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Abstract

Background: Zika virus (ZIKV) spread rapidly in the Americas in 2015. Targeting effective public health interventions
for inhabitants of, and travellers to and from, affected countries depends on understanding the risk of ZIKV
emergence (and re-emergence) at the local scale. We explore the extent to which environmental, social and
neighbourhood disease intensity variables influenced emergence dynamics. Our objective was to characterise
population vulnerability given the potential for sustained autochthonous ZIKV transmission and the timing of
emergence. Logistic regression models estimated the probability of reporting at least one case of ZIKV in a given
municipality over the course of the study period as an indicator for sustained transmission; while accelerated failure
time (AFT) survival models estimated the time to a first reported case of ZIKV in week t for a given municipality as
an indicator for timing of emergence.

Results: Sustained autochthonous ZIKV transmission was best described at the temporal scale of the study period
(almost one year), such that high levels of study period precipitation and low mean study period temperature
reduced the probability. Timing of ZIKV emergence was best described at the weekly scale for precipitation in that
high precipitation in the current week delayed reporting. Both modelling approaches detected an effect of high
poverty on reducing/slowing case detection, especially when inter-municipal road connectivity was low. We also
found that proximity to municipalities reporting ZIKV had an effect to reduce timing of emergence when located,
on average, less than 100 km away.

Conclusions: The different modelling approaches help distinguish between large temporal scale factors driving
vector habitat suitability and short temporal scale factors affecting the speed of spread. We find evidence for
inter-municipal movements of infected people as a local-scale driver of spatial spread. The negative association
with poverty suggests reduced case reporting in poorer areas. Overall, relatively simplistic models may be able to
predict the vulnerability of populations to autochthonous ZIKV transmission at the local scale.

Keywords: Zika, Environmental determinants, Public health surveillance, Social bias, Risk analysis, Logistic regression
model, Accelerated failure time survival model, Colombia

Background
Zika virus (ZIKV) has been endemic to Africa and Asia
for decades [1]. About 20% of infected people show clin-
ical manifestations, which are mostly mild (rash, low
grade fever, headache, conjunctivitis and myalgia [2]).
Severe complications including Guillain-Barré syndrome
[3, 4] and microcephaly and other presumed ZIKV-

related birth defects in children born to mothers in-
fected during pregnancy have been reported [5]. The
main mechanism of ZIKV transmission is thought to be
through Aedes mosquitoes (particularly Ae. aegypti and Ae.
albopictus), although sexual and perinatal transmission and
transmission by blood transfusion also occur [6–8].
During the new millennium the Asian strain of ZIKV

began spreading beyond its traditional range across the
Pacific Ocean. In April 2007 an outbreak was detected on
Yap Island, followed by Guam and Micronesia. From 2013
to 2014, ZIKV had spread to other Pacific islands
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including French Polynesia, New Caledonia, Cook Islands,
Tahiti and Easter Island [1]. The first autochthonous out-
break on mainland South America was detected by May
2015 in Brazil [9]. However, estimates using genetic
methods date the Brazil outbreak as starting sometime be-
tween May to December 2013 [1, 10]. From Brazil, ZIKV
spread rapidly in South and Central America and the
Caribbean. By February 2016, the World Health
Organization declared ZIKV a public health emergency of
international concern. Autochthonous transmission of
ZIKV is now reported throughout South America except
Chile and Uruguay as of January 4th, 2018 (http://ais.
paho.org/phip/viz/ed_zika_epicurve.asp).
It is not well understood why ZIKV spread rapidly

across the Americas following years of relative endemic
stability in Africa and Asia. At the international level, a
dynamic model of ZIKV transmission in the Americas
indicated that spread dynamics were driven by factors
affecting mosquito vector occurrence, abundance and
activity, and human population characteristics such as
international mobility and social status [11]. Abundance
and activity of vectors depends on climatic and other en-
vironmental factors. Precipitation influences the avail-
ability of breeding habitat and Aedes spp. abundance is
usually higher in wet seasons [12]. Temperature directly
influences vector mortality rates and activity, ZIKV de-
velopment rates within mosquitoes, and indirectly affects
vector abundance via influences on interstadial develop-
ment rates. Aedes spp. vectors of ZIKV (Ae. aegypti and
Ae. albopictus) have an approximate range of tempera-
tures suitable for reproduction and survival of at 16–35 °C
[13]. Higher temperatures shorten the duration of the
extrinsic incubation period enabling faster rates of trans-
mission [14]. Elevation is correlated with temperature
(higher elevations being cooler) but may also be a proxy
for different habitats that have more complex interactions
with mosquito survival and reproduction [15].
Human social factors may affect exposure to infected

