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Abstract: Consumption of fructose has been associated with a higher risk of developing obesity and
metabolic syndrome (MetS). The aim of this study was to examine the long-term effects of fructose
compared to starch from high-amylose maize starch (HiMaize) at ad libitum feeding in a juvenile Göttingen
Minipig model with 20% of the diet provided as fructose as a high-risk diet (HR, n = 15) and 20% as
HiMaize as a lower-risk control diet (LR, n = 15). The intake of metabolizable energy was on average
similar (p = 0.11) among diets despite increased levels of the satiety hormone PYY measured in plasma
(p = 0.0005) of the LR pigs. However, after over 20 weeks of ad libitum feeding, no difference between
diets was observed in daily weight gain (p = 0.103), and a difference in BW was observed only at the end
of the experiment. The ad libitum feeding promoted an obese phenotype over time in both groups with
increased plasma levels of glucose (p = 0.005), fructosamine (p < 0.001), insulin (p = 0.03), and HOMA-IR
(p = 0.02), whereas the clinical markers of dyslipidemia were unaffected. When compared to the LR diet,
fructose did not accelerate the progression of MetS associated parameters and largely failed to change
markers that indicate a stimulated de novo lipogenesis.

Keywords: miniature pigs; dyslipidemia; inflammation; gene expression; carbohydrates;
liver metabolism

1. Introduction

People in developed countries are increasingly adopting unhealthy dietary patterns
with poor quality foods based on refined carbohydrates, high levels of fats, and low in
dietary fiber (DF). Easy access to such foods, together with a lack of physical activity, has
led to an alarming rise in obesity and metabolic syndrome (MetS) [1]. Not only adults
suffer from an increased prevalence of obesity, but also childhood obesity that has almost
tripled since 1970 [2]. MetS presents complex pathophysiology characterized by abdominal
obesity, insulin resistance (IR), hypertension, dyslipidemia, which increases the risk of
developing type 2 diabetes (T2D) and cardiovascular disease (CVD) [3].

Obesity and MetS research relied so far primarily on rodent models [4], but recently
there has been an increased interest in domestic and miniature swine, a suitable model
for disease as demonstrated by the increased use of the Göttingen, Yucatan, and Ossabaw
minipig breeds [5–8]. In addition to similarities regarding genome, anatomy, and digestive
physiology, obese pigs are also closely related to obese humans due to their lack of postnatal
brown fat, similar metabolic features, cardiovascular system, comparable organ size, and
deposition of body fat [5]. Close similarities to human proteins and inflammation responses
have also been recently identified [9]. Age and gender of the animal model have an
important contribution to the metabolic response in dietary intervention studies [10].
Female minipigs are preferred due to their predisposition to increased weight gain, fat
deposition, and dyslipidemic responses compared to males [10,11]. However, animal
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models studying the onset of obesity in early life are scarce, and the longitudinal aspect
of obesity and MetS in juvenile animals has not been well assessed, particularly when
subjected to ad libitum feeding.

High-fructose corn syrup used in different pre-packaged foods, fast foods, and soft
drinks has been associated with adverse health effects such as obesity development and
altered hepatic metabolism through fat accumulation and development of non-alcoholic
fatty liver disease (NAFLD) [12–14]. Fructose is characterized by a metabolism that may
favor hepatic lipogenesis [14]. In contrast to glucose, rapid fructose phosphorylation,
and conversion to triose phosphates (glyceraldehyde, dihydroxyacetone phosphate, and
glyceraldehyde-3-phosphate), bypasses the key regulatory mechanisms of phosphofruc-
tokinase in liver glycolysis [13]. The resulting increase in lipogenic precursors can be
mobilized for de novo lipogenesis (DNL), gluconeogenesis, or oxidation pathways [15].
Epidemiological and interventional studies, however, have not been able to clearly support
the idea that fructose, compared to other energy-dense nutrients, causes more liver fat
accumulation. More likely, the observed steatotic effects of fructose are confounded by
obesity and a continuous positive energy balance [16].

The primary objective of the current study was to investigate the physiological effects
of high levels of fructose in a diet compared to similar levels of high amylose (HiMaize)
starch on obesity development and the risk for developing metabolic abnormalities. We
examined the longitudinal effects of the two diets on obesity development and changes
in specific MetS biomarkers in a young minipig model over five months of ad libitum
intake of a high-risk (HR) fructose based diet compared to a control lower-risk (LR) diet
containing the same amount of glucose from HiMaize starch, which contains digestible and
fermentable starch [17,18]. It is hypothesized that fructose, because of its metabolic effects,
will lead to a more rapid development of obesity and markers of metabolic abnormalities
of the young Göttingen Minipigs. This paper is a continuation on the study of Curtasu et al.
(2020), where samples collected from this miniature pig model were previously assessed
from a metabolomics and gut microbiota profiling perspective [19].

2. Materials and Methods
2.1. Experimental Diets

Two experimental diets were formulated with 20% of the diet provided as either
fructose in the HR diet or as digestible and fermentable starch from HiMaize in the LR
control diet (Table S1). The remaining 80% of the diets were similar and provided the
fat (35% of energy) and protein (10% of energy), and carbohydrates from starch and
fiber. The HR diet formulation resulted in a limited content of dietary fiber (DF) (5% of
energy), resembling a typical western-style diet in terms of DF content. The fat source
used in this experiment contained the following fatty acid profile: 45.1% saturated, 45.1%
monounsaturated, and 9.8% poly-unsaturated fatty acids.

