Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2,9-Dimethyl-1,10-phenanthroline$\kappa^{2} N, N^{\prime}$)diiodidocadmium

Ismail Warad, ${ }^{\text {a }} \ddagger$ Ahmed Boshaala, ${ }^{\text {a }}$ Saud I. AI-Resayes, ${ }^{\text {a }}$ Salem S. AI-Deyab ${ }^{\text {b }}$ and Mohamed Rzaigui ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Chemistry, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, ${ }^{\text {b }}$ Petrochemical Research Chair, College of Science, King Saud, University, Riyadh, Saudi Arabia, and ${ }^{\text {c }}$ Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
Correspondence e-mail: mohamedrzaigui@yahoo.fr

Received 5 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.047 ; w R$ factor $=0.127 ;$ data-to-parameter ratio $=45.3$.

In the title compound, $\left[\mathrm{CdI}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$, the molecule sits on a crystallographic twofold axis. The coordination sphere of the $\mathrm{Cd}^{\mathrm{II}}$ atom is built of two symmetry-equivalent N atoms of one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and two symmetry-equivalent I atoms, thus forming a distorted tetrahedral geometry. Inversion-related molecules interact along the c-axis direction by $\pi-\pi$ stacking interactions between the phenanthroline ring systems, with centroid-centroid distances of 3.707 (9) and 3.597 (10) A.

Related literature

For coordination chemistry of phenanthroline derivatives and their applications, see: Miller et al. (1999); Bodoki et al. (2009); Kane-Maguire \& Wheeler (2001); Shahabadi et al. (2009). For related structures involving 2,9-dimethyl-1,10-phenanthroline, see: Alizadeh et al. (2009); Preston \& Kennard (1969); Wang \& Zhong (2009). For background information on $\pi-\pi$ stacking interactions, see: Janiak (2000).

\ddagger Current address: Department of Chemistry AN-Najah National University PO Box 7, Nablus Palestine Territories.

Experimental

Crystal data
[$\mathrm{CdI}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$]
$M_{r}=574.46$
Monoclinic, C2/c
$a=15.690$ (3) A
$b=11.580(2) \AA$
$c=9.836$ (5) \AA
$\beta=114.65$ (4) $^{\circ}$

$$
\begin{aligned}
& V=1624.3(9) \AA^{3} \\
& Z=4 \\
& \text { Ag } K \alpha \text { radiation } \\
& \lambda=0.56087 \AA \\
& \mu=2.72 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.35 \times 0.23 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\min }=0.563, T_{\max }=0.605$
6126 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.127$
$S=1.02$
3986 reflections

3986 independent reflections 2306 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
2 standard reflections every 120 min intensity decay: none

88 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.65 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.30 \mathrm{e}^{-3}$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research project No. RGP-VPP-008.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2353).

References

Alizadeh, R., Heidari, A., Ahmadi, R. \& Amani, V. (2009). Acta Cryst. E65, m483-m484.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bodoki, A., Hangan, A., Oprean, L., Alzuet, G., Castineiras, A. \& Borras, J. (2009). Polyhedron, 28, 2537-2544.

Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Kane-Maguire, N. A. P. \& Wheeler, J. F. (2001). Coord. Chem. Rev. 211, $145-$ 162.

Miller, M. T., Gantzel, P. K. \& Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.
Preston, H. S. \& Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956-1961.
Shahabadi, N., Kashanian, S. \& Purfoulad, M. (2009). Spectrochim. Acta Part A, 72, 757-761.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, B. S. \& Zhong, H. (2009). Acta Cryst. E65, m1156.

supplementary materials

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^{\mathbf{2}} N, N^{\prime}$)diiodidocadmium

I. Warad, A. Boshaala, S. I. Al-Resayes, S. S. Al-Deyab and M. Rzaigui

Comment

Metal complexes using 1,10-phenanthroline (phen) and their modified derivative ligands are particularly attractive species for design and developing novel diagnostic and therapeutic agents that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The ligands or the metal in these complexes can be varied in an easily controlled manner to facilitate an individual application, thus providing an easy access for the understanding of details involved in DNA-binding and cleavage (Kane-Maguire \& Wheeler, 2001; Shahabadi et al., 2009). We report herein the synthesis and crystal structure of a new $\mathrm{Cd}^{\text {II }}$ complex, $[\mathrm{CdI} 2(\mathrm{dmphen})]$ (I) where dmphen $=(2,9-$ dimethyl-1,10-phenanthroline $)$.