vectors and also influence bias in case detection by sur-
veillance systems. Detection of ZIKV may be more
likely in dense populations because there may be more
availability of healthcare facilities. Poverty is associated
with higher rates of transmission of Aedes-borne patho-
gens amongst humans [16]. Poorer areas have lower
quality housing, with lack of window screens and often
more peridomestic Aedes spp. aquatic breeding habitat
leading to higher mosquito abundance and biting rates
[17, 18]. However, poorer populations may have less ac-
cess to healthcare and education for awareness and pre-
vention, resulting in lower disease detection by
surveillance programs [19, 20]. Finally, rates of popula-
tion movement will determine rates of spread of infec-
tion into pathogen-free areas [1, 21], and these rates
can be influenced by poverty [22].

Clearly the potential for, and speed of, ZIKV spread de-
pends on the abundance and activity of vectors [11, 23],
the level of human exposure and human density, global
trade and human travel [11, 24], to some extent sexual
transmission [8], and potentially the level of immunity in
the human population [25]. Given that there is no clear
evidence for ZIKV immunity [26, 27], it is likely that naive
human population immunity in South and Central Amer-
ica combined with high abundance of vectors and suitable
conditions for transmission and spread contributed to the
rapid spread of ZIKV, as observed with the emergence
and spread of chikungunya in the region [28]. The few
areas not reporting the disease likely had either habitat in-
hospitable for vectors (e.g. alpine regions) or were missed
by the surveillance system.
The objective of our study was to characterize popula-

tion vulnerability to sustained local autochthonous
transmission of ZIKV as derived from environmental, so-
cial and neighbourhood disease intensity factors. We
used two modelling approaches on the same surveillance
dataset to concentrate on the potential for autochthon-
ous transmission versus the timing of emergence. Our
analysis focused on Colombia, which suffered the second
largest outbreak after Brazil. We discuss the implications
of our dual-modelling approach for risk analysis in the
context of advising effective public health management
of ZIKV.

Methods
Study area
Colombia is geographically diverse with elevation ran-
ging from sea level to > 5000 m in the Andes, and there
are 11 Köppen climate zones [29]. In general, areas
below 1000 m are hot (> 24 °C), 1000–3000 m are tem-
perate (12–24 °C) and areas above 4000 m are typically
below 12 °C and often experience sub-zero temperatures.
The climate is suitable for Aedes species and ZIKV
transmission, except at high elevations [30, 31]. Most
Colombians live at mid-altitudes in the temperate zones.
Colombia is a developing country and while measures of
health, education and wealth are improving, there still
remains significant levels of poverty particularly in low-
lying and rural areas [32].

Surveillance data
ZIKV cases included all patients who reported symptoms
to surveillance services of Instituto Nacional de Salud
(INS), Colombian Government. Cases were then classi-
fied as suspect or confirmed cases given the INS case
definitions (for details see Additional file 1). In brief,
suspected cases were individuals presenting with a rash
and fever along with one or more clinical symptoms
consisting of non-purulent conjunctivitis, headache, pain
in body or joints, or edema in lower extremities. The
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suspected case definition also included the criteria that
the individual has come from or visited places in
Colombia below 2200 m in elevation and with confirmed
circulation of ZIKV at least 15 days prior to the onset of
symptoms, and/or countries with or without confirmed
circulation of ZIKV. Confirmed cases were individuals
who presented with clinical symptoms of ZIKV disease
and tested positive for ZIKV in laboratories affiliated
with the National Network of Laboratories, National
Institute of Health, or collaborating centers designated by
the INS. Confirmed cases also included a case definition
typically associated with probable cases to describe indi-
viduals with clinical symptoms as described above, who
had visited sites with elevations less than 2200 m in
Colombia with confirmed circulation of ZIKV in the 15
days prior to the onset of symptoms. Laboratory con-
firmed cases were cases with a positive result for ZIKV by
RT-PCR or by serological immunoassay testing [9, 33].
The case date for a patient was the week that they had
presented themselves for care at health centres [9].
In Colombia, the first case of ZIKV was detected in