2.2. Animals and Experimental Design

Experimental procedures regarding handling of animals were done in accordance with
Danish laws and regulations regarding the humane care and use of animals in research (The
Danish Ministry of Justice, Act on Animal Experiments no. 474 of 15 May 2014, as stipulated
in the executive order no. 12 or 7 January 2016) and according to licenses obtained from the
Danish Animal Experimentation Inspectorate, Ministry of Food, Agriculture and Fisheries
(Animal experiment permit: 2015−15−0201−00599). Animals were monitored closely on a
daily basis by observing the general condition and any manifestations of reduced feeding or
drinking desire, lethargy, reduced spontaneous activity, vomiting, fever, diarrhea, labored
respiration, or decreased interactions with humans and neighboring pigs. The pigs’ blood
sugar levels were monitored bi-weekly using an ear prick glucose test (Accu-Check, Roche
Diabetes Care, Inc., Indianapolis, IN, USA). Humane end-points were considered when the
condition of the animals could not be remedied by treatment within 1–3 days, the cause
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could not be clarified or if the pigs were subjected to exceeding strain. None of the animals
presented any declining health conditions and all animals completed the trial.

A total of 30 female Göttingen Minipigs (Ellegaard Göttingen Minipigs, Dalmose, Den-
mark) were delivered at 8 weeks of age in 4 separate blocks over 8 months and were kept
isolated from other pigs at the facility for the entire period of the study (Figure S1). In each
block, animals were randomly allocated to the diets and pens. Access and handling were
permitted only by wearing disposable overalls and latex gloves. For one week, paired housing
and restricted feeding of a standard Special Diet Services (SDS, Dietex International, Essex,
UK) minipig chow was used according to breeders’ recommendations, followed by gradually
transitioning to the experimental diets throughout the coming week. At the start of ad libitum
feeding with the experimental diets, animals were separated and housed individually in pens
(1.5 × 2.4 m). Wood shavings were provided as bedding, and water provided ad libitum
from drinking nipples. The animals had visible access and contact with neighboring animals
through open grilled side panels. For the current study, 15 animals per treatment were allotted
to the LR and HR diet, respectively. The feed was provided ad libitum for 20 weeks. Feed was
weighed out for 2-week periods based on estimated feed intake, and residues collected during
this period were pooled and used for calculating daily feed intake. Body weight was recorded
every second week for the first six weeks, followed by measurements every fourth week. Every
second week, length, chest circumference, and abdominal circumference of the animals were
measured. The weight of the animals before the start of dietary transition was not different
between the two assigned groups (HR, 3.03 ± 1.9 kg; LR, 3.04 ± 1.9 kg). The animals utilized
in this study were previously used for metabolomics and gut microbiota profiling by Curtasu
et al. (2020) [19].

2.3. Sample Collection

At 4, 12, and 20 weeks of the dietary intervention, animals underwent a broad sample
collection procedure. After overnight fasting (16 h) animals were put under anesthesia us-
ing 0.1 mL/kg body weight of Zolitil-mixture containing 50 mg/mL tiletamine/zolazepam
(Vibrac SA, Carros, France), 2.5 mg/mL butorphanol (Torbugesic® Vet, Scan Vet Animal
Health A/S, Fredensborg, Denmark), 12.5 mg/mL ketamine (Ketaminol Vet, Intervet Den-
mark, Skovlunde, Denmark), and 12.5 mg/mL xylazine (Rompun, Bayer Health Care AG,
Leverkusen, Germany). Blood sampling was performed from the jugular vein with the
animals in a supine position. A total of 17 mL was collected in vacutainers: 6 mL LiHep,
6 mL K3EDTA, 3 mL LiHepSep, 1 mL K3EDTA/Aprotinin inhibitor (10,000 KIU/mL
blood, Nordic Pharma Ltd., Ismaning, Bayern, Germany), 1 mL K3EDTA/DPPIV inhibitor
(Vacuette, Greiner Bio-One International, GmbH, Kremsmünster, Austria). Blood plasma
was aliquoted for separate analyses and stored at −80 ◦C after the tubes were centrifuged
(12 min at 4 ◦C, 3300 rpm).

Liver biopsy was performed by moving the animal in a left recumbent position for
liver access. The area between the first and fifth teat was shaved and disinfected with 0.5%
chlorhexidine solution in 85% alcohol (Abena A/S, Aabenraa, Denmark). Procaine (Procamidor
VET, 20 mg/mL, Richter Pharma, AG, Wels, Austria) was injected subcutaneously as a local
anesthetic. Ultrasound scanning using a 6–18 MHz linear probe (MyLabTM Five VET, Biosound
Esaote Inc., Indianapolis, IN, USA) was performed for guided assistance of the liver biopsy
and determining the location of the gallbladder to avoid puncture or damage to surrounding
tissues or organs. After a small incision of the skin (5–7 mm), 2–4 biopsies were taken to a
total amount of maximum 50 mg of liver tissue with a biopsy pistol (Pro-MagTM I 2.5, Argon
Medical Devices Inc., Frisco, TX, USA) and a 14 G × 10 cm needle (Argon Medical Devices Inc.,
Frisco, TX, USA). Following the procedure, the incision site was closed with surgical staples.
Figure S2 presents a visual illustration of the liver biopsy procedure. Afterwards, the right hind
leg was cleaned, disinfected, and locally anesthetized, similar to the liver biopsy procedure.
After a 15–20 mm skin incision, approximatively 100 mg of subcutaneous adipose tissue (SAT)
was collected for gene expression, snap-frozen in liquid N2, and stored at −80 ◦C until analysis.
Muscle tissue (50–100 mg) was collected for gene expression from the semitendinosus muscle
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with the biopsy pistol. A few drops of Streptocillin®Vet. (Boehringer Ingelheim Animal Health
Nordics A/S, København Ø, Denmark) were administered to the incision site and closed with
surgical staples. Both muscle and liver tissues were placed in sterile tubes with RNA later
(Sigma-Aldrich Co. LLC, Saint Louis, MO, USA). Fresh feces were collected from the animals
immediately after defecation as an effect of the anesthesia. Following these procedures, spot
urine samples were collected by placing absorbent tampons on the rear of the minipigs adhesive
fabric tape (Omniplast, Hartmann, Baden-Württemberg, Germany).