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Cd}^{\mathrm{II}}$ cation is located on a special position $(1 / 2, y, 1 / 4)$ in a tetrahedral environment built up from two nitrogen atoms ($\mathrm{N} 1, \mathrm{~N} 1^{\mathrm{i}}$) of one dmphen bidentate ligand and two iodide ions (I1, I1 ${ }^{\mathrm{i}}$), [(i): $\left.1-x, y, 1 / 2-z\right]$.

Geometrical analysis of the bond lengths and angles around the cadmium atom, $\mathrm{Cd}-\mathrm{N}=2.305$ (3) $\AA, \mathrm{Cd}-\mathrm{I}=2.691$ (1) \AA and $\mathrm{I}-\mathrm{Cd}-\mathrm{I}^{\mathrm{i}}=129.82(4)^{\circ}, \mathrm{N}-\mathrm{Cd}-\mathrm{N}^{\mathrm{i}}=73 . \mathrm{O} 5(16)^{\circ}, \mathrm{N}-\mathrm{Cd}-\mathrm{I}=112.40(8)^{\circ}$ and $\mathrm{N}-\mathrm{Cd}-\mathrm{I}^{\mathrm{i}}=107.48(8)^{\circ},[(\mathrm{i}): 1-x, y$, $1 / 2-z$], shows that the CdI2N2 is distorted. The shortest $\mathrm{Cd} \cdots \mathrm{Cd}$ distance is 6.650 (2) \AA. Similar coordination geometry around the central atom has been observed in other transition metal complexes such as $\left[\mathrm{HgBr}_{2}(\mathrm{dmphen})\right]$, (Alizadeh et al., 2009), $\left[\mathrm{ZnCl}_{2}\right.$ (dmphen) $]$, (Preston \& Kennard, 1969), $\left[\mathrm{CuCl}_{2}\right.$ (dmphen)] (Wang et al., 2009). The phenyl and pyridyl rings of dmphen ligand are planar with a mean atomic deviation of $0.011 \AA$ and $0.013 \AA$ respectively. The C-C bonds of the two methyl groups are positioned close to the benzene ring plane since the $\mathrm{C} 7-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$ and $\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angles are $-179.3(4)^{\circ}$ and $-179.5(5)^{\circ}$ respectively.

In the crystal packing the complex molecules are linked together by intermolecular $\pi-\pi$ stacking interactions between the pyridyl N 1 C 5 C 4 C 3 C 2 C 1 (of centroid $C g 1$) and phenyl $\mathrm{C} 5 \mathrm{C} 4 \mathrm{C} 6 \mathrm{C} 6{ }^{\mathrm{i}} \mathrm{C} 4{ }^{\mathrm{i}} \mathrm{C} 5^{\mathrm{i}}$ [symmetry code: (i) $1-x, y, 1 / 2-z$] (of centroid $C g 2$) rings. The centroid-centroid distances between $C g 1 \cdots C g 2^{i i}$ and $C g 2 \cdots C g 2^{i i}$ [symmetry code: (ii) $1-x,-y, 1$ $-z$] are 3.707 (9) and $3.597(10) \AA$ respectively, which is less than the $3.8 \AA$ maximum value regarded as relevant for $\pi-\pi$ interactions (Janiak, 2000).

Experimental

A mixture of 2,9-Dimethyl-1,10-phenanthroline ($50.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) in dichloromethane (5 ml) and CdI2 ($87.9 \mathrm{mg}, 0.24$ $\mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ was placed in a round bottom flask and stirred for 4 h at room temperature. The solution was concentrated to about 1 ml under reduced pressure. Addition of 40 ml of n -hexane caused the precipitation of white powder, which was filtered and then dried under vacuum to 108 mg (yield 94% based on Cd). The crystal was grown by slow diffusion of diethyl ether into a solution of the complex in dichloromethane.

supplementary materials

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}\left(\mathrm{C}_{\text {methyl }}\right)$.

