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Abstract
We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous

scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks

separately with human umbilical vein endothelial cells and human lung fibroblasts to form a

tissue mimic containing vascular networks. The artificial vascular networks provided chan-

nels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The

endothelium of the vascular networks significantly retarded the occlusion of channels during

whole-blood circulation. The tissue mimics have the potential to be used as an in vitro plat-

form to examine the physiologic and pathologic phenomena through vascular architecture.

Introduction
Tissue engineering has led to in vitro construction of tissues/ organs and may ameliorate the
limited supply of organs for transplantation. Currently only a few types of organs such as skin
[1,2], bladders[3,4], and tracheas[5,6] have been engineered for clinical application. Unlike liv-
ing tissues in vivo, cell viability and functions cannot be sustained in the core of dense engi-
neered tissue in vitro [7–9] because diffusion alone supplies nutrients and oxygen to cells
within engineered tissue; the lack of adequate mass transport leads to necrotic cell death in the
core. The limitation of diffusion becomes increasingly critical as the volume and cell popula-
tion of engineered tissue increase. Thus bioengineers are seeking ways to incorporate microcir-
culation into engineered tissues [10–16]; methods include induction of angiogenesis by
biomolecular cues, and formation of microvasculature. The introduction of microfabrication
technologies to tissue engineering has allowed construction of perfusable channels in engi-
neered tissues [13,17–19]; this approach has the potential to achieve stable mass transport
from the initiation of the cell culture.

To construct functional channels for this purpose, emphasis should be placed on developing
endothelized channels in an engineered tissue for metabolite transport in vivo. Soft lithography,
micromachining, and micromolding technologies have been utilized to fabricate two-dimen-
sional (2D) endothelized channels with biomaterials [13,17,18]. 3D printing of carbohydrate
fibers and rapid casting have been used to fabricate endothelized lattice channels in 3D
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hydrogel in the present of living cells [19]. To realize the complex branching patterns of vascu-
lar networks, 3D printing technology based on layer-by layer deposition has enabled the con-
struction of 3D vascular networks with various branching patterns and angles[20,21].
However, cells should be repopulated after completing the structure fabrication because the
process entails use of cytotoxic organic solvents. Thus, challenges remain in controlling the
position of repopulated cells to form tissues with spatially distinct endothelium on the lumen
of the porous monolithic structure fabricated by the technology.

The objective of this study was to use stereolithography (SL) based on photopolymerization
[22] to construct 3D functional vascular networks in tissue mimics, and to establish a basis for
large-volume tissue regeneration. Although SL technology requires use of photocurable materi-
als, a wide range of biomaterials can be used with indirect method [23]. The work led to a well-
designed molding process and successful fabrication of scaffolds using PLGA, PLLA, PCL, chit-
osan, alginate, and bone cement with the resolution of 50 ~70 um. Here, we modified indirect
SL technology to enable formation of an inner-layered fluidic network in a porous scaffold by
introducing a hydrogel barrier on the luminal surface. The scaffold containing inner-layered
fluidic networks was turned into a tissue mimic containing vascular networks by seeding it sep-
arately with human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts
(HLFs). The effects of artificial vascular networks on oxygen delivery and cell viability were
assessed under perfusion culture, and the early performance of vascular networks beyond 24 h
in a physiological environment was investigated using whole-blood perfusion as a surrogate for
transplantation.

Materials and Methods

Design of a microfluidic network system for a porous scaffold
We designed 3D fluidic network models for a cylindrical scaffold (10 mm in diameter × 10 mm
in length) based on an algorithm introduced previously [8]. At bifurcation lesions, the parent
branch and its two daughter branches lay in the same plane and the branch opening half-angles
did not exceed p

4
, which is the maximum value in the physiologically relevant range. The inlet

diameter was set to be 2 mm and the daughter diameters were determined using Murray’s law
[24]. The same numerical analysis was performed to evaluate oxygen transport by 3D fluidic
networks in the 3D large-volume scaffold.