2.4. Analytical Methods

Freeze-dried material in duplicate was used for the chemical analysis of the diets,
as previously described [17]. Gross energy (GE) of the diets was determined on a 6300
Automatic Isoperibol Calorimeter System (Parr Instruments, Moline, IL, USA), whereas
values of metabolizable energy (ME) intake were calculated based on nutrient intake and
the energy conversion factors (FAO) for carbohydrates (17 kJ/g), protein (17 kJ/g), fat
(37 kJ/g), and total dietary fiber (8 kJ/g). LiHep plasma was used to measure concentra-
tions of the following metabolites: glucose, fructosamine, lactate, non-esterified fatty acids
(NEFA), high-density lipoproteins (HDL), low-density lipoproteins (LDL), total cholesterol
(TC), triglycerides (TG), albumin, AST (aspartate transaminase), ALT (alanine transam-
inase), and GGT (gamma-glutamyltransferase). The analysis was performed using the
ADVIA 1650 Chemistry system (Siemens Diagnostics, Tarrytown, NY, USA) according to
the manufacturer’s instructions (Siemens Diagnostics Clinical Methods for ADVIA 1650).
The same system was used for the analysis of glucose, creatinine, and total protein in
urine samples. K3EDTA plasma with aprotinin inhibitor was used for the analysis of
metabolic markers: insulin, glucagon, ghrelin (active), glucose-dependent insulin tropic
polypeptide (GIP), monocyte chemoattractant protein 1 (MPC-1/CCL2), peptide tyrosine
tyrosine (PYY), total glucagon-like peptide-1 (GLP-1), and C-peptide using a Millipore
MILLIPLEX MAP Human Metabolic Hormone bead panel kit (HMHEMAG-34K, Merck
Millipore, Merck KGaA, Darmstadt, Germany). K3EDTA plasma was used to measure
interferon gamma (IFN-γ) and several interleukins (IL-2, IL-4, IL-10, IL-12, IL-18) using
the Millipore MILLIPLEX MAP porcine bead panel kit (PCYTMAG-23K, Merck Millipore,
Merck KGaA, Darmstadt, Germany). Both kits were run on the Luminex MAGPIX system
(Luminex Corporation, TX, USA) according to the manufacturer’s instructions.

2.5. Gene Expression Analysis of Liver, Muscle, and Subcutaneous Adipose Tissue (SAT) by
Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)

Liver, muscle, and SAT were analyzed for the expression of 14, 11, and 12, respectively,
selected gene transcripts by using gene-specific probes and porcine-specific primers (Table S2).
Total RNA extraction from liver tissue was performed using the NucleoSpin RNA Plus kit
(Macherey-Nagel GmbH & Co., KG., Duren, Germany) according to the manufacturer’s instruc-
tions. Muscle and SAT total RNA was extracted using TRI Reagent® Solution (Ambion, Applied
Biosystems, Stockholm, Sweden) following the manufacturer’s protocol. RNA transcription,
cDNA synthesis, and RT-PCR quantification were done as described in Supplementary Ma-
terials. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-actin, and hypoxanthine
phosphoribosyltransferase 1 (HPRT1) were tested as housekeeping genes (HKG). Gene expres-
sion data was obtained as Ct values and used to calculate ∆Ct values as the difference between
Ct of the target gene and mean Ct of HKG (Ct value represents the cycle number at which
logarithmic plots cross a calculated threshold). Liver GAPDH exhibited changes concerning the
two diets and also with time development. As a result, β-actin and HPRT1 were used as mean
HKG for liver tissue, whereas β-actin and GAPDH were used as mean HKG for muscle and
SAT. Relative gene expression was determined using the (1 + efficiencies)-∆∆Ct method, were
∆∆Ct = ∆Cttarget-∆CtLRweek4. Expression in muscle and SAT expression of C-reactive protein
(CRP) and muscle leptin receptor (LEPR) expression were measured close to the detection limit,
and as a result, values are not reported. Results were reported as fold changes.
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2.6. Calculations and Statistical Analyses

Porcine obesity index (POI) was calculated [7]:

POI = (π × (1/3) × BS × (Abr2 + Cr2 + Ab × Cc))/BS (1)

where BS represents body size (length), Abr abdomen radius, Cr chest radius, Ab abdomen
circumference, and Cc chest circumference.

Body surface area (BSA) was calculated using the proposed formula for miniature
swine [20]:

BSA = 0.121BW0.575 (2)

where BW represents body weight. Calculations of the homeostatic model assessment for
insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) were done as previously
described [21].

Statistical analysis of the weight development, feed intake, biochemical parameters,
blood biomarkers, anthropometric measurements, and gene expression were performed
using Statistical Analysis Software (SAS, version 9.4, SAS Institute Inc., Cary, NC, USA).
Diet, time, and their interaction effects were analyzed using a Linear Mixed Model for
repeated measurements:

Yijkl = µ + αi + β j + αβij + γk + γl + εijkl (3)

where Yijkl is the analyzed variable; µ is the overall mean; αi represents the effect of diet
(i = LR, HR); βj is the collection time (j = 4, 12, 20); αβij is the interaction between diet and
time; γk is the random effect of the block (k = 1, 2, 3, 4), and γl is the random component
of the individual animal (l = 1, 2, . . . , 30). Data was modeled to account for the repeated
measurements of time using an autoregressive covariance structure of order 1. The εijkl
component represents the residual error. Tissue gene expression data was analyzed using a
similar model where the collection time only reflects two time points (j = 4, 20).