the epidemiological week (EW) 41 in October of 2015
[9, 34]. Cases have since been confirmed back to EW 32
(August) of 2015 [35], and may have occurred as early as
April [11]. The Colombian surveillance system has col-
lected data on ZIKV cases at the municipal level on a
weekly basis since January 9th 2016 (http://www.ins.gov.co),
and these are the data we used for our study up to the
third week in September 2016. To contend with missing
data from 2015, we first grouped suspected with con-
firmed case data at the municipal and week levels. Sec-
ondly, if the number of reported cases was greater than
one when first reported, we back-estimated the likely date
of the first case for that municipality by assuming an ex-
ponential growth rate to the power two [36]. For example,
if 8 cases were reported at the first week, t = 0, of surveil-
lance on January 9th 2016, then there were 4 cases at week
t-1, 2 cases at week t-2, and 1 cases at week t-3.
To visually inspect for spatial patterns in reported

emergence at the municipal level for the mainland we
mapped days to first report in ArcGIS Map v. 10.5
(www.esri.com) using a GIS layer obtained from the
GADM database, version 2.8 (www.gadm.org).

Statistical models
An overview of the modelling approach is summarised
in Fig. 1 and Table 1. We used logistic regression that
accounted for serial dependence in the longitudinal sur-
veillance data and survival modelling approaches. It is
important to account for serial dependence to ensure
model output is not misleading given the assumption of
independent observations [37]. For details on model
formation and assumptions see Additional file 2, but
briefly, the logistic regression was used to estimate the

probability of ZIKV being reported in a municipality i at
week t. Except for the municipality with the index case
for the study area, at the start of the study period the
outcome was negative, y = 0, and remained at y = 0 for
each t until at least 1 ZIKV case was detected, changing
the outcome to y = 1. If an outcome was detected, the
outcome remained at y = 1 until the end of the study
period (Table 2). We consider this a valid assumption
given that most municipalities reporting ZIKV had epi-
demiological incidence curves typical of infectious dis-
eases (i.e. increase, peak, and decrease in cases over time).
Furthermore, almost 99% of these municipalities contin-
ued reporting ZIKV by the last week in the study period.
A survival regression model was used to estimate the

time t to report a first case of ZIKV in municipality i,
under the assumption that all municipalities can experi-
ence the event of reporting ZIKV. We adopted a para-
metric technique to efficiently use all of the information
we had about the observations. Assuming that the pres-
ence of the first reported case of Zika accelerates the in-
fection growth rate exponentially and then taking into
consideration that the number of cases decays within a
timeframe due to different processes [36], we modeled
the time to the first report of ZIKV in municipalities
with an accelerated failure time (AFT) model. Results
from the AFT model can be used to quantify the role of
variables in accelerating or slowing the time to the event
(i.e. first reported case at week t). The distributional
form of the baseline hazard was assessed using diagnos-
tic procedures based on Akaike’s information criterion
(AIC) and from graphical examination. The effect of
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Fig. 1 Summary of modelling approach using logistic regression
and AFT survival models
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time-dependent variables to influence the hazard over
time was accommodated by including variable observa-
tions at week t from t = 0 up to the week of the first re-
ported case as formatted for right-censored data (Table 2).

Explanatory variables
For details on explanatory variables see Additional file 2,
but briefly, environmental variables explored were those
that are known determinants of vector abundance and ac-
tivity, as well as ZIKV development rates in mosquitoes. A

vector environmental suitability variable came from a pre-
viously developed composite measure of Aedes spp. vector
habitat and arbovirus transmission suitability at a 5
km resolution [31]. Total and weekly study period
precipitation variables were derived at 0.1 degree latitude/
longitude resolution from Integrated Multi-satellitE
Retrievals for GPM (IMERG) from NASA [38]. Study
period and weekly mean surface daytime and nighttime
temperature variables were derived at 0.05 degree latitude/
longitude resolution from Moderate Resolution Imaging

Table 1 Summary of modelling approach given variables, their structure and hypothesized effects

Model variables Temporal
scale

Municipal-level observations at
temporal scale for n weeks of the
outcome variable given model type
and data structure defined in Table 2

Hypothesized effect

Environmental Mean study period temperature,
Ts (°C)

Study
period

Ts, Ts, Ts, …Ts Vector habitat suitability

Mean weekly daytime temperature,
Td (°C)

Weekly Td1, Td2, Td3, …Tdn Vector reproductive and survival rates;
Viral extrinsic incubation period (EIP)

Mean weekly nighttime temperature,
Tn (°C)

Weekly Tn1, Tn2, Tn3, …Tnn Vector reproductive and survival rates;
Viral generation time

Total study period precipitation
(mm), Ps

Study
period

Ps, Ps, Ps, …Ps Vector habitat suitability

Total weekly precipitation (mm), Pw Weekly Pw1, Pw2, Pw3, …Pwn Vector reproductive rate