Fabrication of Scaffolds with Inner-layered Fluidic Network
Indirect-SL fabrication [8,23] was proposed to construct dual-pore scaffolds having designed
pores and local pores together by combining SL technology and sacrificial molding process. A
sacrificial mold having an inverse shape of global pores is fabricated from an alkali-soluble
photopolymer using the SL technology. Then the mold is filled with biomaterials and local
pores are formed by traditional methods such as phase inversion and salt leaching techniques.
Finally, the sacrificial mold is removed and designed global pores and irregular local pores are
formed within a structure. In this study, the indirect-SL fabrication technique was modified to
construct fluidic networks having a collagen inner layer in a porous scaffold (Fig 1). As
described in detail previously, first, projection image data were created from computer-aided
design models of the designed fluidic networks [25]. Second, the shape of the fluidic networks
was fabricated from an alkali-soluble photopolymer (44 wt% N,N-dimethyl-acrylamide, 44 wt
% methacrylic acid, 12 wt% poly(vinyl pyrrolidone))[26] using a projection-based microstereo-
lithography (pMSTL) system. Third, the fabricated structure was dipped in a collagen solution
(2 v/v%, Koken atelocollagen implant, Koken, Japan) and the collagen was cross-linked in
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N-hydroxysuccinimide(NHS)/N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) solu-
tion in ethanol (NHS/EDC at 1:1 each 10 mg/ml in 95% ethanol). Fourth, polycaprolactone
(PCL; Polysciences, Inc., Warrington, PA, USA; Mw 43,000–50,000, 20% w/v) solution in chlo-
roform was mixed with sodium chloride particles which were sieved through a 300-μmmesh,
and the mixture was poured into the mold and placed in pure isopropyl alcohol to remove the

Fig 1. Modified indirect-MSTL technology for the porous scaffold containing a fluidic network systemwith collagen inner
layer. The magnified schematics in the collagen coating and lost mold shape-forming process show the internal structure in each
process.

doi:10.1371/journal.pone.0156529.g001
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chloroform. Then the sacrificial mold and salt were dissolved using 0.5 N NaOH for 8 hours.
The dissolution time and the effect of residues of sacrificial mold were investigated in our pre-
vious work[23] and this protocol was established based on the results. Because the PCL surface
is hydrophobic and lacks active sites to immobilize collagen molecules, the surface of the colla-
gen layer and porous scaffold are in contact without any interfacial anchoring. Hydrolysis of
PCL by NaOH during the step of removing the sacrificial mold can break the ester bonds in
PCL; this process introduces active sites on the surface of PCL by producing carboxylic groups
and hydroxyl groups [27,28]. After removing the mold in NaOH solution, the structure was
immersed in EDC/NHS solution again to induce amide bonds between the PCL scaffold and
the collagen layer. The final PCL structure was carefully washed with distilled water three times
for total 24 h. To observe the surface, scaffolds were sputter-coated with gold and images were
taken with scanning electron microscopy (SEM; Hitachi SU-6600; Hitachi, Tokyo, Japan). To
observe the inner architecture, scaffolds were cross-sectioned with a cryostat (Leica, Wetzlar,
Germany) and images of bifurcation lesions were taken using micro-CT.

Assessment of Collagen Denature by Fourier transform infrared (FT-IR)
spectroscopy
In the fabrication process (Fig 1), collagen is exposed in several solvents such as isopropyl alco-
hol, NaOH, and chloroform. To determine whether the collagen was denatured by the solvents,
infrared spectra were obtained for the raw and processed collagen. The raw collagen film was
prepared after crosslinking in EDC/NHS solution. The processed collagen film was prepared
by immersing the raw collagen in isopropyl alcohol for 2 d, NaOH solution for 8 h, and chloro-
form for 2 d one after another. Spectra were obtained using a Fourier transform infrared spec-
trometer (M1200, MIDAC Co. Ltd).

Construction of 3D Artificial Tissue Mimics
The porous scaffold containing inner-layered fluidic networks was turned into a tissue mimic
containing vascular networks by seeding it with HUVECs and HLFs cells in two steps.
HUVECs and HLFs were purchased from ATCC and labeled with DiI (red) and DiO (green)
dyes, respectively, in accordance with the manufacturer’s (Molecular probes, Invitrogen)
instructions. Briefly, cells were dissociated by treatment with trypsin, then resuspended in 1 ml
medium. The cell suspensions were mixed with 5 μl of DiI or DiO cell labeling solutions, then
incubated at 37°C for 30 min. First, a suspension of HUVECs was injected into the inlet of the
fluidic network until the suspension filled the whole network. After shaking and incubating for
3 h at 37°C and 5% CO2, HUVECs were attached to the luminal surface of the fluidic network.
Second, HLFs were seeded onto the scaffolds surrounding the fluidic network by using a vac-
uum-aided seeding technique [29] to homogeneously distribute the cells across the surface and
thickness of the scaffold. Then the scaffolds were loaded in perfusion chambers (Fig 2a) and
cultured for 6 days in the perfusion system (Fig 2b). The perfusion system composed of a peri-
staltic pump, medium reservoir, gas permeable silicon tube as a gas exchanger, and chamber.
The PET chamber was designed to have the same diameter with scaffolds and plugged with sili-
con rubbers which were connected to tubes for perfusion.