Figures

Fig. 1. An ORTEP (Burnett \& Johnson, 1996) view of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Symmetry codes: (i) $-x, y, 1 / 2-z$]

Fig. 2. A view of the crystal packing of (I) showing the intermolecular $\pi-\pi$ stacking interactions.

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)diiodidocadmium

Crystal data

$\left[\mathrm{CdI}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$	$F(000)=1056$
$M_{r}=574.46$	$D_{\mathrm{x}}=2.349 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $C 2 / c$	$\mathrm{Ag} K \alpha$ radiation, $\lambda=0.56087 \AA$
Hall symbol: -C 2 yc	Cell parameters from 25 reflections
$a=15.690(3) \AA$	$\theta=9-11^{\circ}$
$b=11.580(2) \AA$	$\mu=2.72 \mathrm{~mm}^{-1}$
$c=9.836(5) \AA$	$T=293 \mathrm{~K}$
$\beta=114.65(4)^{\circ}$	Prism, colorless
$V=1624.3(9) \AA^{3}$	$0.35 \times 0.23 \times 0.19 \mathrm{~mm}$
$Z=4$	

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube graphite
non-profiled ω scans
Absorption correction: multi-scan

2306 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-26 \rightarrow 25$
$k=-2 \rightarrow 19$
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.563, T_{\text {max }}=0.605$
6126 measured reflections
3986 independent reflections
$l=-3 \rightarrow 16$
2 standard reflections every 120 min
intensity decay: none

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.127$
$S=1.02$

3986 reflections
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.056 P)^{2}+2.6748 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
88 parameters
0 restraints
$\Delta \rho_{\max }=1.65 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.30$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Cd1	0.5000	$0.30673(3)$	0.2500	$0.04219(11)$
I1	$0.63145(2)$	$0.40526(3)$	$0.49576(4)$	$0.06297(13)$
N1	$0.4331(2)$	$0.1468(3)$	$0.3059(3)$	$0.0385(6)$
C1	$0.3676(3)$	$0.1493(4)$	$0.3594(4)$	$0.0456(8)$
C2	$0.3328(3)$	$0.0468(5)$	$0.3921(5)$	$0.0547(10)$
H2	0.2873	0.0495	0.4293	0.066^{*}
C3	$0.3655(3)$	$-0.0567(4)$	$0.3697(5)$	$0.0546(11)$
H3	0.3436	-0.1246	0.3943	0.066^{*}
C4	$0.4325(3)$	$-0.0616(3)$	$0.3093(4)$	$0.0470(9)$
C5	$0.4652(2)$	$0.0441(3)$	$0.2803(4)$	$0.0375(7)$
C6	$0.4684(4)$	$-0.1672(4)$	$0.2796(5)$	$0.0571(11)$
H6	0.4478	-0.2370	0.3017	0.069^{*}
C7	$0.3344(3)$	$0.2640(5)$	$0.3834(6)$	$0.0615(12)$
H7A	0.3819	0.2997	0.4698	0.092^{*}