Mean Elevation (m), E Study
period

E, E, E, …E Vector reproductive and survival rates;
EIP

Mean vector environmental
suitability, V

Study
period

V, V, V, …V Vector habitat suitability;
Vector reproductive and survival rates;
EIP;
Human exposure in urban versus rural areas

Social Population density per km2, D Study
period

D, D, D, …D Detection (higher population linked to
more case investigations)

Unsatisfied Basic Needs
(% population), U

Study
period

U, U, U, …U Exposure related to housing quality;
Access to health centres

Inter-municipal road connectivity, Rc Study
period

Rc, Rc, Rc, …Rc Local movement of people to spread ZIKV

Road density per km2, Rd Study
period

Rd, Rd, Rd, …Rd Local movement of people to spread ZIKV

Neighbourhood
disease intensity

Nearest infected municipality
(km), Nn

Weekly Nn1, Nn2, Nn3, …Nnn Controls for areas with autochthonous ZIKV
transmission

Proportion of neighbouring
municipalities reporting ZIKV, Np

Weekly Np1, Np2, Np3, …Npn Controls for areas with autochthonous ZIKV
transmission

Table 2 Example structure of the serial outcome variables used in the logistic regression and the accelerated failure time (AFT) models
as derived from the 48 week ZIKV surveillance data for a positive outcome (y = 1), negative outcome (y = 0), or right-censored data

Modelling approach Possible outcome, y Weeks of study period

1 2 3 4 5 6 … 48

Logistic regression Index case 1 1 1 1 1 1 … 1

First case detected in week 3 0 0 1 1 1 1 … 1

No cases detected 0 0 0 0 0 0 … 0

AFT model Index case 1 – – – – – … –

First case detected in week 3 0 0 1 – – – … –

No cases detected 0 0 0 0 0 0 … 0
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Spectroradiometer (MODIS) [39]. Elevation data came
from a 90 m resolution digital elevation model [40].
Social variables were considered as determinants of

ZIKV transmission within and between municipalities.
Data for municipal population size were available from the
Colombian Government (DANE; http://www.dane.gov.co)
and were converted to densities using municipal areas.
Our measure of poverty was the percentage of the munici-
pal population with unsatisfied basic needs (UBN). UBN is
a common poverty metric for Latin America [32, 41] and
was available from the Departamento Administrativo
Nacional de Estadística (DANE: http://www.dane.gov.co).
Municipal road density was considered a measure of
human connectivity within a municipality, and obtained
from the Center for International Earth Science
Information Network (CIESIN) [42]. We used the same
road network dataset to calculate a measure of inter-
municipal connectivity as the number of roads entering/
leaving the municipality.
Neighbourhood infection intensity variables controlled

for the spatial distribution and temporal progression of
cases reported in municipalities. The rate at which
municipal populations become infected likely depends
on their proximity to ZIKV-affected areas. We tested
two variables to represent proximity to other infected
municipalities at time t as distance (km) to the nearest
infected municipality, and the proportion of infected
neighbouring municipalities. These variables were cre-
ated using the imputed surveillance data, in that, once a
municipality had reported ZIKV it was assumed to
remain a source of ZIKV over the course of the study
period. In the logistic regression models we accounted
for the temporal progression of ZIKV by including a
categorical variable for week of reporting as a proxy for
the growth rate of infection in the population.

Model building
Missing values in the MODIS temperature data
(approximately 10%) were imputed using a two-step
approach (see Additional file 2). For the logistic model,
the variables were centred by their mean and then scaled
to remove collinearity and to ensure that the regression
coefficient estimates were on the same scale. For the
AFT model, the variables were rescaled, as appropriate,
to have meaningful baseline hazards by subtracting the
minimum value from each observation. We derived the
functional form of the variables with the response vari-
able of the respective model and verified that they did
not violate model assumptions of linearity. We examined
all pairwise correlations among predictor variables.
Highly correlated variables (Pearson’s r ≥ 0.5) were not
included in the same multivariable model.
We built multivariable models to investigate the role

of environmental, social and neighbourhood disease

intensity variables. This included assessing for different
temporal scales of temperature and precipitation data
(e.g. study period mean, current and weekly time lags)
Also, we tested for interacting effects between poverty and
each of our connectivity metrics which could indicate that
underreporting in poorer areas results from less road
infrastructure and/or reduced mobility of infected people
into these areas.

