-treated into INS-1E cell for 36 h. Real-time PCR showed
that mRNA expression levels decreased to 0.66 £0.03 at
12h, 0.43+0.09 at 24 h, and t0 0.20 £ 0.10 at 36 h versus the
untreated control (CTL) (Figure 1a). Further, the gene
expression level of Trx1 was time-dependently reduced by
MPA. However, co-treatment with 10 uM MPA plus 100 uM
GTP effectively prevented loss of Trx1 expression at 36 h
(0.60+0.01). These results were in line with our Genechip
results. To quantify Trx1 protein expression under the same
experimental conditions, we immunoblotted total protein
lysates. The protein expression of Trx1 was found to
decrease in INS-1E cells during MPA-induced cell death,
but co-treatment with GTP significantly prevented this Trx1
protein deletion (Figure 1b).

Primary rat islet cells correspond more closely than INS-1E
cells to therapeutic islet transplants, and hence we evaluated
the effects of MPA on rat islet cells and compared the
mechanism of MPA-induced cell death in these primary
cultures with that in the INS-1E cell line. Real-time PCR was
performed after treating islet cells with 40 uM MPA for 12h,

Table 1 List of genes showing significantly changed expression levels after MPA treatment

No. Definition Symbol Transcript CTL 24h Fold
intensity intensity
1 Cytochrome P450 4F5 Cyp4f5  NM_173124.1 249 892 4.66
2  Enoyl coenzyme A hydratase 1, peroxisomal Echt NM_022594.1 6639 20842 3.58
3 Carbonyl reductase 4 Cbr4 NM_182672.1 1512 3984 2.51
5  Crystallin, lambda 1 Crylt NM_175757.2 225 509 2.36
6  Phytanoyl-CoA hydroxylase Phyh NM_053674.1 2289 4432 217
7  Lactate dehydrogenase D Ldhd NM_001008893.1 275 573 2.05
8  Acyl-Coenzyme A dehydrogenase, long-chain Acadl NM_012819.1 3664 6936 2.03
9  Thioredoxin 1 Txn1 NM_053800.2 52937 23322 —2.06
10 Sulfite oxidase (Suox), nuclear gene encoding mitochondrial protein malic Suox NM_031127.3 6075 2556 —-2.21
enzyme 1

11 Malic enzyme 1 Me1 NM_012600.1 2282 929 —2.26
12 3-hydroxy-3-methylglutaryl-coenzyme A reductase Hmgcr NM_013134.2 13303 4962 —2.33
13 3-hydroxybutyrate dehydrogenase, type 1 Bdh1 NM_053995.3 1513 561 —2.58
14 7-dehydrocholesterol reductase Dhcr7 NM_022389.2 6879 2169 -2.71
15 Monoamine oxidase B (Maob) Maob NM_013198.1 10790 2477 —-3.16
16  Squalene epoxidase Sqle NM_017136.1 9633 2503 —3.45
17  Sterol-C4-methyl oxidase-like Sc4mol  NM_080886.1 12426 3092 —3.74
18 Aldehyde dehydrogenase 1 family, member A1 Aldh1al  NM_022407.3 1168 244 —4.54
19 Stearoyl-Coenzyme A desaturase 2 Scadz NM_031841.1 24966 3122 —5.59

INS-1E cells were treated with 10 uM MPA for 24 h. The cDNAs of INS-1E cells were analyzed using an lllumina RatRef-12 Expression BeadChip in quadruplicate
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24 h, or 36 h and after co-treating them with 40 uM MPA plus
100uM GTP for 36h. As is shown in Figure 1a, mRNA
expression levels decreased to 0.89%+0.01 at 12h,
0.66 £0.03 at 24h, and to 0.63+0.02 at 36h versus the
untreated control (CTL) (Figure 1c). Further, although Trx1
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mRNA decreased time-dependently after MPA treatment,
co-treatment with MPA plus GTP maintained Trx1 mRNA
expression at a higher level (0.92+0.06 at 36h) than
treatment with MPA alone. In addition, treatment with MPA
decreased Trx1 protein expression in primary islet cells, but
co-treatment with MPA plus GTP suppressed this response
(Figure 1d).