H7B	0.2782	0.2548	0.3988	0.092^{*}
H7C	0.3215	0.3116	0.2972	0.092^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.0423(2)$	$0.03666(19)$	$0.0490(2)$	0.000	$0.02046(17)$	0.000
I1	$0.0659(2)$	$0.0604(2)$	$0.0597(2)$	$-0.02133(15)$	$0.02329(16)$	$-0.01232(14)$
N1	$0.0341(13)$	$0.0426(16)$	$0.0372(15)$	$-0.0004(11)$	$0.0133(11)$	$0.0038(12)$
C1	$0.0387(16)$	$0.057(2)$	$0.0416(19)$	$-0.0006(16)$	$0.0175(15)$	$0.0072(17)$
C2	$0.0426(19)$	$0.073(3)$	$0.045(2)$	$-0.010(2)$	$0.0150(17)$	$0.011(2)$
C3	$0.054(2)$	$0.058(2)$	$0.041(2)$	$-0.0205(19)$	$0.0087(17)$	$0.0072(18)$
C4	$0.053(2)$	$0.0424(19)$	$0.0335(17)$	$-0.0112(16)$	$0.0067(16)$	$0.0012(15)$
C5	$0.0385(15)$	$0.0361(16)$	$0.0292(15)$	$-0.0038(13)$	$0.0053(12)$	$0.0004(13)$
C6	$0.081(3)$	$0.0360(18)$	$0.044(2)$	$-0.0105(19)$	$0.016(2)$	$0.0021(16)$
C7	$0.059(2)$	$0.070(3)$	$0.068(3)$	$0.015(2)$	$0.039(2)$	$0.009(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

Cd1-N1 ${ }^{\text {i }}$	2.305 (3)	C3-C4	1.407 (7)
Cd1-N1	2.305 (3)	C3-H3	0.9300
Cd1-I1	2.6907 (14)	C4-C5	1.401 (5)
Cd1-I1 ${ }^{\text {i }}$	2.6907 (14)	C4-C6	1.427 (6)
N1-C1	1.337 (5)	C5-C5 ${ }^{\text {i }}$	1.447 (8)
N1-C5	1.355 (5)	C6-C6 ${ }^{\text {i }}$	1.343 (11)
C1-C2	1.399 (6)	C6-H6	0.9300
C1-C7	1.481 (6)	C7-H7A	0.9600
C2-C3	1.357 (7)	C7-H7B	0.9600
C2-H2	0.9300	C7-H7C	0.9600
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	73.05 (16)	C4-C3-H3	119.9
N1 ${ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{I} 1$	107.48 (8)	C5-C4-C3	116.9 (4)
N1—Cd1-I1	112.40 (8)	C5-C4-C6	119.8 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{I} 1^{\mathrm{i}}$	112.40 (8)	C3-C4-C6	123.3 (4)
N1-Cd1-I1 ${ }^{\text {i }}$	107.48 (8)	N1-C5-C4	122.2 (4)
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{I} 1^{\text {i }}$	129.82 (4)	N1-C5-C5 ${ }^{\text {i }}$	118.6 (2)
C1-N1-C5	119.9 (3)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\text {i }}$	119.2 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd1}$	125.3 (3)	C6 ${ }^{\mathrm{i}}-\mathrm{C} 6-\mathrm{C} 4$	121.0 (3)
C5-N1-Cd1	114.9 (2)	C6 ${ }^{\text {i }}$ - 6 - -H 6	119.5
N1-C1-C2	120.6 (4)	C4-C6-H6	119.5
N1-C1-C7	117.5 (4)	C1-C7-H7A	109.5
C2-C1-C7	121.8 (4)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
C3-C2-C1	120.1 (4)	H7A-C7-H7B	109.5
C3-C2-H2	119.9	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9	H7A-C7-H7C	109.5
C2-C3-C4	120.2 (4)	H7B-C7-H7C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9		

sup-4

$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-179.5 (4)
I1-Cd1-N1-C1	78.1 (3)
I1 ${ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-70.8 (3)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 5$	0.37 (17)
$\mathrm{I} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 5$	-102.0 (2)
I1 ${ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 5$	109.1 (2)
C5-N1-C1-C2	1.3 (6)
$\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-178.8 (3)
C5-N1-C1-C7	-179.3 (4)
Cd1-N1-C1-C7	0.6 (5)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.0 (6)
C7- $12-\mathrm{C} 2-\mathrm{C} 3$	-179.5 (5)
C1-C2-C3-C4	-1.9 (6)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.4(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$-178.6(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.6(5)$
$\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$179.5(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$178.9(4)$
$\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$-1.0(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-1.2(5)$
$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$179.8(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C}^{\mathrm{i}}$	$179.3(4)$
$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C}^{\mathrm{i}}$	$0.3(6)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$-1.8(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$179.3(5)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