The pimonidazole conjugation assay was used to detect hypoxic cells in the tissue mimics.
Pimonidazole is reductively activated in hypoxic cells and forms stable covalent adducts with
thiol (sulphydryl) groups in proteins, peptides and amino acids. According to the manufactur-
er’s protocol, the cells having those adduct are detected by immunochemical means. First, a
pimonidazole was added to the cell culture media at day 3 and incubated for 36 h. The tissue
mimics were fixed for 30 min in 10% formalin, frozen, and embedded in O.C.T. compound
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embedding medium (Tissue-Tek, Sakura Fineteck Inc, Torrance, CA, USA). Then, 4-μm sec-
tions were prepared from the frozen block with a cryostat. In the process, the collagen layer
was somewhat detached from the scaffold surface but maintained the shape of fluidic network.
Samples were mounted with DAPI and images were taken under a fluorescence microscope
(LX71; Olympus, Tokyo, Japan).

Cell apoptosis was detected using an assay for degradation of DNA (DeadEnd Fluorometric
TUNEL System, Promega). Cell-seeded scaffolds were washed and fixed in 4% paraformalde-
hyde according to the manufacturer’s protocols. After preparing 4-μm sections as described
above, fixed cells were permeabilized with Triton X-100, then labeled with the Terminal Deox-
ynucleotidyl Transferase (TdT) enzyme. Apoptotic cells were identified by green fluorescence

Fig 2. Cell culture system. (a) A perfusion chamber for loading a scaffold, and (b) perfusion culture system.

doi:10.1371/journal.pone.0156529.g002
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using a fluorescence microscope. Images were acquired from three different positions for the
analysis.

Statistical Analyses
Statistical analyses were performed via one-way analysis of variance with a post hoc Tukey test
using MINITAB version 17 (State College, PA, USA). Differences between groups were consid-
ered statistically significant at P< 0.05.

Whole Blood Circulation as a Surrogate Model of Transplantation
To investigate the patency of artificial vascular networks in physiological environment, we
adopted whole-blood perfusion as a surrogate for transplantation [30]. According to the IRB
regulations established by Korean Ministry of Health andWelfare, this research involving the
use of anonymous human tissue specimens is exempt from the requirement for IRB approval.
The whole-blood perfusion was performed in the perfusion culture system (Fig 2), using whole
blood as a perfusate instead of culture medium. Fresh blood was collected in vacutainer tubes
containing sodium citrate (BD, USA) from a healthy adult volunteer free of aspirin or other
drugs that could bias the results. The blood was taken specifically for this study. After 6 d of
culture, the culture medium was washed away with phosphate buffer saline and whole blood
was circulated for 24 h, during which it was replenished three times. The patency of artificial
vascular networks was observed by the alteration of flow rate. The tissue mimics were fixed
after 24 h of whole-blood circulation and 10-μm sections were prepared for macroscopic
images and hematoxylin and eosin (H&E) staining.

Results

Optimal Design of the Fluidic Network System based on the Oxygen
Transport Simulation
As the number of bifurcations in the 3D fluidic network increased, the oxygen distribution (Fig
3a and 3b) became increasingly uniform, and calculated resident cell volume decreased and
non-hypoxic volume increased (Fig 3c); 96.5% of the cell resident volume became non-hypoxic
at “Bifurcation: 4”. Thus, further bifurcation was judged to be unnecessary and “Bifurcation: 4”
was selected as the model for scaffold fabrication.

