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Abstract: Since the discovery of penicillin, Penicillium has become one of the most attractive
fungal genera for the production of bioactive molecules. Marine-derived Penicillium has provided
numerous excellent pharmaceutical leads over the past decades. In this review, we focused on the
cytotoxic metabolites * (* Cytotoxic potency was referred to five different levels in this review,
extraordinary (IC50/LD50: <1 µM or 0.5 µg/mL); significant (IC50/LD50: 1~10 µM or 0.5~5 µg/mL);
moderate (IC50/LD50: 10~30 µM or 5~15 µg/mL); mild (IC50/LD50: 30~50 µM or 15~25 µg/mL);
weak (IC50/LD50: 50~100 µM or 25~50 µg/mL). The comparative potencies of positive controls were
referred when they were available). produced by marine-derived Penicillium species, and on their
cytotoxicity mechanisms, biosyntheses, and chemical syntheses.
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1. Introduction

The oceans, which occupy more than 70% of the earth’s surface, undoubtedly support vast habitats
and serve as prolific resources of various living organisms. Compared to terrestrial organisms, marine
organisms often produce highly potent metabolites with unique structures to enable them to adapt
to extremely challenging environments [1]. Developments and improvements made in biotechnology
have led to a new era of bioprospecting for new marine products. Revolutionary target screening
methods have improved the efficiency of drug discovery. In addition, leading edge genomics
of biological symbiosis offer more opportunities to discover drug candidates and precursors. Marine
endozoic microorganisms represent a new frontier in the discovery of pharmaceutical agents [2].
In particular, marine-derived fungi are excellent producers of biologically active secondary metabolites.
Since the isolation of the broad-spectrum antibiotic, cephalosporin C from the marine-derived fungus
Acremonium chrysogenum, thousands of bioactive metabolites have been discovered and evaluated [3].

Cancer is the second leading cause of death. Lung, prostate, colorectal, and digestive tract cancer
are commonly encountered in males, whereas breast, lung, and cervical cancer are the major causes
of female death. Marine microorganisms produce limited amounts of highly efficient toxic substances
to protect their hosts from enemies, and these substances have been investigated as potential anticancer
drug precursors. In particular, marine-derived Penicillium species represent a major source of cytotoxic
metabolites. In this review, we list all cytotoxic or antitumor secondary metabolites isolated from
marine-derived Penicillium species and classify them into distinct chemical groups. In addition,
we summarize the cytotoxicity mechanisms and proposed biosyntheses of these metabolites. Overall,
more than 200 natural products and their synthetic analogues are included in this review.
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2. Alkaloids

Cytochalasan alkaloids, characterized by a highly substituted perhydoisoindol-1-one fused
to a macrocyclic ring, have been shown to possess potential cytotoxicity against diverse tumor cell
lines [4,5]. Penochalasins, chaetoglobosins, and cytoglobosins are common classes of cytochalasan
alkaloids. A series of cytochalasans, penochalasins A–J (1–10), chaetoglobosins A, C, E–G,
O (11–16), and cytoglobosin C (17) (Figure 1) were isolated from the mangrove endophytic fungus
P. chrysogenum [6] and from the marine alga Enteromorpha intestinalis [7,8]. Penochalasins A–H (1–8)
and chaetoglobosins A, F, O (11, 14, 16) exhibited significant cytotoxic activity (ED50 = 0.4, 0.3, 0.5,
3.2, 2.1, 1.8, 1.9, 2.8, 0.6, 0.9, and 2.4 µg/mL, respectively) against P388 lymphocytic leukemia cells.
Moreover, chaetoglobosin A (11) reportedly induced apoptosis of chronic lymphocytic leukemia (CLL)
cells by targeting the cytoskeleton. The underlying mechanisms involve the induction of cell-cycle
arrest and the inhibition of membrane ruffling and cell migration; therefore, it was proposed as a novel
drug for CLL [9]. Penochalasin I (9) exhibited significant cytotoxic activities against MDA-MB-435
(human breast cancer cell line) and SGC-7901 (human gastric cancer cell line) with IC50 values of ~7 µM.
Cytoglobosin C (17) showed potential cytotoxicity against both SGC-7901 and A549 (human lung
adenocarcinoma) with IC50 values of 3–8 µM. Other cytochalasans, penochalasin J (10), chaetoglobosins
C, E (12, 13), and chaetoglobosin G (15) showed moderate cytotoxicity against MDA-MB-435, SGC-7901,
and A549 with IC50 values in the range of 10–40 µM (epirubicin was used as a positive control with
IC50 values of 0.3~0.6 µM). A recent biosynthetic analysis showed that the fungal PKS-NRPS hybrid
synthase, CheA, plays an essential role in cytochalasan formation [10].
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5a,6-dide hydrogliotoxin (22), gliotoxin (23), and gliotoxin G (24) (Figure 2) [12], which potently killed 
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compounds (22–24) with disulfide or tetrasulfide bonds showed significant inhibitory activities 
against HMT G9a (IC50 = 2.6, 6.4, and 2.1 μM, respectively) rather than HMT SET7/9 (IC50 > 100 μM). 
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Gliotoxin induces cellular immunosuppression and apoptosis [11], and its analogues are
disulfur or polysulfur-containing mycotoxins that belong to a class of naturally occurring
epipolythio piperazines (ETP). In 2012, the marine fungus Penicillium sp. JMF034, which was
isolated from a deep sea sediment in Japan, was found to produce seven gliotoxin-related
compounds, (bis(dethio)-10a-methylthio-3a-deoxy-3,3a-didehydrogliotoxin (18), 6-deoxy-5a,6-dide
hydrogliotoxin (19), bis(dethio) bis(methylthio)gliotoxin (20), bis(dethio)bis(methylthio)-5a,6-dide
hydrogliotoxin (21), 5a,6-dide hydrogliotoxin (22), gliotoxin (23), and gliotoxin G (24) (Figure 2) [12],
which potently killed P388 murine leukemia cells (IC50 = 3.4, 0.058, 0.11, 0.11, 0.056, 0.024, and 0.020 µM,
respectively). Because of their extraordinary cytotoxicity, gliotoxin analogues are considered
as antitumor leads [13]. Dimeric ETPs were reported to inhibit histone methyltransferase (HMT);
in addition, compounds (22–24) with disulfide or tetrasulfide bonds showed significant inhibitory
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activities against HMT G9a (IC50 = 2.6, 6.4, and 2.1 µM, respectively) rather than HMT SET7/9
(IC50 > 100 µM). Gliotoxin G (24), isolated from the mangrove endophytic fungus P. brocae MA-231,
was potently active against cisplatin-sensitive and resistant human ovarian cancer cell lines, A2780 and
A2780 CisR, with IC50 values of 664 and 661 nM, respectively (cisplatin was used as a positive control
with IC50 values of 1.67 and 12.63 µM, respectively) [14]. Compound 24 may be used as an anti-ovarian
cancer agent, even in patients who are resistant to platinum compounds. Plausible hypotheses for the
biosyntheses of ETPs have been previously reviewed [15].