Using immunohistochemistry, we confirmed that Trx1
protein expression was downregulated during apoptosis in
primary rat islets treated with 40 uM MPA. To identify f-cells,
islet cluster sections were stained for insulin. It is known that
the cytoarchitectures of pancreatic islets are species depen-
dent. In particular, rodent islets are characterized by a
predominance of insulin-producing f-cells in the cores of islet
clusters and by scarce alpha, delta, and PP cells in
peripheries.>*® As shown in Figure 2, Trx1 (red) expression
level in f-cells (colored green; especially in islet cores)
decreased over time after treatment with 40 uM MPA for 12,
24, or 36 h. Quantitative analysis of Trx1/insulin staining ratios
showed reduced Trx1 expression in the f-cells of isolated rat
islets. The number of Trx1 and insulin positive cells reduced
with MPA treatment time, and the protein expression of Trx1
was especially reduced in f-cells. However, co-treatment with
40 M MPA plus 100 uM GTP increased the number of -cells
expressing Trx1 protein. Consequentially, Trx1 expressions in
p-cells (isolated rat islets) decreased after MPA treatment.
These results agree with the results obtained using the
INS-1E cell line and show that reduced Trx1 expression is
linked to p-cell toxicity in response to MPA.

Effects of Trx1 expression on INS-1E cell survival during
MPA-induced apoptosis. To investigate the effects of Trx1
expression on the survival of INS-1E cells, we established
INS-1E cells stably expressing Trx1 from pcDNA 3.1 and
transiently transfected these cells with Trx1 siRNA
(Figure 3a). As shown in Figure 3b, although Trx1 over-
expression reduced MPA-induced cell death versus the
control (transfected with vector only), Trx1 knockdown
increased cell death. More specifically, the viability of
INS-1E cells decreased to 72+3.2% versus control cells
after treatment with 10 uM MPA for 24 h, but the viability of
Trx1-overexpressing cells was similar to that of the control

Figure 1 Changes in Trx1 gene and protein expression levels in INS-1E cells
and isolated rat islets after MPA treatment. (a, b) INS-1E cells were treated with
10 uM MPA for 12h, 24h, or 36 h or co-treated with 10 «M MPA plus 100 uM GTP
for 36 h. (¢, d) Islets isolated from a rat were treated with 40 uM MPA for 12h, 24h,
or 36 h or co-treated with 10 M MPA plus 100 uM GTP for 36 h. (a) To quantify
Trx1 gene expression in INS-1E cells, mRNA levels were assessed by qPCR. Trx1
gene expression levels gradually diminished after MPA treatment, but this effect
was inhibited by GTP co-treatment. Results are the means + SEMs of three
independent experiments. ***P<0.0001 versus the untreated control (CTL).
GAPDH was used as an internal control to normalize gene expressions. (b) Cell
lysates (40 ug) were loaded onto gels and immunoblotted. In INS-1E cells, Trx1
protein levels were progressively reduced by MPA treatment. ff-Actin was used to
confirm equal loading. (¢) The mRNA expressions of Trx1 in islets were evaluated
by qPCR. Trx1 gene expression decreased progressively after MPA treatment.
**P<0.0001 versus CTL. (d) Cell lysates (40 ug) were loaded onto gels and
immunoblotted. In isolated islets, Trx1 protein levels were progressively reduced by
MPA treatment
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Figure2 The expression of Trx1 was diminished in the 3-cells of isolated rat islets by MPA. Isolated rat islet clusters were treated with 40 M MPA alone for 12, 24, or 36 h
or co-treated with 40 M MPA plus 100 uM GTP for 36 h. At the indicated times, islets were fixed in 4% paraformaldehyde and sectioned at 4-um. Insulin (green) staining
shows f-cell locations and population sizes in isolated rat islets. Trx1 (red) staining decreased time-dependently after treating f3-cells with MPA, but this decrease was inhibited
when GTP was co-treated (after 36 h of treatment). The bar graphs show numbers of insulin-stained cells (black bar), and Trx1 and insulin co-stained cells (gray dotted blocks).
Cell numbers were counted in 3-4 images per experiment, and experiments were performed in triplicate. Values are means = SEMs (***P<0.001)

(98.5+0.5% of control at 24 h). These results suggest that
Trx1 is involved in MPA-induced p-cell apoptosis.