Scaffolds with Inner-layered Fluidic Network
Porous scaffolds with 3D fluidic network were successfully fabricated using the combination of
indirect-SL technology and salt leaching. Because the PCL and salt were mixed in the same
ratio as in the previous study [8,31], we assumed that the porosity and hydraulic permeability
of the scaffold except the fluidic network part are 67 ± 2.9% and 1.51 ± 0.074 × 10−12 m2,
respectively. Pores were formed in the spaces occupied by sodium chloride crystals. Although
the sodium particles were sieved through a 300-μmmesh, the pores sizes are irregular as
shown in Fig 4c. This is the inherent limitation of salt leaching method. Channels were success-
fully fabricated at each bifurcation (Fig 4a) and the measured diameters were 150 μm ~ 210 μm
less than the designed diameters (Table 1) due to shrinkage of the 3D fluidic network mold
during collagen coating. The micro-CT image shows the bifurcating channels in the porous
scaffold (Fig 4b). Because the plane of bifurcation varies with position, the representative
image was taken from the “Bifurcation:4”model. The channel lumens were covered with thin
collagen layers and the pores were unexposed on the lumen (Fig 4c). FT-IR spectra (Fig 4d) of
films show the N-H stretching vibration (3330–3310 cm-1) that is the major characteristic peak
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Fig 3. Evaluation of the 3D fluidic network based on an oxygen transport simulation. (a) Designs of 3D fluidic
network, (b) simulated distribution of oxygen concentration in Bifurcation:4, and (c) simulated changes in cell resident
volume and non-hypoxic volume according to the number of bifurcations.

doi:10.1371/journal.pone.0156529.g003
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Fig 4. Porous scaffold containing inner-layered 3D fluidic network. (a) Cross sections acquired at the dashed lines, (b)
bifurcating channels at the 1st bifurcation, (c) fluidic network with collagen inner layer, (d) FT-IR spectrums of raw and processed
collagen films.

doi:10.1371/journal.pone.0156529.g004

Table 1. Designed and Fabricated Channel Diameters.

0 bifurcation 1st bifurcation 2nd bifurcation 3rd bifurcation 4th bifurcation

Designed diameter [mm] 2 1.59 1.26 1 0.79

Fabricated diameter [mm] 1.85 1.38 1.02 0.79 0.57

doi:10.1371/journal.pone.0156529.t001
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of collagen, and also an amide I band (1640–1660 cm-1), an amide II (1535–1550 cm-1), and an
amide III (1230–1270 cm-1) band. Compared with the spectra of raw collagen, the peaks of pro-
cessed collagen are present at similar positions; therefore the solvents did not significantly
denature it during the fabrication process.

Engineered-Tissue Containing Vascular Networks
To develop artificial vascular networks from the fluidic networks, endothelization on the lumi-
nal surface was attempted. The collagen layer was assumed to have two functions on the lumi-
nal surface. First, the collagen layer can improve endothelization [32]. PCL, which is the
material of the porous scaffold, is hydrophobic and lacks active sites for biomolecule immobili-
zation and cell attachment. A collagen layer on the PCL surface can improve the initial cell
attachment and promote formation of a confluent endothelial layer. Second, the collagen layer
can prevent endothelial cell migration from the luminal surface into the porous scaffold. The
pore size of the scaffold is ~300 μm, whereas the size of endothelial cell is ~10 μm; therefore,
cells could infiltrate and migrate through pores on the luminal surface when cell suspension is
injected into the fluidic network for seeding. The collagen layer can be a barrier between endo-
thelial cells and porous scaffold.

After 6 d of perfusion culture most endothelial cells were on the luminal surface, whereas
fibroblasts were distributed in the porous scaffold region (Fig 5a–5c). Some endothelial cells
were present in the porous scaffold region (Fig 5d), possibly due to overflow of cell suspension
during the injecting process or leakage through holes of the collagen layer. Stained image (Fig
5e) from the cross section of the 3D vascular network shows a similar cell distribution on the
luminal surface. Because of the opacity of PCL, the formation of adherence junctions between
endothelial cells in the form of 3D border lines could not be seen easily, but the VE-Cadherin
staining from the cross section of 3D vascular network shows evidence of an endothelial cell
lining with intracellular junctions (Fig 5f), which defines the endothelial barrier functions
[33,34].