Mar. Drugs 2017, 15, 329 3 of 35 

 

IC50 values of 1.67 and 12.63 μM, respectively) [14]. Compound 24 may be used as an anti-ovarian 
cancer agent, even in patients who are resistant to platinum compounds. Plausible hypotheses for the 
biosyntheses of ETPs have been previously reviewed [15]. 

 
Figure 2. Chemical structures of compounds 18–24. 

Four new cytotoxic bisthiodiketopiperazines (brocazines A–F) (25–30) (Figure 3), which share 
molecular similarities with gliotoxin, were isolated from a fungal strain of P. brocae MA-231, collected 
from the marine mangrove Avicennia marina [16]. Their cytotoxicity was investigated in human 
prostate cancer (DU145), human cervical carcinoma (Hela), human hepatoma (HepG2), human breast 
carcinoma (MCF-7), human large-cell lung carcinoma (NCI-H460), SGC-790, human pancreatic 
cancer (SW1990), human colon carcinoma (SW480), and human glioma (U251) cell lines. Brocazines 
A, B, E, and F (25, 26, 29, and 30) exhibited significant cytotoxic effects against most of the cell lines 
tested with IC50 values in the range of 0.89–9 μM (paclitaxel, cisplatin, cefitinib, doxorubicin, and 
gemcitabine were used as positive controls with IC50 values of 1~11 μM). In contrast, brocazines C 
and D (27 and 28), which lack the α, β unsaturated ketone group, had much lower cytotoxicity (IC50 
> 20 μM), which suggests that the conjugated ketone system is crucial to the cytotoxic properties of 
bisthiodiketopiperazine analogues. 

 
Figure 3. Chemical structures of compounds 25–30. 

Two bisthiodiketopiperazines, pretrichodermamide C (31) and N-methylpretrichodermamide B 
(32) (also called adametizine B and A, respectively) (Figure 4), were isolated from a marine sponge-
derived fungus (P. adametzioides AS-53) [17], a hyper saline lake-derived Penicillium sp. [18], and a 
marine algicolous fungus (Penicillium sp. KMM4672) [19]. All three studies showed that compound 
32, which contains chlorine, exhibited significant cytotoxicity, wherein it reduced the viability of 

Figure 2. Chemical structures of compounds 18–24.

Four new cytotoxic bisthiodiketopiperazines (brocazines A–F) (25–30) (Figure 3), which share
molecular similarities with gliotoxin, were isolated from a fungal strain of P. brocae MA-231, collected
from the marine mangrove Avicennia marina [16]. Their cytotoxicity was investigated in human
prostate cancer (DU145), human cervical carcinoma (Hela), human hepatoma (HepG2), human
breast carcinoma (MCF-7), human large-cell lung carcinoma (NCI-H460), SGC-790, human pancreatic
cancer (SW1990), human colon carcinoma (SW480), and human glioma (U251) cell lines. Brocazines
A, B, E, and F (25, 26, 29, and 30) exhibited significant cytotoxic effects against most of the cell
lines tested with IC50 values in the range of 0.89–9 µM (paclitaxel, cisplatin, cefitinib, doxorubicin,
and gemcitabine were used as positive controls with IC50 values of 1~11 µM). In contrast, brocazines
C and D (27 and 28), which lack the α, β unsaturated ketone group, had much lower cytotoxicity
(IC50 > 20 µM), which suggests that the conjugated ketone system is crucial to the cytotoxic properties
of bisthiodiketopiperazine analogues.