Changes in Trx1 expression were closely associated
with MAPK-dependent apoptosis. In earlier studies, we
found that MPA induced apoptosis in several pancreatic
p-cell lines via JNK activation,'>'33" and thus we investi-
gated the effect of Trx1 expression on the MAPK signaling
pathway. After treating INS-1E cells and the Trx1-over-
expressing INS-1E cell line with 10 uM MPA for 12h, 24 h, or
36h, p-MKK4/7, p-JNK, and cleaved caspase-3 protein
levels were measured by western blotting. p-MKK4/7 was
observed at 12h and its level was increased at 24h.
However, this increase was not observed at any time in
Trx1-overexpressing cells (Figure 4a). p-JNK protein levels
were dramatically increased at 24h and slightly more
increased at 36 h versus untreated controls, but its levels
were increased only at 36h in Trx1-overexpressing cells
(Figure 4b). The expression of cleaved caspase-3 was
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markedly lower in Trx1-overexpressing cells than in INS-1E
cells (Figure 4c). Further, Trx1 knockdown increased the
activations of MKK4/7, JNK, and caspase-3 (Supplementary
data 1). These results show that Trx1 expression regulates
MPA-induced apoptosis via an MAPK-dependent signaling
pathway.

ROS level measurements in INS-1E cells treated with
MPA. The key biological activities of Trx1 include antiox-
idative, antiapoptotic, and growth-stimulatory effects, which
are attributable to its interactions with nuclear factor-xB
(NF-xB), apoptosis signal regulating kinase-1 (ASK-1), and
hypoxia-inducible factor-1.2437-3 The most distinctive role of
Trx1 concerns the repair of proteins oxidized by reactive
oxygen-containing intermediates. Therefore, we used DCF-DA
to detect cellular ROS in INS-1E cells treated with MPA.
Cellular ROS generation was observed by fluorescence
microscopy after treating INS-1E and Trx1-overexpressing
INS-1E cells with 10 uM MPA. As shown in Figure 5a, cellular



ROS increased during MPA-induced apoptosis, whereas
ROS generation was obviously less in Trx1-overexpressing
cells. To quantify intracellular ROS levels more precisely, we
used fluorescence spectrophotometry. Intracellular ROS
levels in INS-1E cells increased in a time-dependent manner
after treatment with 10uM MPA for 12h, 24h, or 36h
(by 104.3+£0.9%, 118.3£9.8%, and 137.0+8.7% of the
untreated control levels, respectively). However, ROS gen-
eration in Trx1-overexpressing cells remained at the
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Figure 3 The effects of Trx1 gene knockdown and Trx1 overexpression in INS-1E
cells. (a) INS-1E cells were either mock transfected (Mock) or transfected with
Trx1 siRNA (siTrx1) or full-length Trx1 cDNA (Trx1 O/E). Results are presented as
means + SEMs of three independent experiments performed in duplicate.
*P<0.01; **P<0.001 compared with mock-transfected cells (Mock). (b) Cells
were treated with 10 uM MPA for the indicated times, and cell viabilities were
measured using an MTT assay. The survival rate of Trx1-overexpressing INS-1E
cells treated with MPA was greater than that of cells treated with MPA. However, the
survival rate of Trx1 knockdown cells was poorer than that of MPA-treated cells.
**P<0.01 versus MPA-treated cells at 12 h, ***P<0.001 versus MPA-treated cells
at24hand 36h (n=4)

Figure 4 Expression levels of p-MKK4/7, p-JNK, and cleaved caspase-3
following MPA treatment. INS-1E cells and INS-1E cells overexpressing Trx1 were
treated with 10 M MPA for 12, 24, or 36 h. Total protein lysates were western
blotted. Bar graphs represent quantitative differences in expressions of p-MKK4/7,
p-JNK, and cleaved caspase-3. Results are means + SEMs (n=3). **P<0.01,
“**P<0.001 versus CTL. (a) P-MKK4/7 expression was higher in INS-1E cells than
in cells overexpressing Trx1. Whereas p-MKK4/7 was expressed in INS-1E cells, it
was not expressed in cells overexpressing Trx1. (b) P-JNK levels were higher at
24hand 36 hin INS-1E cells than in cells overexpressing Trx1, and P-JNK was only
expressed slightly at 36 h in Trx1-overexpressing cells. (c) Increases in cleaved
caspase-3 levels in Trx1-overexpressing cells were lower than in INS-1E cells.
Equal loading was confirmed using JNK and f-actin
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5
untreated control level at all times (99.7+4.5%,
107.0£9.0%, and 110.3+4.3% of untreated controls,

respectively) (Figure 5b). These results show that Trx1
overexpression blocked ROS generation during MPA-
induced f-cell apoptosis.
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Figure 5 ROS levels in INS-1E cells and INS-1E cells overexpressing Trx1 following MPA treatment. (a) Both cell lines were treated with 5 xM DCF-DA for 30 min and
then treated with 10 «M MPA for 12, 24, or 36 h. ROS levels were detected by fluorescence microscopy. ROS generation was increased dose- and time-dependently by MPA,
but this increase was attenuated in Trx1-overexpressing cells. (b) Intracellular ROS levels were measured by fluorescence spectrophotometry. After treatment with MPA for
the indicated times, cells were incubated with 10 M DCF-DA for 30 min. ROS levels were elevated in MPA-treated INS-1E cells, but not in Trx1-overexpressing cells. Results

are means + SEMs (n=3, *P<0.05)