Functions of Vascular Networks in Tissue Mimics
To directly investigate whether hypoxia induced cell death, we compared the percentages of
apoptotic cell death and hypoxic cells in two separate areas, Rlumen and Rscaffold in the cross sec-
tions at the 1st bifurcation. Rlumen and Rscaffold were defined as the area within and outside 1
mm from the channel lumen, respectively. The percentage of apoptotic cell death significantly
increased to 41.2% in Rscaffold where the ratio of hypoxic cell was 78.2% (Fig 6).

During whole-blood perfusion, the chamber containing tissue mimics without collagen
layer (VNnon-collagen layer) filled with bubbles soon after perfusion and the flow rate became
extremely slow, but the chamber containing tissue mimics with collagen layer (VNcollagen layer)
started to fill with bubbles after 24 h (images are not shown). Macroscopic pictures of cross sec-
tions of VNnon-collagen layer and VNcollagen layer demonstrate that the channels of VNnon-collagen layer

started to be occluded at the 1st bifurcation and were almost occluded at the 2nd bifurcation
(Fig 7a and 7b). In contrast, the channels of VNcollagen layer were perfectly patent at the 1

st bifur-
cation and half of channels were patent even at the 3rd bifurcation (Fig 7d and 7e). H&E stain-
ing images definitely reveal that the occlusion was caused by red blood cells, which are the
primary factors of thrombosis (Fig 7c and 7f). The formation of bubbles during perfusion was
assumed to be induced by blood flowing thorough the micropores in the scaffolds instead of
through the occluded channels.
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Discussion
We have performed a series of studies to develop tissue mimics containing functional vascular
networks which are designed based on oxygen transport simulation [8,31]. First, the effective

Fig 5. Tissue mimics containing vascular networks. (a) Distributions of HUVEC and HLF separated by collagen layer in the 2D
vascular network model, (b) magnified image of (a) at the position indicated by blue square, (c) HUVEC and HLF separated by collagen
layer, (d) HUVEC and HLF mixed near lumen without collagen layer, (e) HUVEC and HLF separated by collagen layer in the 3D
vascular network model, (f) endothelial cell lining with adherens junction.

doi:10.1371/journal.pone.0156529.g005
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Fig 6. Correlation of ratios of hypoxic cells and apoptotic cell death.Ratios of hypoxic cells in (a) near lumen (Rlumen) and
(b) in the scaffold region (Rscaffold), ratios of apoptotic cell death (c) near lumen (Rlumen) and (d) in the scaffold region (Rscaffold),
(e) quantified result from (a)-(d), *P<0.05.

doi:10.1371/journal.pone.0156529.g006
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diffusion coefficient in a cell-seeded scaffold was experimentally measured [31]. Then a proce-
dure to design an effective fluidic network system for an engineered tissue was proposed based
on the coefficient[8]. And the reliability of the procedure was demonstrated by experiments
using scaffolds containing the 2D microfluidic network system. Herein, we eventually devel-
oped a large-volume scaffold containing 3D functional vascular network that allows stable
mass transport within the scaffold. This study not only adapts our strategy to design effective
fluidic network based on numerical analysis in 3D, but also shows the technical development
to construct tissue mimics containing endothelium as artificial vascular networks. Contrary to
other reports[13,19], cells were repopulated after completing the fabrication process due to the
use of NaOH solvent for removing the sacrificial mold. However, the results demonstrated that
cells could be evenly repopulated in the large-volume scaffold with vacuum-aided seeding[31],
and that spatially-distinct endothelium could be formed on the lumen of the porous monolithic
structure. Moreover, the technology can fabricate 3D channels with various branching patterns
and angles, can use a wide range of biomaterials, from synthetic polymers to natural polymers,
and can be combined with other technologies such as gas foaming and phase inversion to form
micropores in the scaffold.

In our previous study[8], the distance from the surface exposed to medium to the point at
which pimonidazole staining first occurred was 1.2mm. This value was set to be the limit of
non-hypoxic area and the volume of a cylindrical scaffold (10 mm in diameter × 10 mm in

Fig 7. Patency of artificial vascular networks after whole-blood circulation.Occluded channels of VNnon-collagen layer at the1
st

bifurcation (a) and the 2nd bifurcation (b), perfectly open (d) and partially open (e) channels of VNcollagen layer at the1
st bifurcation and

the 3rd bifurcation, respectively (The red arrows indicate the occluded channels), H&E image of VNnon-collagen layer showing the
thrombus consisting of red blood cells, (c) and H&E image of VNcollagen layer showing patent channel (f) at the 3rd bifurcation.