Two bisthiodiketopiperazines, pretrichodermamide C (31) and N-methylpretrichodermamide
B (32) (also called adametizine B and A, respectively) (Figure 4), were isolated from a marine
sponge-derived fungus (P. adametzioides AS-53) [17], a hyper saline lake-derived Penicillium sp. [18],
and a marine algicolous fungus (Penicillium sp. KMM4672) [19]. All three studies showed that
compound 32, which contains chlorine, exhibited significant cytotoxicity, wherein it reduced the
viability of L5178Y mouse lymphoma cells, human prostate cancer 22Rv1 cells, PC-3 cells, LNCaP
cells, and brine shrimps (IC50 = 2, 0.51, 5.11, 1.76, and 4.8 µM, respectively; while kahalalide F,
docetaxel, and colchicine were employed as positive controls with IC50 values of 4.3, 0.013, 0.015,
0.004, and 8.1 µM, respectively). Furthermore, it was found active in hormone-resistant 22Rv1 cells
at nanomolar concentrations. In contrast, metabolite 31 was completely inactive in all bioassays with
IC50 values > 100 µM. This remarkable difference in activity indicates that the halogen atom might
improve the activity of the metabolite.
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Roquefortine C (33) (Figure 5) is a potential neurotoxin that can activate P-glycoprotein and
simultaneously inhibit P450-3A and other hemoproteins [20]. Roquefortine and meleagrin (38)
analogues are considered biogenetically interrelated mycotoxins with promising cytotoxicity [21].
Recently, a series of roquefortine derivatives, roquefortines F–I (34–37), and meleagrin analogues,
meleagrins B–E (39–42), were isolated from the deep ocean sediment-derived fungus Penicillium sp. [22],
and most of these compounds (34, 35, and 39–42) were active against A549, HL-60 (human
promyelocytic leukemia), BEL-7402 (human hepatoma), and MOLT-4 (human acute T lymphoblastic
leukemia) cancer cell lines. Meleagrin B (39) was the most cytotoxic against these four cell lines with
IC50 values in the range of 1.5–7 µM; the other compounds had IC50 values in the range of 4–50 µM.
Meleagrin (38) was also isolated from a deep sea sediment-derived fungus, P. commune SD-118,
and was found to be cytotoxic in HepG2, NCI-H460, Hela, MDA-MB-231 (human breast cancer cells),
and DU145 human cancer cell lines (IC50 = 12, 22, 20, 11, and 5 µg/mL, respectively; while fluorouracil
was employed as a positive control with IC50 values of 14, 1, 14, 8, and 0.4 µg/mL, respectively) [23].

Penicimutanins A,B (43–45) and fructigenine A (46) (Figure 6) are structurally similar
to roquefortines, and were first isolated from diethyl sulfate- or gentamicin-induced mutants of the
marine-derived fungus P. purpurogenum G59 [24,25]. Mutation-based approaches can activate silent
fungal gene clusters and afford more potent metabolites with unique structures. Compounds 44
and 45 are mutant cytotoxic products that showed potent activities against five human cancer
cell lines: K562 (human chronic myelogenous leukemia), HL-60, Hela, BGC-823 (human gastric
adenocarcinoma), and MCF-7 (IC50 values were 5–11 µM for 44 and 8–20 µM for 45). Compounds 43
and 46 also inhibited the proliferation of these cell lines (Inhibition Rate (IR)% = 22.6 and 20.8 (K562);
17.9 and 55.3 (HeLa); and 26.5 and 65.6% (MCF-7) at 100 µg/mL, respectively; while 5-fluorouracil was
employed as a positive control with IR% of 48.5, 37.4, and 47.4 µg/mL at 100 µg/mL, respectively).
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Since the isolation of (+)-chaetocin A (47) and (+)-verticillin A (48) (Figure 7) in 1970,
dimeric epidithiodiketopiperazine alkaloids have received much attention owing to their diverse
biological activities and complex molecular structures [26,27]. In 1999, two additional dimeric
epidithiodiketopiperazine alkaloids, (+)-11,11′-dideoxyverticillin A (49) and (+)-11′-deoxyverticillin
A (50), were isolated from a marine alga-derived fungus Penicillium sp. and were found to exhibit
extraordinary cytotoxicity against HCT-116 cells (human colon cancer) with IC50 of 30 ng/mL [28].
Chaetocin A (47) was the first compound reported to inhibit HMT, and to have specific effects on HMT
SU(VAR)3-9 in vitro and in vivo [29]. (+)-11,11′-Dideoxyverticillin A (49), an alkaloid, exhibited diverse
antitumor activities in vitro and in vivo [30]; in addition, it potently inhibited the phosphorylation
of epidermal growth factor receptor in human breast cancer (MDA-MB-468) [31]. Movassaghi et al.
used a concise enantioselective method for the total synthesis of (+)-11,11′-dideoxyverticillin A (49)
in 2009 [32] based on mimicking the biosynthetic pathway; in addition, they used this approach
to synthesize various dimeric epidithiodiketopiperazines [33].
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[34]. Compounds (51–59) showed potent antiproliferative (IC50 = 5–20 μM for MCF-7; 8–30 μM for 
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Figure 7. Chemical structures of compounds 47–50.