Model selection and validation
We selected our best logistic and AFT models using a
forward stepwise process given the criteria of retaining
statistically significant variables (P-values from the t-test
and Wald test of the individual coefficients of the logis-
tic and AFT models respectively), minimising AIC and
maximising model parsimony (i.e. when competing
models were within 2 AIC of each other we selected the
more parsimonious model), and conforming to the
assumptions of parametric modelling. For the logistic
regression we calculated the predictive ability of the best
selected model using the receiver operating characteris-
tic (ROC) area under the curve (AUC) in R using
package ROCR. The AUC value indicated the ability of
the model to correctly classify the observed outcomes:
0.9–1.0, excellent; 0.8 to < 0.9, good; 0.7 to < 0.8, fair;
0.6 to < 0.7, poor; 0.5 to < 0.6, fail [43]. The AFT model
was validated by verifying that the residuals conformed
to the parametric distribution and by using a 10-fold
validation method to check model accuracy (Additional
file 3).

Predicting population vulnerability to ZIKV emergence
Our best logistic regression model was used to map
population vulnerability to sustained autochthonous
transmission of ZIKV as the relative probability of
reporting ZIKV given environmental and connectivity
variables. This provides an estimate of the general
vulnerability irrespective to the space-time progression
of the disease and reporting biases associated with
poverty. Model predictions were calculated for a
hexagonal grid of the median area of Colombia munici-
palities (275 km2) to show population vulnerability at
a homogeneous spatial scale. ArcGIS Map v. 10.5
(www.esri.com) was used for all mapping.
To help interpret the effects of variables retained in

the best AFT model on the timing of a first case of ZIKV
being reported, we plotted the acceleration of time to
infection over the range of variable values, while holding
constant the other variables at their median value for
the study period (except for the proportion of neigh-
bouring municipalities reporting ZIKV, which we held
constant at 0.5). We used the acceleration of time-to-
the-event to interpret the role of the variable to acceler-
ate or delay the timing of the first case, given the range
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of variable values. Variable values have an effect to in-
crease time to the first report when the acceleration fac-
tor (AF) value is ≥ 1 and decrease time to the first
report when the AF is < 1.

Results
Surveillance data
We identified three spatially distinct locations on
October 24th 2015 in the municipalities of Barranquilla,
Girardot and San José de Cúcuta from backtracking case
reports greater than 1 on January 9th 2016 (Fig. 2). We
used October 24th 2015 as the start of our study
period, which aligns well with a Pan American Health
Organization report suggesting that case incidence
began growing exponentially by approximately week
39 (i.e. October 2015) [35]. From October 24th 2015,
the number of municipalities reporting their first case
increased up to a peak in January 2016, and then de-
creased to approximately 1–2 municipalities per week

in the later epidemic phase (Fig. 3). Municipalities
with early emergence dates clustered around the early
case locations (Fig. 2). The west coast, central-north
and south-eastern regions of the country had later
emergence dates. There are also notable outliers of
municipalities that were late to report (or did not re-
port ZIKV) and were surrounded by municipalities
that reported ZIKV early, such as in the northern
part of the country by January 2016. Of the 1062 mu-
nicipalities with surveillance data, 1019 had with
complete time series of variable data available for
model building. By the end of the study period 797 of
1019 municipalities (78%) had reported a first case of
ZIKV.

Factors affecting probability of ZIKV emergence
The best performing logistic regression model (Table 3)
had an AUC = 0.91. The probability of reporting ZIKV
increased with warmer mean study period nighttime

Fig. 2 Municipalities reporting ZIKV in Colombia in 2015 up to the end of October, November, and December, as well as January 2016. Municipalities
estimated to be earliest case locations for October are outlined in red
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temperatures, higher inter-municipal connectivity, an
increasing proportion of neighbouring municipalities
reporting ZIKV, and time. The reporting probability
decreased with increasing total study period precipita-
tion, and increasing poverty, especially in areas with
lower connectivity (Additional file 3: Figure S3.1.a). See
Additional file 3 for details on model output, variable
effects and candidate models.
Our best model was used to calculate the relative prob-

ability of reporting ZIKV to identify populations vulner-
able to sustained autochthonous transmission using
variables: mean study period nighttime temperature, mean
study period total precipitation and inter-municipal con-
nectivity. The variables for UBN and reporting week were
not included (i.e. set to 0). The relative probability, as
mapped over a hexagon grid, indicates that populations
with high vulnerability to ZIKV emergence are clustered
and occur in the northern and central regions of
Colombia (Fig. 4). In visually assessing for correlations
with temperature and precipitation it appears that precipi-
tation is not a limiting factor unless it is low and occurs
congruently with low temperature, as occurs in high

alpine areas in central Colombia (Fig. 4). Connectivity
appears to help facilitate higher vulnerability in areas
where temperature and precipitation are not limiting,
which is more apparent in the eastern half of the country
(Fig. 4).