doi:10.1371/journal.pone.0156529.g007
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length) was determined to exceed this limit as well as to be close to the maximum volume
which can be fabricated with our current system. Highly branched fluidic networks can densely
pervade a region, but the increase in channel volume is accompanied by a decrease in cell resi-
dence volume in a scaffold [8]. Moreover, decreasing channel width increases the risk of
thrombus formation when the network is surgically connected to the host vasculature and
blood flows through the channel in vivo. Therefore the design of 3D vascular networks was
determined from the aspect of compromise between mass transfer efficiency and volume loss/
thrombogenic potential. In this study, the thinnest channel diameter was designed as 790 μm
(fabricated result: 570 μm), but the previous study on the development of indirect-SL technol-
ogy [23] suggests that channels with diameters of several tens of microns (i.e., the size of an
arteriole) could be easily fabricated with this technology. And the data regarding GPC and
mechanical properties of PLGA scaffolds fabricated by the indirect SL technology showed no
significant changes in biomaterial properties [23]. Considering PCL degrade more slowly due
to the presence of five hydrophobic–CH2 moieties in its repeating unit, we expect that the fab-
rication procedures do not significantly affect the mechanical properties of PCL as well.

The significant increase of apoptotic cell death in Rscaffold represents that the cell death was
induced in response to hypoxia. However, although the percentage of hypoxic cells was 78.2%
in Rscaffold, the percentage of apoptotic cell death was only 41.2%. Severe and prolonged hypoxia
may initiate apoptosis, whereas cells often adapt to acute and mild hypoxia and survive [35]. In
this study, the positive hypoxic staining indicated that cells were alive under hypoxic condi-
tions (oxygen concentration< 14 μM) but it could reveal neither the severity nor duration of
hypoxia.

The patency of VNcollagen layer was maintained distinctly longer than VNnon-collagen layer, but
occlusion occurred after 24 h of whole-blood circulation in VNcollagen layer. This difference was
presumably caused by the absence of endothelium on the lumen and perturbed hemodynamics
in VNnon-collagen layer. The thin collagen layer plays a role as a barrier on the lumen and helps
endothelial cells to reside on the lumen rather than inside the porous scaffolds (Fig 5c and 5d).
This endothelium makes the lumen surface to be anti-thrombogenic. However, PCL exposed
on the lumen of VNnon-collagen layer is not considered to contribute to the rapid thrombosis for-
mation because it is a well-known bio-inert polymer [36]. Instead, the porous and rough sur-
face perturbed hemodynamics such as shear, collision of blood element with the wall, and
prolonged contact, which resulted in thrombus formation [37,38]. And the bubbles formed in
VNnon-collagen layer generated extremely high air-blood interfaces and aggravated thrombosis
[39]. However, the results from the whole-blood perfusion indicate that the artificial vascular
networks cannot function as long-term mass transport channels in vivo. The artificial vascular
networks must be combined with induction of microvessel formation by biomolecular cues
and vascular cells to reduce the time required for regeneration of large-scale multicellular
organs, thereby reducing the risk of thrombus formation.

This study focused on maximizing cell viability rather than specific functions by introducing
fluidic channels in scaffolds. Fibroblasts are suitable for this purpose due to the ease of han-
dling, abundant data about the metabolic properties which have been identified by researchers
[31,40]. However, further study is required to investigate the effect of oxygen transport on cel-
lular functions and potential for regenerating specific organs such as liver, lung and kidney.

Conclusion
This study demonstrated that the modification of indirect-SL technology made it possible to
construct artificial vascular networks in a porous scaffold by introducing hydrogel barrier on
the luminal surface. This fabrication technology has the advantages of indirect-SL such as
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construction of 3D freeforms, wide selectivity of biomaterials, and compatibility with various
other methods. The artificial vascular networks functioned as channels for oxygen transport,
reducing the hypoxic volume and preventing apoptotic cell death. Furthermore, the endothe-
lium of the vascular networks significantly retarded the occlusion of channels during whole-
blood circulation. As the technology matures, the tissue mimics can be used as in vitro plat-
forms to examine the physiologic and pathologic phenomena through vascular architecture.
Furthermore, incorporation of microvessel formation in response to biomolecular cues and
vascular cells, may allow large-scale formation of multicellular organs and reduce the risk of
thrombus formation.
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