Seven cytotoxic indole diterpene alkaloids, penitrems A,B (51–52), D–F (53–55), paspaline
(58), and emindole SB (59) (Figure 8) were isolated from a marine Penicillium sp. KBr-induced
mutation of this fungus produced two bromo-substituted indole alkaloids, 6-bromopenitrems B and
E (56–57) [34]. Compounds (51–59) showed potent antiproliferative (IC50 = 5–20 µM for MCF-7;
8–30 µM for MDA-MB-231), anti-migratory (IC50 = 7–35 µM for MDA-MB-231) and anti-invasive
properties (IR% = 10–75% at 15 µM) against human breast cancer cells. In addition, penitrems A,
B, and E (51–52, 54) were evaluated in 60 human tumor cell lines as a part of the Development
Therapeutics Program of the National Cancer Institute (NCI60). Penitrem B (52) exhibited the strongest
mean growth inhibitory effect in the 60 human cancer cells (IR% = 41.05% at 10 µM) and was considered
a potential selective inhibitory agent for leukemia cells. The nematode Caenorhabditis elegans was used
to assess the brain’s Maxi-K (BK) channel inhibitory activity and toxicity in vivo [35,36]. Penitrem A (51)
and 6-bromopenitrem E (57) displayed BK channel inhibition, comparable to that of a knockout strain.
A pharmacophore study on the effects of the penitrem skeleton on the antiproliferative activity against
MCF-7 cells indicated that less structural complexity of the penitrems, paspaline (58), and emindole
SB (59) better maintained the molecular alignment and pharmacophoric features. Penitrem A (51) was
also considered a neurotoxin that antagonizes BK channels [37].
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Another large family of indole alkaloid mycotoxins, comprising communesins A–D (60–63)
(Figure 9), was isolated from marine-derived Penicillium sp. from a marine alga [38], marine sponge [39],
and marine sediment [40]. Communesin B (61) (also called nomofungin) was more cytotoxic to P388
lymphocytic leukemia cells (ED50 = 0.45 µg/mL) than communesin A (60) (ED50 = 3.5 µg/mL).
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The antiproliferative activity of communesins B–D (61–63) was further evaluated in six lymphocytic
leukemia cell lines (U-937, THP-1, NAMALWA, L-428, MOLT-3, and SUP-B15). They steadily
and effectively inhibited the proliferation of five of these cell lines with ED50 values ranging from
7 to 16 µg/mL; however, they were inactive in L-428 cells. The total synthesis of communesin B (61)
was previously reported [41].
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Four new cytotoxic prenylated indole alkaloid derivatives, penioxamide (64) [42],
13-O-prenyl-26-hydroxyverruculogen (65) [43], and penipalines B and C (66–67) (Figure 10) [44],
were isolated from marine mangrove-derived P. oxalicum EN-201, marine sediment-derived
P. brefeldianum SD-273, and marine sediment-derived P. paneum SD-44, respectively. Metabolites
64–65 showed significant lethality in brine shrimps with LD50 values of 5.6 and 9.4 µM, respectively
(colchicine was employed as a positive control with an LD50 value of 7.8 µM). Metabolites 66–67
induced moderate cytotoxicity against A549 (IC50 = 20.44 and 21.54 µM, respectively) and HCT-116
cell lines (IC50 = 14.88 and 18.54 µM, respectively).
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In addition, three 1,4-diazepane derivatives, terretriones A, C, and D (68–70) (Figure 11),
obtained from marine sponge-derived P. vinaceum [45] and marine tunicate-derived Penicillium sp.
CYE-87 [46], moderately inhibited the migratory activity of MDA-MB-231 cells with IC50 values of 17.7,
17.6, and 16.5 µM, respectively (Z-4-ethylthio-phenylmethylene hydantoin was used as a positive
control with an IC50 value of 43.4 µM). These findings indicate that terretriones might be potential
anti-metastatic breast cancer candidates.
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Six tetramic acid derivatives, penicillenols A1, A2, B1, B2, D1, and D2 (71–76) (Figure 12),
were isolated from a marine sediment-derived fungus P. citrinum. Penicillenol B2 (74) exhibited the
strongest cytotoxic activity against A-375 human malignant melanoma cell line (IC50 = 0.97 µg/mL),
whereas the IC50 values of compounds 71–73 were 3.2, 13.8, and 2.8 µg/mL, respectively [47,48].
Penicillenols D1 and D2 (75–76) showed moderate cytotoxicity against A549 cells with IC50 values
of 17.2 and 12.1 µg/mL, respectively. However, penicillenols A1 and B1 (71, 73) showed significant
cytotoxicity in HL-60 cells (IC50 = 0.76 and 3.2 µM, respectively) [49]. A novel tetramic acid derivative,
penicitrinine A (77), which contains a citrinin-like group, was isolated [50]. The combination of two
cytotoxic fragments in this metabolite might contribute to its extensive antiproliferative activity
in diverse tumor cell lines, particularly A-375 cells. Penicitrinine A (77) not only induced A-375 cell
apoptosis by upregulating Bax and downregulating Bcl-2, but also inhibited A-375 cell metastatic
activity by suppressing matrix metalloproteinase 9 (MMP-9) and promoting the expression of its
specific inhibitor, tissue inhibitor of metalloproteinases-1 (TIMP-1). These findings suggest that
penicitrinine A (77) is a potential lead compound.Mar. Drugs 2017, 15, 329 8 of 35 
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Quinolinone and quinazolinone alkaloids have unique pharmacophores that allow their binding
to multiple sites with high affinity; moreover, they possess various biological properties [51]. Some
cytotoxic quinolinone (78–82) and quinazolinone alkaloids (83–85) (Figure 13) were isolated from
marine-derived members of the Penicillium genus, such as P. janczewskii, Penicillium sp. ghq208,
P. oxalicum 0312F1, P. chrysogenum EN-118, and P. commune SD-118 [23]. 2-quinolinone metabolites
(78–79) exhibited IR% values of 50–60% at 10 µg/mL. Interestingly, compound 80, which has
an additional prenyl chain, showed significant cytotoxicity against MDA-MB-231 and HT-29 (human
colon carcinoma) cell lines with IR% values of 92–96% at 10 µg/mL [52]. In addition, a 4-quinolinone
derivative (82) exhibited significant cytotoxicity against the human lung cancer cell line 95-D