Data are presented as Least Square Means (LSM) ± standard error of mean (SEM).
Significance level is assumed for p < 0.05, whereas 0.05 ≤ p < 0.10 is describing tendencies.
Spearman correlations of body weight and plasma albumin were performed in RStudio
Version 1.1.456 (RStudio Inc, Boston, MA, USA) using the cor.test function. Due to other
experimental analysis performed on the adipose tissue, only 8 animals were included in the
gene expression analysis at week 4 compared to 15 animals at week 20. The hypothesized
changes in biomarkers of dyslipidemia were based on previous analysis done on ad libitum
vs. restrictive fed pigs in a MetS context [22]. Sufficient statistical power (α < 0.05; β = 0.80)
was expected from 6–8 pigs completing the study according to the power calculations for
triglycerides and total cholesterol.

3. Results
3.1. Diet Composition

The experimental diets were formulated to provide on a dry matter (DM) basis equal
amounts of energy from fat (174–177 g/kg DM) and protein (113–119 g/kg DM), but to
differ regarding content and sources of available carbohydrates and DF (Table 1). Available
carbohydrates in the HR diet added up to 555 g/kg DM, out of which 225 g/kg DM was
fructose. In the LR diet, the available carbohydrates were lower, 424 g/kg DM mostly as
starch (415 g/kg DM), but higher in total DF (188 g/kg DM); the difference was in RS (89
vs. 2 g/kg DM), whereas the non-starch polysaccharides (NSP) content was practically
similar in the two diets (73 and 69 g/kg DM). On a pure carbohydrate basis and expressed
as monosaccharides, the difference between the HR and LR diet was that the HR diet
provided 225 g/kg DM as fructose that substituted 222 g/kg DM glucose monosaccharides
from starch in the LR diet. Overall, gross energy (20.3–20.7 MJ/kg DM) was comparable
between the two diets.
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Table 1. Chemical composition of the experimental diets.

LR HR

Chemical composition (g/kg DM 1)
DM (g/kg, as-fed basis) 917 913

Ash 63 62
Protein (N × 6.25) 119 113

Fat 177 174
Available carbohydrates 424 555

Sugars 9 233
Fructose 0.6 225
Glucose 1.2 0.8
Sucrose 7 7
Starch 415 322

Total dietary fiber 2 188 100
Total NSP (soluble NSP) 3 73 (15) 69 (8)

RS 4 89 2
AXOS 5 3 5
Fructans 5 6

Klason lignin 18 18
Gross energy (MJ/kg DM) 20.3 20.7

1 Dry matter; 2 Total NSP + fructans + RS + lignin + AXOS; 3 Non-starch polysaccharides; 4 Resistant starch;
5 Arabinoxylan-oligosaccharides.

3.2. Nutrient and Energy Intake

Over the 20-week intervention trial, the intake of metabolizable energy (ME) calculated
based on feed intake, was on average similar (p = 0.11) as the HR group had an intake of
10.2 MJ/d, compared to the 12 MJ/d of the LR group and only a notable difference was
observed at weeks 10–12, as seen in Figure 1C. The animals on the two diets consumed, on
average, the same amount of available carbohydrates, whereas for all other nutrients, the intake
was higher in the LR group primarily because of higher feed intake (Table 2). Proportionally,
animals on the HR diet ingested 9% more energy from carbohydrates, but less from fat, protein,
and DF (3.2%, 1.4%, and 4.4%, respectively) compared to the LR group.

Table 2. Average nutrient intake over a 20-week intervention period and relative energy contribution
of diet components.

LR 1 HR 1 SEM p-Value

Nutrient intake (g/day) 2

Dry matter 694 548 78 0.023
Available

carbohydrates 295 304 39 0.775

Protein 83 62 9 0.006
Fat 123 95 14 0.015

Total dietary
fiber 3 130 55 13 <0.0001

Relative energy contribution (%) 4

Carbohydrates 41.8 50.8
Fat 37.9 34.6

Protein 11.7 10.3
Total dietary

fiber 8.7 4.3

1 Data presented as LS means; LR (n = 15), HR (n = 15). 2 Calculated from feed intake. 3 Total NSP + fructans + RS
+ lignin + arabinoxylan-oligosaccharides. 4 Calculated from nutrient intake using the FAO energy conversion
factors for carbohydrates (17 kJ/g), protein (17 kJ/g), fat (37 kJ/g), and total dietary fiber (8 kJ/g).
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Figure 1. Development parameters of Göttingen Minipigs fed ad libitum a high-risk (HR, n = 15)
and a lower-risk (LR, n = 15) diet. Body weight (A), daily weight gain (B), calculated metabolizable
energy intake (C), and daily feed intake (D). Results are expressed as LS means, error bars indicating
SEM. Significant difference (* p < 0.05).