Discussion

Although islet transplantation is more widely accessible and
reproducible than pancreatic transplantation, it presents
several issues in the clinical setting. In particular, transplants
are susceptible to drug-induced toxicity and might be
physiologically inadequate. MPA-induced f-cell toxicity can
also affect islet graft survival,®” but the signal transduction
mechanisms responsible for MPA-induced p-cell toxicity have
not been elucidated. In the present study, we investigated the
role of Trx1 in MPA-induced f-cell apoptosis. In particular, we
examined (1) changes in Trx1 expression during MPA-
induced apoptosis, (2) the effects of Trx1 overexpression
and knockdown on the effects of MPA treatment in the rat
insulin-producing cell line INS-1E, and (3) the relationship
between Trx1 expression and ROS generation in INS-1E cells
during MPA-induced apoptosis. This study has two major
findings. First, it demonstrates that MPA reduces Trx1
expression at the protein and gene levels in INS-1E cells
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and in isolated rat islets. Second, it shows that cell viability is
restored by Trx1 overexpression, therefore preventing MPA-
induced apoptosis via the MAPK pathway and suppressing
ROS generation in response to MPA. Using the microarray
technique, we found that numerous genes could be involved
in the death of insulin-secreting cells exposed to MPA. As
described in the introduction, Trx1is a candidate antiapoptotic
gene in insulin-secreting cells'® and probably exerts its
antiapoptotic effect on the ischemic-reperfused hearts via its
antioxidant and ASK-1 inhibitory effects. Further, treatment
with Trx1 before reperfusion markedly inhibits p38 MAPK
activity.®® In addition to its activity as an oxidoreductase,
recent in vitro studies have demonstrated that Trx1 directly
interacts with and inhibits the activity of ASK-1, a mitogen-
activated protein kinase that activates the proapoptotic
kinases, MAPK, and JNK.244%~%2 |n this study, we found that
modulations of Trx1 expression affected f-cell viability and
the MAPK pathway after MPA treatment. Together, our
findings and those described above indicate that Trx1 is



associated with MPA-induced apoptosis via the MAPK
signaling pathway in insulin-secreting cells.

Hotta et al?” showed that Trx1 overexpression markedly
reduced the incidence of diabetes but failed to prevent the
development of insulitis. This result suggests that the
autoimmune destruction of pancreatic f-cells in type 1
diabetes is at least partially mediated by reactive oxidative
intermediates (ROIs) and that this mediation can be blocked
by Trx1.28 In the islet transplantation experiment, Trx-over-
expressed islets showed better glycemic control and longer
graft survival, indicating that Trx has a strong cytoprotective
effect on islets.?® These effects may reflect the multiple
biological functions of Trx, which has both antioxidative and
antiapoptotic activities. In the present study, Trx1 expression
was inhibited by MPA, and the overexpression of Trx1
inhibited MPA-induced apoptosis by activating the JNK
pathway, which suggests that pancreatic 5-cell viability could
be improved by Trx1 overexpression during MPA-induced
apoptosis. In further studies, we suggest ASK-1 and TXNIP
immunoassays be used to determine how MPA affects the
expressions of these proteins, and that an additional study be
undertaken to determine the nature of the relation between
RhoGDI-« and Trx1, and the mechanism(s) responsible for
regulating these genes.

Summarizing, we found MPA reduces the expression of
Trx1 at the protein and gene levels, and that this down-
regulation leads to the apoptosis of insulin-secreting cells via
the MKK4/7-JNK pathway. Further, our findings indicate Trx1
might mitigate MPA-induced islet cell death and indicate that
further studies are needed to evaluate the effects of Trx1
modulation in transplant models.

Materials and Methods

Cells and culture reagents. Cells were maintained at 37 °C in a 5% CO,-
humidified incubator. INS-1E insulinoma rat pancreatic f3-cells were cultured in
RPMI-1640 medium containing 10% fetal bovine serum (FBS) (Gibco, Grand
Island, NY, USA), 100 units/ml penicillin, and 100 ug/ml streptomycin, and cells
that overexpressed Trx1 were grown in RPMI-1640 medium containing 10% FBS
and 0.2 mg/ml G418.