Mar. Drugs 2017, 15, 329 9 of 44

(IC50 = 0.57 µg/mL). Both compounds 81 and 82 exhibited similar cytotoxicity (IC50 = 11.3 and
13.2 µM, respectively) against HepG2 cells [53,54]. However quinazolinone derivatives (83–85) showed
only moderate cytotoxicity (compound 83, IC50 = 20 µg/mL in SW1990 cell line; compound 84,
IC50 = 8 µg/mL in DU145, A549, and Hela cell lines; and compound 85, IR% = 35–40 at 200 µg/mL
in SGC-7901 and BEL-7404 cell lines) [55,56].
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Figure 13. Chemical structures of compounds 78–85.

In an ongoing study that aims to produce new active metabolites from P. paneum SD-44 (a deep sea
sediment-derived fungus) using culture variations, three amidine anthranilic acid analogues (86–88)
and one triazole anthranilic acid derivative, penipanoid A (89) (Figure 14), were obtained after culture
in malt and rice medium, respectively. Compounds 86 and 87 strongly inhibited RKO human colon
cancer cell viability (IC50 = 8.4 and 9.7 µM, respectively). In addition, compound 88 was cytotoxic
to Hela cells (IC50 = 6.6 µM) [57], whereas compound 89 with a triazole group only weakly inhibited
SMMC-7721 cell viability (human hepatocarcinoma) (IC50 = 54.2 µM) while fluorouracil was used
as a positive control for three cell lines with IC50 values of 25.0, 14.5, and 13.0 µM, respectively [58].
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cell line (IC50 = 7.13 µg/mL), while epirubicin was used as a positive control with an IC50 value
of 0.325 µg/mL [59]. Another novel alkaloid, the sorbicilin-derived sorbicillactone A (91), was first
isolated from a Mediterranean sponge-derived fungus, P. chrysogenum. Sorbicillactone A (91)
exhibited a selective antileukemic activity in L5178Y cells (murine leukemic lymphoblast) with
an IC50 of 2.2 µg/mL, as well as in other tumor cell lines (IC50 > 10 µg/mL). The biosynthesis
of sorbicillactone A (91) was investigated using 13C-labeled precursor feeding experiments, which
showed that the its skeleton was derived from acetate, alanine, and methionine [60]. Furthermore,
a new strategy for the large-scale biotechnological production of sorbicilin-derived alkaloids was
developed for preclinical screening and a structure-activity relationship (SAR) study [61]. In addition,
a 4-oxoquinoline derivative, brocaeloid B (92), isolated from the mangrove endophytic fungus P. brocae,
showed mild lethality against brine shrimps with an LD50 of 36.7 µM, while colchicine was used
as a positive control with an LD50 value of 87.6 µM [62]. Li et al. cultured the marine mangrove
fungus P. varibile with the DNA methyltransferase inhibitor 5-azacytidine to identify novel responsive
molecules by gene silencing. A highly modified fatty acid amide, varitatin A (93), exhibited significant
cytotoxicity against HCT-116 cells (IC50 = 2.8 µM, while doxorubicin was used as a positive control with
an IC50 value of 0.2 µM) and potently inhibited protein tyrosine kinases, platelet-derived growth factor
receptor-beta (PDGFR-β), and ErbB4 with IR% values of 50 and 40%, respectively, at a concentration
of 1 µM [63]. In addition, a new pyridinyl-α-pyrone alkaloid, 18-hydroxydecaturin B (94), was isolated
from an endophytic fungus, P. oxalicum EN-201, derived from the marine mangrove Rhizophora stylosa.
Compound 94 showed significant lethality in brine shrimps (LD50 = 2.3 µM, while colchicine was used
as a positive control with an LD50 value of 7.8 µM) [42]. A previous study showed that the metabolites
of decaturin, a potent insecticide, were cytotoxic [64]. The isocyanide alkaloid, xantocillin X (95),
which is a known antiviral and antibiotic agent [65], was first isolated from P. notatum in 1950 [66].
Recently, compound 95 was isolated from the deep sea sediment-derived fungus P. commune SD-118,
and showed moderate cytotoxicity in six cancer cell lines (MCF-7, HepG2, NCI-H460, Hela, DU145,
and MDA-MB-231) with IC50 values of 12, 7, 10, 10, 8, and 8 µg/mL, respectively, while fluorouracil
was used as a positive control with IC50 values of 4, 14, 1, 14, 0.4, and 8 µg/mL, respectively [23].
A later pharmacological study on human HepG2 cells showed that compound 95 induced apoptosis
and autophagy by inhibiting the MEK/EPK signaling pathway and activating the class III PI3K/Beclin
1 signaling pathway [67].
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3. Terpenes, Meroterpenes, and Steroids