3.3. Obesity Development and Morphometric Measurements

The minipigs gained weight at a comparable rate during the experiment, regardless
of the dietary intervention. Body weight (BW) and daily weight gain (DWG) increased
significantly over 20 weeks of dietary intervention (p < 0.001), as seen in Figure 1A,B.
During the first two weeks, HR and LR groups had a feed intake (FI) of 287 and 382 g/day,
respectively, increasing to 984 g for the HR group and 1077 g for the LR during the last two
weeks (Figure 1D). A primary effect of the diet was observed with the LR group, where
overall measured FI was higher (p = 0.023; Figure 1D). The higher FI, however, did not
translate into differences in overall DWG (p = 0.103; Figure 1B), BW (p = 0.33; Figure 1A),
or the calculated POI (p = 0.14) and BSA (p = 0.25) measurements (Figure 2). The calculated
POI and BSA measurements showed an increased adiposity for minipigs consuming the
LR diet only during the last period of the intervention (Figure 2) as well as a difference in
BW at week 20 (Figure 1A). Measurements of length, chest circumference, and abdominal
circumference are shown in Figure S3.
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3.4. Plasma and Urine Biomarkers of MetS and Biomarkers of Inflammation

Plasma and urine metabolites measured after overnight fasting are presented in
Figure 3 and Table 3, respectively. Plasma glucose (p = 0.005) and fructosamine (p < 0.001)
increased, whereas the level of HDL cholesterol decreased with time (p = 0.002). Diet did
not affect other measured plasma metabolites except for NEFA (p = 0.003), where higher
levels were observed in the LR group. A tendency for decreasing cholesterol level was
observed with time (p = 0.08), and neither diet nor time affected triglyceride levels. The HR
diet led to increased urinary creatinine (p < 0.001) and glucose (p = 0.005) output, but did
not affect total protein content (Table 3). However, when expressed as protein to creatinine
ratio (PCR), lower values were observed at weeks 12 and 20 with the HR group.

Table 3. Urinary concentrations of metabolites after overnight fasting.

p-Value 2

Week LR 1 HR 1 Diet Time Diet × Time

Creatinine
(µmol/L)

4 4.7 (3.6, 6.1) 10 (7.4, 13.6)
0.0002 NS 0.0212 6.8 (5.3, 8.9) 9.4 (7, 12.6)

20 5.9 (3.9, 6.8) 12 (9.4, 15.3)

Glucose
(mmol/L)

4 0.4 (0.1, 1.3) 1.8 (0.4, 7.2)
0.004 0.03 NS12 0.4 (0.1, 1.4) 4.7 (1.2, 17.8)

20 3.8 (1.2, 12.1) 3.6 (1.3, 10.4)

Total Protein
(mg/L)

4 74.9 (46, 123) 136.1 (76, 243)
NS NS 0.0312 169.9 (104, 278) 75.6 (43, 134)

20 150.5 (92, 246) 150 (97, 233)

Glucose:
Creatinine

Ratio 3

4 0.1 (0.03, 0.3) 0.2 (0.05, 0.7)
NS NS NS12 0.1 (0.02, 0.2) 0.2 (0.06, 0.7)

20 0.4 (0.11, 1.1) 0.3 (0.11, 0.8)

Protein
Creatinine

Ratio

4 17.1 (11.3, 22.9) 17.2 (10.8, 23.6)
0.004 NS 0.0512 27 (18.2, 35.9) 4.5 (−5.7, 14.8)

20 27.7 (18.6, 36.8) 13.2 (4.6, 21.9)
1 Data presented as LS means; LR (n = 15), HR (n = 15); 95% CI are given for analysis with logarithmically transformed data; 2 non-significant
(NS), p > 0.1.
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Figure 3. Plasma concentrations of biomarkers after overnight fasting. Measurements of glucose (A), fructosamine (B),
lactate (C), NEFA (D), triglycerides (E), total cholesterol (F), high-density lipoprotein cholesterol (G), low-density lipoprotein
cholesterol (H) and the LDL to HDL ratio (I), were taken at 4, 12 and 20 weeks during the dietary intervention. Results
are expressed as LS means, error bars indicating SEM. NS, indicates non-significance at p > 0.05. Significant difference at
p < 0.05.

Plasma albumin was observed to increase in both the LR and HR diets during the
dietary intervention (Figure 4A). Furthermore, the LR diet increased albumin levels when
compared to the HR diet (Figure 4A). In both dietary groups, strong correlations between
BW and measured albumin levels were observed (Figure S4). Two liver transaminases:
ALT, AST (Figure 4C,D), together with GGT were assessed in plasma, where only GGT had
a diet effect with higher levels observed in the HR diet compared to the LR (Figure 4B).
ALT levels decreased with time in both dietary groups (Figure 4C).
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Figure 4. Clinical plasma biomarkers for liver function. (A) Albumin measurements. (B) GGT
(gamma-glutamyl transferase). (C) ALT (alanine transaminase). (D) AST (aspartate transaminase).
Results are expressed as LS means, error bars indicating SEM.

Fasting levels of circulating plasma hormones are presented in Table 4. Insulin (p = 0.03),
total GLP-1 (p = 0.04), and glucagon (p < 0.0001) increased during the dietary intervention;
GIP levels decreased over time (p < 0.0001), whereas C-peptide, PYY, and ghrelin levels were
unaffected. Higher levels of glucagon (p = 0.01) were observed with the HR diet, whereas lower
values of PYY were present when compared to the LR diet (p = 0.0005). HOMA-IR indicated
a time-dependent increase (p = 0.02) with no difference between the two diets. None of the
plasma inflammatory markers (IFGg, IL2, IL4, IL10, IL12, IL18) measured in this experiment
exhibited a response to the diets (Table S3), and only IL12 decreased from week 4 to week 20
(p = 0.0003).