Factors affecting time to ZIKV emergence
In the best AFT model (Table 4), the environmental var-
iables, particularly elevation and precipitation, had a sig-
nificant negative impact on the time to the first reported
ZIKV case in municipalities. That is, increases in
elevation and precipitation slowed the expected time by
a factor of 1.18 (i.e. 1/acceleration factor when the accel-
eration factor is < 1) and 1.41, respectively (Fig. 5a, b).
Social determinants of ZIKV transmission also signifi-
cantly affected the time to the first report. Specifically,
an increase in the percentage of the municipal popula-
tion with UBN delayed the expected time by a factor of
1.07 (Fig. 5c), while inter-municipal connectivity acceler-
ated the expected time by a factor 1.17 (Fig. 5d). The
significant interaction of these variables indicated that
more wealthy areas reported a first case more quickly,
especially when inter-municipal connectivity was high
(Additional file 3: Figure S3.2.b). As for neighbourhood
disease intensity variables, an increase in proportion of
infected neighbouring municipalities accelerated signifi-
cantly the expected first reporting time by a factor of 2.
63 (Fig. 5e). Neighbouring infected municipalities were
associated with decreasing the time to the first report
when located, on average, within about 100 km (Fig. 5f ).
Increasing distance to the nearest infected municipality
slowed down the expected time of first report by a factor
1.12. See Additional file 3 for details on candidate
models and best model variable effects defined by sur-
vival and hazard functions.

Discussion
Public health management of ZIKV is informed by the
timely identification of vulnerable populations. In this
study we used two modelling approaches to characterize
population vulnerability as indicators for sustained

Fig. 3 The number of municipalities reporting their first case of Zika,
per week, from October 2015 to September 2016

Table 3 Parameters of the best model for the probability of reporting a first case of ZIKV in municipality i at week t

Coefficient Estimate SE t-value P-value

Intercept -12.00 0.97 -12.40 < 0.01

Mean study period temperature 4.09 0.24 16.80 < 0.01

Total study period precipitation -0.55 0.09 -5.98 0.04

UBN -0.93 0.32 -2.95 < 0.01

Connectivity 0.95 0.25 3.86 < 0.01

Proportion of neighbours reporting ZIKV 0.14 0.04 3.80 < 0.01

UBN × Connectivity -0.37 0.16 -2.38 0.02

Notes: UBN, unsatisfied basic needs; Connectivity, inter-municipal road connectivity; SE, standard error. See Additional file 3 for full model parameters and
definitions of variable functional form transformations
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Fig. 4 Population vulnerability to ZIKV emergence as derived from the top selected model for the probability of reporting a first ZIKV case.
The mapped values for the variables in the top selected model (respectively mean study period nighttime temperature, total study period
precipitation and inter-hexagon road connectivity)

Table 4 Parameters of the best model estimating time to first report of ZIKV in municipality i at week t

Variable Weight mean Coef SE(Coef) Wald P AF

Mean elevation 4.02 -0.168 0.008 < 0.01 0.85

Total weekly precipitation (term 1) -2.55 -0.323 0.028 < 0.01 0.71

Total weekly precipitation (term 2) 13.60 -0.023 0.003 < 0.01

UBN 5.98 -0.076 0.021 < 0.01 0.93

Connectivity 2.79 0.157 0.029 < 0.01 1.17

Proportion of neighbours reporting ZIKV 0.252 0.968 0.093 < 0.01 2.63

Distance to nearest municipality reporting ZIKV -1.30 -0.115 0.025 < 0.01 0.89

UBN X connectivity -0.014 0.004 < 0.01 0.99

Baseline parameters

log(scale) 3.274 0.154 < 0.01

log(shape) 0.524 0.025 < 0.01

Notes: AF acceleration factor, UBN unsatisfied basic needs, SE standard error. See Additional file 3 for definitions of variable functional form transformations
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autochthonous ZIKV transmission and timing to emer-
gence. Results from our dual-modelling approach pro-
vide insights as to the roles of environmental, social and
neighbourhood disease intensity factors on ZIKV emer-
gence patterns.
The probability of reporting ZIKV was higher at warm