The genus Penicillium is a well-known producer of eremophilane-type sesquiterpenes with
phytotoxic, mycotoxic, and phytohormonic activities [68,69]. Chemical investigation of an Antarctic
deep sea-derived fungus, Penicillium sp. PR19 N-1, yielded three new cytotoxic eremophilane-type
sesquiterpenes (96–98) (Figure 16), which were moderately cytotoxic to HL-60 (IC50 = 45.8, 28.3,
and 11.8 µM, respectively) and A549 (IC50 = 82.8, 5.2, and 12.2 µM, respectively) cancer cell lines [70,71].
Three other eremophilane-type sesquiterpenes (99–101) were isolated from a sea mud-derived
fungus, Penicillium sp. BL 27-2. Of these, compound 99 was the most cytotoxic to P388, A549,
HL-60, and BEL-7402 cell lines (IC50 = 0.073, 0.096, 0.065, and 4.59 µM, respectively), whereas
compounds 100 and 101 had IC50 values in the range of 3–12 µM [72]. These results suggest that
the epoxide ring is essential for the cytotoxicity of eremophilane-type sesquiterpenes and that the
presence of an acetyl group enhances the cytotoxicity. A new acorane sesquiterpene, adametacorenol
B (102), isolated from a marine sponge-derived fungus, P. adametzioides AS-53, displayed selective
cytotoxicity against NCI-H446 cell lines (IC50 = 5 µM), compared to its cytotoxicity against the other
13 tumor cell lines tested (A549, DU145, HeLa, HepG2, Huh-7 (human hepatocarcinoma), L02 (human
hepatocarcinoma), LM3 (murine breast cancer), MA (mouse Leydig tumor), MCF-7, SGC-7901, SW1990,
SW480, and U251) (IC50 > 10 µM) [17].
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The deep sea sediment-derived fungus Penicillium sp. was reported to be a good source
of cytotoxic diterpenes. Six tetracyclic diterpenes, conidiogenones B–G (103–108) (Figure 17), exhibited
cytotoxicity against HL-60, A549, BEL-7402, and MOLT-4 cell lines. Conidiogenone C (104) was
potently cytotoxic against HL-60 and BEL-7402 cells with IC50 values of 0.038 and 0.97 µM, respectively;
however, it was not cytotoxic against A549 and MOLT-4 cell lines at 50 µM. Other conidiogenones (103,
105–108) had moderate cytotoxicity with IC50 values ranging from 1 to 50 µM [22]. The spiroditerpenes,
breviones I and A (109–110) were also obtained from this fungus and showed cytotoxicity comparable
to that of cisplatin (the positive control) against MCF-7 cells (IC50 = 7.44 and 28.4 µM, respectively,
versus 8.04 µM for cisplatin) [73].