3.5. Tissue Gene Expression

The relative hepatic gene expression of Solute Carrier Family 2 Member 5 (GLUT5),
hexokinase 1 (HK1), fructose-biphosphatase 1 (FBP1), acetyl-Coenzyme A carboxylase
alpha (ACACA), ATP-citrate lyase (ACYL), C-reactive protein (CRP), and peroxisome
proliferator-activated receptor gamma (PPARG) increased with the HR diet (Figure 5A).
The hepatic gene expression of C-C Motif Chemokine Ligand 5/RANTES (CCL5) was
increased with the HR diet at the end of the study (Figure 5A). Diet had no significant effect
on the relative gene expression in muscle or SAT (Figure 5B, 5C). A significant diet and
time interaction was observed in the SAT for Solute Carrier Family 2 Member 4 (GLUT4),
fatty acid synthase (FASN), and Cell Death-Inducing DFFA Like Effector C (CIDEC) where
higher expression levels were observed in response to the LR diet at week 4 of the dietary
intervention. Time had a more pronounced effect than diet on gene expression in all three
tissues analyzed. Irrespective of the diet, the relative expression of GLUT5, Solute Carrier
Family 2 Member 8 (GLUT8), ACACA, ACYL, FASN, ADIPOR1, and CRP decreased from
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week 4 towards week 20 in the liver. Only CCL5 showed a higher expression levels at the
end of the experiment (p = 0.02), while IL6 show a tendency for higher expression at week
20 (p = 0.06) and no effect of the diet was observed. Three genes had lower expression in
the muscle at the end of the dietary intervention: SLC2A4, CCL5, and PPARG (p < 0.01).
Genes expressed in the SAT followed similar tendencies with a decrease in expression
seen for GLUT4, ADIPOR1, adiponectin (ADIPOQ), FASN, CIDEC, PPARG, and CCL5 after
20 weeks of dietary intervention.

Table 4. Plasma concentrations of circulating hormones.

p-Value 4

Week LR 1 HR 1 SEM Diet Time Diet × Time

C-Peptide 2
4 28 27.2

12 34.1 27.5 3.6 NS NS NS
20 30 27.9

Ghrelin 2
4 11.3 15

12 13.6 10.6 3.2 NS NS NS
20 11.1 16.5

GIP 2
4 92.3 94.2

12 70.8 55.7 8.4 NS <0.0001 NS
20 43.8 50.3

GLP1T 3
4 207.6 234.6

12 258.8 255.2 18.8 NS 0.04 NS
20 236 236.1

Glucagon 2
4 163.1 202.5

12 228.7 302.1 25.5 0.01 <0.0001 NS
20 213.8 295.5

PYY 2
4 281.8 234

12 368.7 227.3 35.7 0.0005 NS NS
20 299.3 170.1

Insulin
(pmol/L)

4 28.0 31.2
12 33.9 36.4 4.6 NS 0.03 NS
20 38.9 43.5

HOMA-IR
4 0.52 0.59

12 0.66 0.71 0.09 NS 0.02 NS
20 0.76 0.84

HOMA-B
4 63.6 60.4

12 52.3 60.3 8.7 NS NS NS
20 56.2 67.8

1 Data presented as LS means; LR (n = 15), HR (n = 15); 2 measured in pg/mL; 3 total GLP-1; 4 non-significant (NS), p > 0.1.
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Figure 5. Gene expression of selected genes in the liver (A), muscle (B), and subcutaneous adipose tissue (C) collected at
week 4 and week 20 of the dietary intervention from ad libitum fed female Gottingen Minipigs. Solute Carrier Family 2
(Facilitated Glucose/Fructose Transporter) Member 5 (GLUT5); Solute Carrier Family 2 (Facilitated Glucose Transporter)
Member 4 (GLUT4); Solute Carrier Family 2 (Facilitated Glucose Transporter) Member 8 (GLUT8); Hexokinase 1 (HK1);
Fructose-Bisphosphatase 1 (FBP1); Phosphofructokinase, Muscle (PFKM); Acetyl-Coenzyme A Carboxylase Alpha (ACACA);
ATP-citrate lyase (ACYL); Fatty Acid Synthase (FASN); C-C Motif Chemokine Ligand 5/RANTES (CCL5); Adiponectin
(ADIPOQ); Adiponectin receptor 1 (ADIPOR1); Leptin (LEP); Leptin Receptor (LEPR); Cell Death-Inducing DFFA Like
Effector C (CIDEC); Peroxisome proliferator-activated receptor gamma (PPARG); C-reactive protein (CRP); Interleukin 6
(IL6); Tumor Necrosis Factor (TNFα). Results are presented as ddCT values with 95% CI, reported relative to the LR diet at
week 4. LR, lower-risk diet. HR, high-risk diet. Number of animals-liver: LR week 4 (n = 10), LR week 20 (n = 15), HR week
4 (n = 11), HR week 20 (n = 15). Number of animals-muscle: LR-HR week 4 (n = 14), LR-HR week 20 (n = 15). Number of
animals-subcutaneous adipose tissue: LR-HR week 4 (n = 8), LR-HR week 20 (n = 15). D = effect of diet (p < 0.05), T = effect
of time (p < 0.05). D*T = effect of interaction diet and time (p < 0.05). T* = tendency effect of time (0.05 ≤ p < 0.10).
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4. Discussion

In the context of carbohydrate quality and quantity consumption, the rationale behind
the two experimental diets was that the LR diet should resemble a typical human diet
recommended in Western societies, high in complex carbohydrates such as starch and
dietary fiber, whereas the HR diet, in contrast, should resemble a Western-style diet with the
monomeric sugar substituting complex carbohydrates. The two diets also contributed with
equal amounts of energy from fat and protein; the level of protein was reduced to redirect
energy from lean tissue accretion to adipose tissue storage and to diminish the muscle
mass for glucose regulation [23]. Thus, the intention was to study the higher expected
risk presented by the fructose ingredient substituting HiMaize starch that contains a mix
of digestible and fermentable starch [18]. It is expected that the fermentation of RS to
short-chain fatty acids (SCFA) will influence satiety hormones (GLP-1 and PYY) [24,25]
and lower the risk of developing obesity and metabolic signs of MetS [26–28].