temperatures and the timing to its detection was faster
at lower elevations. Elevation is correlated with tem-
perature (lower elevations being warmer) but may also
be a proxy for different habitats that have more complex
interactions with mosquito survival and reproduction
[15]. Warmer regions support larger vector populations
via shorter vector generation times, and higher survival
rates as well as shorter virus generation times resulting
in higher rates of infective bites [13, 14, 44]. Nighttime
temperature was a better predictor for ZIKV emergence
than daytime temperature. In Colombia, nighttime
temperatures drop below the suitable range for Aedes
species reproduction and survival of 16–35 °C more
often than daytime temperatures exceed this range [13].
As elevation increases, so too does the range in daily
temperature, and this has been found to negatively
impact Ae. aegypti survival and potential to transmit
dengue [15, 45]. The estimated survival and hazard

functions, given the range of elevation in Colombia,
were in close agreement with a study reporting Ae.
aegypti to be abundant up to 2200 m in Colombia
(Additional file 3: Figure S3.2.c) [46].
Higher total precipitation over the study period was

associated with a decrease in the probability of reporting
ZIKV. Also, higher total weekly precipitation in the
current week delayed detection. Higher rainfall is gener-
ally linked with larger mosquito populations and disease
transmission; however, the effects of rainfall are exerted
through complex pathways [47, 48]. For example, in a
laboratory setting lower precipitation reduced larval
survival more acutely at higher temperatures for Ae.
albopictus [44]. The relationship between rainfall and
Aedes spp. abundance can be obscured if containers pro-
viding larval habitat are covered and managed by people,
thus, independent of rainfall [49, 50]. Decreased rainfall
can lead to people filling storage containers and provid-
ing more mosquito breeding habitat [50, 51] while heavy
rainfall can flush and destroy breeding habitat [52]. We
would expect many of these factors to be detected as
time-lagged effects for precipitation, given their potential
to influence future mosquito population abundance [20].
The main effect of precipitation (when assessed on a

Fig. 5 The accelerated failure times predicted by the best model during the period of October 24th 2015 to September 17th 2016 for the effects
of municipality elevation (m) (a), total weekly precipitation (mm) (b), percentage of municipal population with unsatisfied basic needs (UBN) (c), inter-
municipal connectivity (d), proportion of neighbouring municipalities reporting ZIKV (e), and nearest municipality reporting ZIKV (km) (f)
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weekly time-scale) was essentially an immediate rather
than a time-lagged effect. Therefore, we may be detect-
ing an effect of rainfall on human behaviour, in that, ill
people are less likely to travel to health centres when it
is raining. This is the most likely explanation as the ob-
served association was between precipitation during the
week of reporting which would not have had time to im-
pact ZIKV transmission via effects on mosquito
reproduction or activity.
The role of poverty on vector-borne disease dynam-

ics is also complex [53]. Impoverished areas have
been linked to higher disease incidence [16, 18]. Poor
quality services, such as insufficient plumbing, lead to
water storage containers and more standing water
providing greater breeding habitat and consequently
higher vector abundance [17]. Further, poor quality
housing, such as broken or absent screens on win-
dows, can increase human exposure [54]. However,
we observed a negative relationship between poverty
level and detection of ZIKV, and time to the first re-
ported ZIKV case. It may be that poor areas have
more limited access to health centres, and thus fewer
people are reporting suspect cases for investigation
[19]. Inter-municipal connectivity can also be a proxy
for infected people spreading infection (i.e. small-scale
human movements) [55]. In our statistical models we
found evidence that lower inter-municipal connectiv-
ity in poor areas reduces the detection of ZIKV, and
increases the time to the first reported case given the
significant interaction between the connectivity and
poverty variables. Poorer areas may also have lower
access to education highlighting the presence of the
epidemic, and the need to report suspect cases [20].
We do not suggest that poorer areas are less vulner-
able to sustain autochthonous transmission than
wealthy areas, though further studies are needed to
determine the mechanism(s) behind the negative asso-
ciation we detected.
Through our dual-modelling approach we detected

different aspects of the emergence dynamics as
reflected through the temporal scales of the environ-
mental variables retained in the best models. The logis-
tic regression approach detected the influence of
temperature and precipitation over longer-term (study
period mean) rather than shorter-term (weekly and
lagged means) time scales. Using mean environmental
data from across the study period is likely better at de-
fining areas of habitat suitability and vector occurrence
than short time-scale trends, as also found for an index
of Aedes spp. vector habitat and arbovirus transmission
suitability [31]. Even if weekly temperature and precipi-
tation are suitable for vectors over short periods, condi-
tions likely need to be sustained year-round for vectors
to survive. Conversely, the AFT best model retained the