Although several marine-derived steroids have been isolated, few have been found to be bioactive.
A cytotoxic polyoxygenated steroid, penicisteroide A (111) (Figure 18), was isolated from a marine
alga-derived fungus, P. chrysogenum QEN-24S. Penicisteroide A (111) displayed moderate cytotoxicity
against Hela, SW1990, and NCI-H460 cell lines with IC50 values of 15, 31, and 40 µg/mL,
respectively [74]. Three other polyoxygenated steroids (112–114) and two epidioxygenated steroids
(115–116) were isolated from the marine moss-derived fungus Penicillium sp. These steroids moderately
inhibited HepG2 cell line growth (IC50 values = 10.4, 15.6, 20.7, 16.8, and 21.3 µg/mL, respectively) [75].
In addition, an epidioxygenated steroid (117), produced by a sea squirt-derived fungus, P. stoloniferum
QY2-10, was cytotoxic to P388 cells with an IC50 of 4.07 µM [76]. Moreover, a marine Penicillium
sp. fungus collected from the inner tissues of an unidentified sponge is reportedly the source
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of two epimeric steroids (118–119) and two cytotoxic steroids of a new class, dankasterone A (120)
and B (121). Dankasterone A (120) was more effective than the positive control, adriamycin
(IC50 = 0.98 µM) against HL-60, Hela, and K562 cancer cell lines with IC50 values of 0.78, 4.11,
and 7.57 µM, respectively. Compounds 118–119 and 121 also significantly inhibited K562 cell growth
(IC50 = 4.38, 5.54, and 7.89 µM, respectively) [77].
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Meroterpenes are widely distributed in the marine environment, particularly in brown algae and
microorganisms. Terpene-quinone and -hydroquinone are the major bioactive members because they
produce reactive oxygen species (ROS) [78]. Three quinone- and hydroquinone-type meroterpenes
(122–124) (Figure 19) were isolated from a marine-derived Penicillium sp. Compounds 122 and
123 exhibited extensive cytotoxicity against five cancer cell lines (A549, SKOV-3 (human ovary
adenocarcinoma), SKMEL-2 (human skin cancer), XF498 (human CNS cancer), and HCT15 (human
colon cancer)) with IC50 values in the range of 3–10 µg/mL, whereas compound 124 had IC50

values ranging from 20 to 40 µg/mL (doxorubicin was used as a positive control with IC50 values
of 0.02~0.8 µg/mL). These results suggest that the quinone form tends to be less cytotoxic [79].
Penicillone A (125), isolated from marine-derived Penicillium sp. F11., contains a carboxylic acid group
instead of the isoprenyl tail, which resulted in mild cytotoxicity against fibrosarcoma (HT1080) and
human nasopharyngeal carcinoma (Cne2) cell lines (IC50 = 45.8 and 46.2 µM, respectively) [80].

Two sesquiterpene α-pyrones, phenylpyropenes E and F (126–127) (Figure 20), were isolated from
the marine-derived fungus P. concentricum ZLQ-69 and displayed moderate and selective cytotoxicity
against MGC-803 cells (human gastric cancer) with IC50 values of 19.1 and 13.6 µM, respectively
(doxorubicin was used as a positive control with an IC50 value of 0.37 µM) [81]. Furthermore,
the marine sediment-derived fungus Penicillium sp. F446 yielded two new sesquiterpene γ-pyrone-type
meroterpenes, penicillipyrone A and B (128–129), which were moderately cytotoxic against A549
cells (IC50 = 15 and 17 µM, respectively, while doxorubicin was used as a positive control with
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an IC50 value of 1.2 µM) [82]. Two polycyclic α-pyrone-type meroterpenes (130–131), isolated from
the marine mangrove endophytic fungus Penicillium 303#, exhibited IC50 values of 20–30 µg/mL
in four cancer cell lines (MDA-MB-435, HepG2, HCT-116, and A549), while epirubicin was used
as a positive control with IC50 values of 0.2~0.6 µg/mL [59]. Fumagillin was first isolated from
Aspergillus fumigatus in 1949, and has been used as an antimicrobial [83]. Recently, ligerin (132),
a natural chlorinated merosesquiterpene related to fumagillin, was obtained from a marine-derived
Penicillium sp., and showed selective in vitro antiproliferative activity against osteosarcoma cell lines
(IC50 = 117 nM against POS1 cells, which is 20 times greater than the IC50 in other cancer cell lines),
while doxorubicin was used as a positive control with IC50 values of 0.04~2 µM [84]. Ligerin analogues
were semi-synthesized in an SAR study, which showed that chlorohydrin and C6 substituents were
crucial for cytotoxic activities. Furthermore, ligerin (132) exhibited stronger cytotoxicity against human
osteosarcoma SaOS2 and MG63 cancer cell lines. However, its cytotoxicity was less than that of TNP470
(a positive control and fumagillin analogue) [85].
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4. Polyketides