Islet isolation and primary cell culture. The pancreas of a Lewis rat
(250-350g) was digested using collagenase P (Roche, Indianapolis, IN, USA),
and the islets so obtained were purified using three different Histopaque (Sigma
Chemical Co., St Louis, MO, USA) gradients. Islets were maintained in RPMI-1640
medium containing 10% FBS (Gibco), 100 units/ml penicillin, and 100 wg/ml
streptomycin in a humidified 5% CO, atmosphere at 37 °C.

lllumina microarray gene analysis. Microarray analysis was performed
using an lllumina RatRef-12 Expression BeadChip (lllumina, San Diego, CA, USA),
according to the manufacturer’s instructions (Macrogen, Seoul, Korea). Biotinylated
cRNAs were prepared from 0.55 ug of total RNA using an lllumina Total Prep RNA
Amplification Kit (Ambion, Austin, TX, USA). Following fragmentation, 0.75 g of
cRNA was hybridized to the lllumina RatRef-12 Expression BeadChip (lllumina).
Arrays were scanned using an lllumina Bead Array Reader Confocal Scanner. Array
data export processing and analysis were performed using lllumina BeadStudio
v3.1.3 (Gene Expression Module v3.3.8, Stratagene, CA, USA).

Total RNA isolation. Following medium aspiration, INS-1E cells were lysed
directly in culture dishes by adding TRIzol reagent (Invitrogen, Carlsbad, CA,
USA). Lysed samples were incubated for 5min at room temperature and then
mixed with chloroform in a tube by vortexing for 15s. Tubes were centrifuged at
12000 x g for 15min at 4 °C, and supernatants were transferred into new tubes
containing isopropanol and then incubated at room temperature for 10min.
Samples were then centrifuged at 12000 x g for 10 min at 4 °C. The supernatants
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obtained were discarded and pellets were washed in 70% ethanol and lysed in
RNase-free water.

RT-PCR and quantitative real-time PCR. Total RNA was reverse
transcribed using oligo-dT and a M-MLV Reverse Transcriptase (Invitrogen)
protocol, and PCR was performed using Bioneer Accupower PCR PreMix
(Bioneer, Korea). Real-time PCR was performed using cDNA, a TagMan probe,
and Real-time PCR master mix (QPK-101, TOYOBO, Osaka) using the Tagman
assay protocol. Transcript values and Ct values were normalized against GAPDH
and expressed as fold differences versus controls. The following Trx1 sequences
were used: sense, 5-CTTTCATTCCCTCTGTGACAAGTATTC-3, antisense,
5'-TTATAGAACTGGAAGGTCGGCATG-3, and the sequence of the Trx1 Tagman
probe was 5'p-Fam-CAGCAACATCCTGGCAGTCATCCACG-BHQ-1-3'F. The
following GAPDH sequences were used: sense, 5'-GTGATGCTGGTGCTGAG
TATGTC-3'T, antisense 5'-GCGGAAGGGGCGGAGATG-3/, and the sequence of
the GAPDH Tagman probe was 5'a-Hex-ACCCTTCAGGTGAGCCCCAG
CCTT-BHQ-1-3'H.

Western blot analysis. Protein extracts from the INS-1E cell line were
prepared using RIPA buffer containing 50 mM Tris-HCI (pH 7.5), 150 mM NaCl,
1% Nonidet P-40, 0.5% sodium deoxycholic acid, and 0.1% SDS. Proteins were
boiled for 5min, separated by 10-15% SDS-PAGE, and blotted onto
polyvinylidene difluoride membranes. Proteins were detected using the following
primary antibodies: Trx1 (1:1000), cleaved caspase-3 (1:1000), p-Jun N-terminal
kinase (JNK)AJNK (1:1000), p-MKK4/7 (1:1000) (Cell Signaling Technology,
Beverly, MA, USA), and f-actin (1:10000) (Sigma). Protein bands were detected
using an Immobilon Western Chemiluminescent HRP substrate kit (Millipore
Corporation, Billerica, MA, USA).