In the current study, we used ad libitum intake as has been employed successfully
in several studies on swine [22,29,30] to mimic the behavior of humans with tendencies
towards overeating [31]. We were expecting that the higher fermentation of RS in the
LR diet would have a direct effect on satiety control mechanisms [25] and thereby influ-
ence the ad libitum feed intake. Previously published data on gut microbiota revealed
a higher abundance of microbiota associated with acetate production (Bacteroidetes and
Ruminococcus) and fecal and plasma SCFA in the LR diet [19]. This, together with the higher
release of PYY throughout the trial, is in agreement with previous studies in swine [24],
but in contrast to our expectations where the feed intake of the LR group was higher
than of the HR group. A reason for that could be the higher acetate production in the LR
group [19] causing acetate-mediated hyperphagia in an ad libitum context, as recently
found in a rodent study [32]. Other studies applying ad libitum feeding with RS to pigs
have also failed to influence voluntary feed intake and carcass quality compared to a
low-RS diet [33,34]. Moreover, although adiposity in rodents, nonhuman primates, and
humans has been strongly correlated with plasma leptin concentrations [35], our data on
mRNA expression levels of leptin and leptin receptor in the subcutaneous adipose tissue
did not show any significant difference between the two diets. Therefore, we believe that
other mechanisms than satiety hormones may be responsible for the higher feed intake
of LR diet compared to HR diet, such as differences in palatability between fructose and
HiMaize.

Although fructose has a potential DNL effect, results from this and other recent studies
provide conflicting evidence. At low doses, the small intestine is the primary organ for
dietary fructose clearance, whereas, at high doses, the clearance capacity is saturated,
resulting in spillage to the colonic microbiota and the liver [36]. Gene expression analy-
sis confirms that GLUT5 is not only expressed and facilitates fructose absorption at the
intestinal level, but also in the hepatic tissue where higher expression levels of GLUT5
were measured with the HR diet. Other transporters analyzed, such as GLUT4 or GLUT8,
did not respond to the intake of fructose, confirming that GLUT5 is a significant trans-
porter of fructose in the liver [37]. Fatty acid synthesis is favored through the regulatory
effects of SREBP-1c and ChREBP on fatty acid synthase (FASN) and acetyl-CoA carboxylase
(ACACA) [16,38]. Hepatic gene expression of ATP-citrate lyase (ACLY) and ACACA were
both increased by the presence of dietary fructose after 20 weeks of dietary intervention.
However, the expression of FASN was not increased by the HR diet in the hepatic, mus-
cular, or adipose tissue and a rise in lactate, a by-product of DNL from fructose, in the
systemic circulation [13] was not observed in this study. Interestingly, the HR diet lowered
albumin secretion from the liver, which could indicate impaired liver function, as seen
previously in rats fed high-fat-high-fructose and ethanol diets [39]. Glucagon levels were
higher throughout the trial in the HR diet compared to the LR diet. However, differences
between the groups are not sufficient to indicate a release due to a state of hypoglycemia
as the levels of glucose and fructosamine (indicating long-term glucose levels) were un-
affected. A potential explanation might come from the different carbohydrate sources,
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as the LR diet provides directly digestible glucose from starch, whereas the metabolism
requires extra steps for the hepatic release of glucose synthesized from fructose. Similar
increases of glucagon levels have been reported in juvenile minipigs exposed to high-fat-
high-fructose/sucrose diets without visible changes in glucose, fructosamine, or insulin
levels [40].

Irrespective of the carbohydrate quality of the diets, there was a down-regulation of
GLUT4 expression in muscle and SAT, towards the end of the dietary intervention, which
indicates an early progression toward insulin resistance and T2D pathogenesis as has been
found in adipose tissue GLUT4 knockdown mice that developed insulin resistance [41],
whereas overexpression of GLUT4 in adipocytes reduced fasting hyperglycemia and pre-
vented insulin resistance [42]. Branched-chain amino acids (BCAA, leucine, valine) are
linked to insulin resistance via GLUT4 [43] and the accumulation of BCAA and BCAA
degradation products found in our metabolomic study [19] could be an early sign of in-
sulin resistance as further indicated by the significantly increased plasma levels of glucose
(p = 0.005), fructosamine (p < 0.001), insulin (p = 0.03), and HOMA-IR (p = 0.02) in both
groups from week 4 to week 20. In spite of these changes in metabolic biomarkers, the
minipigs developed only some of the hallmarks of MetS; increased body weight, BSA,
and POI with visible deposition of subcutaneous fat, alterations in fasting glucose, and
insulin responses, and decreasing levels of HDL cholesterol. Total cholesterol, triglycerides,
and LDL, however, showed no dysregulation, in contrast to other studies where minipigs
developed more severe signs of diet-induced MetS in high-fat diet trials with or without
cholesterol supplementation [8,44–46]. A confounding effect of increasing intake of di-
etary fat, which deregulates the synthesis of fatty acids [44] cannot be excluded as several
hepatic and adipose tissue genes related to fatty acid metabolism (ACACA, ACYL, FASN,
CIDEC, and PPARG) expressed were downregulated with time. In this context, the age of
animals could play a role in the rate of disease development. Post-weaned and growing
swine have a higher capacity for fat synthesis as lipogenic enzymes reach a plateau during
aging [47]. Furthermore, swine generally have an increased innate capacity for adipose
tissue expansion independent of adipocyte count, whereas more mature animals, like
the case in humans [48], are less flexible and therefore more prone to be affected by an
energy-dense dietary intervention, as seen in swine models of sarcopenic obesity [49] and
MetS [8]. A contributing factor for dyslipidemia development is the level and type of fat.
Although the dietary fat levels used in this study were high (17.4–17.7%) compared to a
conventional pig diet, and it was insufficient for the development of dietary dyslipidemia.
Other experiments with pigs have used over 30% fat [8,50] or have accelerated dyslipi-
demia with cholesterol and sodium cholate [50]. The gene expression of adiponectin in the
subcutaneous adipose tissue revealed a time-driven decline as well as PPARG, which is
an essential mediator of adiponectin expression in the adipose tissue [51]. This, together
with the increasing levels of insulin and glucose, could be interpreted as the minipigs
evolving towards a state of chronic obesity with signs of insulin resistance. These results
are in agreement with current knowledge linking obesity to the development of T2D and
CVD [52,53].