shorter-term total weekly precipitation variable rather
than total study period precipitation, although, as de-
scribed above, the effect of precipitation was likely on
human behaviour. The survival model also provides a
reference value for the distance (within 100 km) over
which infected municipalities may most likely influence
the timing of ZIKV emergence. This result underlines
the importance of having effective surveillance systems
that can use detection of disease in one location to act
as early warning indicators for nearby populations.
Maps of estimated population vulnerability in coun-

tries newly affected by ZIKV can guide surveillance and
target prevention and preparedness strategies. Using the
logistic regression model we estimated the population
vulnerability to sustained autochthonous transmission of
ZIKV given our long-term temperature and precipitation
covariates, and road connectivity. We did not include ef-
fects of poverty because we think its effect was mostly
driven by underreporting rather than impacts on trans-
mission. Also we did not account for the spatial progres-
sion of ZIKV, though this can be useful for management
preparedness if the goal is to estimate population
vulnerability relative to locations of index cases or areas
at high risk to disease importation. Whether our model
can be generalised to other tropical and sub-tropical
countries remains to be studied. However if it can, our
approach may have the ability to predict vulnerability of
ZIKV infection at a local scale more widely in Central
and South America.
Study limitations arise from the quality and avail-

ability of surveillance data. The spatial progression of
ZIKV through Colombian municipalities is mostly
clustered but there are notable outliers. Municipalities
in which ZIKV was not detected could be the result
of (i) inadequate surveillance (false negatives from
asymptomatic or sub-clinical infections, underreport-
ing when clinical infections were missed, misdiagnosis
with other diseases) [2, 56, 57]; (ii) virus absence
where ZIKV transmission is possible (true negatives);
or (iii) virus absence where ZIKV transmission is not
possible, such as in areas of high elevation with sub-
zero temperatures (true negatives). To reduce error
from inadequate surveillance we grouped suspected
and confirmed ZIKV cases. Suspected case data have
been used to reliably represent ZIKV dynamics [58].
Yet, we may have overestimated the effect of the vari-
ables retained in our models if suspected cases were
misdiagnosed from co-circulating dengue and
chikungunya [56, 57]. We expect this error to be low
given that INS diagnostic protocols tested for these
diseases if they were known to be circulating in areas
where the patient lived or had visited.
We were also limited by not having surveillance data re-

ported prior to January 9th, 2016. Surveillance data are
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available from the Pan American Health Organization at the
website http://www.paho.org/hq/index.php?options=com_
content&view=article&id=12390&Itemid=42090&lang=en),
but exist at the country level. We backtracked case counts
retrospectively for municipalities with counts greater than
1 on January 9th, 2016 assuming cases doubled weekly
[36]. Our assumption may fail in areas where transmission
dynamics do not follow this exponential growth rate, as
could be caused by very high or low rates of movement of
infected people [55]. Even if we had available surveillance
data prior to 2016, these earlier data had higher rates of
underreporting from areas where ZIKV circulation had
yet to be confirmed and suffered from changing diagnostic
protocols [59, 60]. Also, under-reporting is commonplace
in disease surveillance when an estimated 80% of cases are
asymptomatic [2]. The first reported case in a municipality
is unlikely to be the first actual case given the true number
of infections. However, the difference in timing for the
actual first case occurring in Colombia and the detection
of the first cases by surveillance is expected to be longer,
than the time lag between a first case in a municipality
and detection of cases by surveillance after the ZIKV
outbreak had been recognised and surveillance sys-
tems alerted.
All of these issues could affect the coefficients of vari-

ables in the final models. However, it would be expected
that these issues would affect all locations equally (with
inter-municipality variations in reporting rates being
largely accounted for by the poverty metric), and while
the precise coefficient values would be different if all
cases were captured, the variables identified as signifi-
cant, and their relative importance as determinants of
local vulnerability, should be robust.

Conclusions
Public health management of ZIKV has been chal-
lenged by the rapid spread of this disease through
the Americas. We present a quantitative approach
using two modelling frameworks that are relatively
easy to implement and interpret. The logistic regres-
sion and AFT models focused on different aspects of
the emergence dynamics. The logistic regression
model detected variables associated with environ-
mental suitability for vector abundance and ZIKV
transmission, while the survival model detected
finer-scale processes affecting the timing of emer-
gence. We suggest effective management of ongoing
and future ZIKV infection will benefit from being
able to both geo-locate areas of at risk for sustained
autochthonous transmission, and predict the timing
of emergence in the vulnerable areas. Therefore, lim-
ited public health resources can be focused more ac-
curately on high risk locations and times.
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