Fluorescent immunohistochemistry. Primary isolated islets were
treated with 40 uM MPA, fixed in 4% paraformaldehyde, and dehydrated using
a 10, 20, and 30% sucrose series overnight. The sucrose solution was then
removed from tubes, and ~500 ul of Tissue Tek Optimal Cutting Temperature
(OCT) solution (Thermo Fisher Scientific, Waltham, MA, USA) was added to islets.
The OCT-embedded islets were stored at — 80 °C. Sections (4-um thick) were
then cut on a cryostat, placed on silanized slides, and permeabilized and blocked
with 0.5% BSA in PBS. Slides were incubated overnight at 4 °C with a primary
polyclonal antibody against Trx1 (Cell Signaling) diluted 1:50 with blocking
solution (0.5% BSA in PBS). Slides were then washed, incubated with an Alexa
Fluor 568 goat anti-rabbit antibody (Invitrogen), and then with another primary
polyclonal antibody against Insulin (Santa Cruz Biotechnology, Inc.) diluted 1:100.
Slides were then washed and incubated with an Alexa Fluor 488 goat anti-mouse
antibody (Invitrogen).

Fluorescence microscopy. Fluorescence microscopic images of fixed
cells were captured using an Olympus IX71 fluorescence microscope equipped
with a DP71 camera and DP-BSW Application software (Olympus Corporation,
Tokyo, Japan).

Trx1 gene cloning. In vitro Trx1 transcription templates were amplified by
PCR from INS-1E cDNA using 5'-TCCAATGTGGTGTTCCTTGA-3' (forward) and
5'-ACCAGAGAACTCCCCAACCT-3' (reverse). PCR products were cloned into
mammalian and bacterial expression vectors using flanking restriction sites
engineered into the PCR oligonucleotides. After subcloning cDNA into pcDNA 3.1
vector, the insert was fully sequenced using the dideoxy nucleotide chain
termination method and Tag DNA polymerase. The vector was transfected into
insulin-secreting cells over 2h using 4 pl of Lipofectamine 2000 (Invitrogen) in
200 pl of serum-free culture medium.

Trx1 silencing. INS-1E cells (1 x 10%well) cultured in six-well plates were
transiently transfected with either small interfering RNAs (siRNAs) targeting Trx1
or scrambled negative control siRNAs. All siRNAs were purchased from QIAGEN
Korea Ltd (Seoul, Korea). The following Trx1 sequences were used: sense,
5-GGGAGACAAGCUUGUGGUATT-3' and antisense, 5'-UACCACAAGCUUGU
CUCCCGC-3'. Cells were transfected using Lipofectamine 2000 Reagent and
Opti-MEM (Gibco) and analyzed by immunoblotting ~24 h later.

Cell viability analysis. Cell viabilites were determined using an MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Briefly, cells
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were seeded in a 24-well plate at a density of 2 x 10° cells/well and treated with
10 M of MPA (Sigma) for 12h, 24 h, or 36 h at 37 °C. MTT solution was added to
each well to a final concentration of 1 mg/ml and incubated for 1h at 37 °C. The
formazan crystals formed were dissolved in Detergent Reagent (Trevigen,
Gaithersburg, MD, USA), and absorbance at 540 nm was measured using an
ELISA plate reader (Molecular Devices, Palo Alto, CA, USA).

Measurement of intracellular ROS production. The peroxide-
sensitive fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCF-DA;
Molecular Probes, Carlsbad, CA, USA) was used to assess the generation of
intracellular ROS. To observe intracellular ROS generation, treatment-naive
INS-1E cells and cells overexpressing Trx1 were grown in six-well plates at a
density of 7 x 10° cells/well, treated with 10, 40, or 80 uM of MPA for 12, 24, or
36 h, incubated at 37 °C for 30 min in the dark in serum-free medium containing
5uM DCF-DA, and washed three times with phosphate-buffered saline (PBS).
Fluorescence microscopic images were captured using an OlympusIX71
fluorescence microscope (Olympus Corporation). To quantify ROS levels,
treatment-naive INS-1E cells and cells over-expressing Trx1 were grown in
96-well plates at a density of 4 x 10* cells/well, incubated with 10 zM DCF-DA at
37°C for 30min in the dark, and treated with 10uM MPA for 12, 24, or 36h.
Fluorescence was measured using a luminescence spectrophotometer (Perkin
Elmer LS50B, Wellesley, USA) and at excitation and emission wavelengths of 485
and 530 nm, respectively. ROS levels were calculated as percentage increases
versus untreated control levels.

Statistical analysis. Results are presented as means + SEMs. One-way
ANOVA and the post hoc Student's t-test were used to determine the significance
of differences between means. Statistical significance was accepted for P-values
of <0.05, and the analysis was conducted using GraphPad Prism software
(GraphPad Software, Inc., CA, USA).
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