Contrary to our expectations, the circulating levels of plasma inflammation markers
did not reveal any signs of inflammation during the 20 weeks of dietary intervention
irrespective the dietary treatments. A similar situation was observed in juvenile Ossabaw
pigs, where a high-fat diet induced dyslipidemia, IR, and hypertension, but did not increase
visceral or subcutaneous adipose tissue inflammation or circulatory levels of cytokines [54].
In the liver tissue, however, the exposure to both diets over 20 weeks of dietary intervention
increased the expression of CCL5 (RANTES) and IL6, but decreased the expression of CRP.
However, the presence of fructose seems to influence hepatic gene expression differently
with the upregulated expression of CRP and CCL5 by the HR diet compared to the LR diet.
CCL5 cytokine plays an important role in recruiting leukocytes at specific inflammatory
sites and has been linked to the progression of hepatic inflammation and fibrosis in the
context of NAFLD/NASH [55]. CRP is predominately produced by the liver as a response
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to inflammation and tissue damage and the presence of dietary fructose seems to increase
circulatory levels of CPR, as also seen in a previous Göttingen minipig study [56]. The
two well-known clinical indicators for hepatitis, ALT, and AST, however, showed no effect
of diet as also report by Schumacher-Petersen et al. in male Göttingen pigs [57], and in
other fructose interventions in minipigs [58,59]. On the other hand, GGT was increased
with the HR diet, as was also reported with a fructose diet in a NASH minipig model,
although not causing significant steatosis, but only foamy macrophage-like cells [40]. Taken
together, the long-term exposure to fructose showed no increase in expression levels of
the specific DNL related genes nor an increase in circulatory lactate levels. Although
fructose increased CCL5 and CRP expression level in the liver as well as circulating GGT
levels, it would be difficult to confirm the presence of an inflammatory state at the hepatic
level without more extensive analyses or liver histology. In another study, severely obese
Gottingen Minipigs have been described to avoid the development of hepatic steatosis
through fructose due to their higher capacity of adipose tissue expansion and protection by
developing a metabolically healthy obese phenotype [60]. Finally, dyslipidemia is key to
the development of liver disease [54,55], and according to more recent studies in minipigs,
fructose does not significantly influence hepatic fatty acid synthesis when compared to
sucrose [40].

Study Limitations and Strengths

The present study has several strengths, but also potential weaknesses that should
be considered. Although ad libitum feeding can be advantageous for the acceleration
of obesity, the continuous access to energy might disrupt differences between the pre-
and post-absorptive phase, thereby putting less stress on the regulatory mechanisms of
the metabolism and disease development compared to regular meal feeding. Ad libitum
feeding also disrupted our capacity to conduct a successful meal glucose or insulin tolerance
test, as the constant access to feed de-regulated the capacity of the animals to intake large
portions of feed. Tissue biopsies were collected in a fasting state, and while it is well
established that a fasting state can deregulate gene expression in the liver, interpretation of
the results should be done considering that these animals were for the full duration of the
experiment subjected to ad libitum feeding. Furthermore, differences between human and
swine liver metabolism should be considered regarding TG secretion and inflammation.
The swine liver plays a minor role in DNL compared to the adipose tissue [61,62], and
this might explain why fructose did not stimulate the FASN expression and organ fat
deposition. Animal model studies commonly utilize a small number of animals per group
due to increased costs of the animal model and maintenance. One strength of this study was
the large number of replicates utilized. Moreover, the collection of repeated organ biopsies
on the same animal is not common practice with miniature swine, and it provided new
information on tissue metabolism in young and developing Göttingen Minipigs. However,
the results should be interpreted with care in the absence of information on enzymatic
activities occurring in the liver, muscle, or adipose tissue and the absence of histological
data on these tissues.

5. Conclusions

We observed that ad libitum intake of high-energy diets with fructose or HiMaize
both favored a rapid fat accumulation inducing an obese phenotype with increased fasting
glucose, signs of insulin deregulation in this juvenile minipig model. Furthermore, the
high-level fructose intake failed to induce a higher state of dyslipidemia or other markers
of metabolic syndrome when compared to the HiMaize based diet. Given the young age
of these minipigs, relative metabolic flexibility appears to be still present when feeding
energy-dense diets for 20 weeks, and the disease phenotype is not clearly established
regarding MetS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13051560/s1, Table S1. Feed ingredients; Table S2. RT-PCR gene expression assays; Table S3.
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Plasma concentrations (ng/mL) of inflammation biomarkers after overnight fasting; Figure S1. Flow
chart presentation of experimental procedures, samples collected, and analysis performed in this
longitudinal dietary trial; Figure S2. Photos of the liver biopsy procedure; Figure S3. Morphometric
measurements of Göttingen Minipigs fed ad libitum a high-risk (HR, n = 15) and a lower-risk (LR,
n = 15) diet; Figure S4. Spearman correlations between the body weight and albumin levels in the
plasma of Göttingen minipigs fed a high-risk (left panel) and a low-risk (right panel) diet.
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