Chromone derivatives are abundantly present in nature and are considered potential
immunomodulatory, anticancer, and anti-inflammatory agents. Chromone scaffolds were reported
to possess outstanding pharmacological properties [86]. A Chinese research group recently isolated
four dihydrothiophene-condensed chromones, oxalicumones D, E (133–134) and A, B (135–136)
(Figure 21) from a marine gorgonian-derived fungus, P. oxalicum SCSGAF 0023. Similar to synthetic
dihydrothiophene-condensed chromones (137–144), these four natural chromones (133–136) displayed
significant cytotoxicity against eight carcinoma cell lines (human lung adenocarcinoma (H1975), human
lymphoma (U937), K562, BGC823, MOLT-4. MCF-7, HL-60, and Huh-7) (IC50 < 10 µM). Of these,
oxalicumone A (135) was the most cytotoxic against MOLT-4 cell line (IC50 = 0.30 µM). An SAR study
showed that the 2,3-dihydrothiophene unit was crucial for activity and that the presence of 1-OH
and absolute configuration at C-6 contributed to cytotoxicity [87,88]. Subsequent pharmacological
studies showed that oxalicumone A (135) inhibited leukemia cell growth and induced apoptosis,
in part, via the induction of the endoplasmic reticulum stress pathway by upregulating calnexin and
Bax and activating unfolded protein response [89]. Another study found that oxalicumone A (135)
could induce oxidative stress injury in the mitochondria, and thus promote human renal epithelial
cell death [90]. Chromosulfine (145), a novel cyclopentachromone sulfide which is structurally
similar to dihydrothiophene-condensed chromones, was isolated from a neomycin-resistant mutant
of the marine-derived fungus P. purpurogenum G59, and showed selective cytotoxicity against HL-60
cancer cell line (IC50 = 16.7 µM) [91]. Secalonic acid F (146), a chiral dimeric tetrahydroxanthone,
was first isolated from Aspergillus sp. before discovering that the deep sea sediment-derived fungus
Penicillium sp. F11 is a good source of this compound. Compound 146 induced HL-60 cell apoptosis
by modulating the Rho GDP dissociation inhibitor 2 pathway [92]. Recent studies showed that
secalonic acid F (146) could induce apoptosis by activating caspase 3 and 9 through the mitochondrial
pathway in hepatocellular carcinoma, wherein it was found to be more effective than 5-fluorouracil [93].
Furthermore, a flavone, namely penimethavone A (147), obtained from a gorgonian-derived fungus,
P. chrysogenum, exhibited selective cytotoxicity against Hela and rhabdomyosarcoma cell lines
(IC50 = 8.41 and 8.18 µM, respectively) while adriamycin was used as a positive control with IC50
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Coumarin derivatives of the chromone isomers (148–150) (Figure 22) were also isolated from the
deep sea sediment-derived fungus (P. chrysogenum SCSIO 41001), a marine sponge-derived fungus
Penicillium sp., and a mangrove endophytic fungus (Penicillium sp. ZH16), respectively. The dimeric
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isocoumarin, bipenicillisorin (148), displayed significant cytotoxicity against K562, A549, and Huh-7
cell lines (IC50 = 6.78, 6.94, and 2.59 µM, respectively), while taxol was used as a positive control with
IC50 values of 3.44, 2.61, and 14.70 nM, respectively [95]. The dihydroisocoumarin monocerin (149)
exhibited significant cytotoxicity against L5178Y cells (a murine lymphoma cell line) with an IC50 value
of 8.4 µM (kahalalide F was used as a positive control with an IC50 value of 4.3 µM) [96]. Moreover,
furanocoumarin (150) showed moderate cytotoxicity against human nasopharyngeal carcinoma (KB
and KBv200) cell lines (IC50 = 5 and 10 µg/mL, respectively) [97].
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Citrinin (151) (Figure 23), a typical azaphilone polyketide mycotoxin, was first found in P. citrinum
in 1931 [98]. Compound 151 is strongly nephrotoxic because of its inhibition of respiration
complex III [99]. The biosynthesis pathway of compound 151 was further investigated [100].
Interestingly, the marine sponge-derived fungus Penicillium sp. FF001 was found to be a good
source of unique and potent citrinin derivatives [101]. Two new citrinin derivatives, penicitrinols
L and M (152–153), isolated from the marine sediment-derived fungus P. citrinum, showed moderate
cytotoxicity against a human Caucasian colon adenocarcinoma cell line (SW-620) (IC50 = 25.6 and
20.9 µM, respectively) [48]. One penicitrinol analogue, berkelic acid (154), with a novel spiroketal
structure, isolated from an acid mine lake fungal extremophile Penicillium sp., showed selective and
extraordinary cytotoxicity against a human ovarian carcinoma cell line (OVCAR-3) at nanomolar
concentrations (GI50 = 91 nm) [102]. The total synthesis of (–)-berkelic acid (154) was previously
described [103]. An alga-derived fungus, P. thomii, yielded a new citrinin analogue, sargassopenilline
C (155), which possessed a unique 6,6-spiroketal skeleton and inhibited the transcription of oncogenic
nuclear factor, AP-1 (IC50 = 15 µM) [104]. Two phenalenone-skeleton citrinin analogues, sculezonones
A and B (156–157), isolated from a marine sponge-derived fungus Penicillium sp., inhibited both
DNA polymerases (α and β) [105]. Dicitrinone B (158), a marine sediment-derived fungal metabolite
(P. citrinum) containing a rare carbon-bridge citrinin dimer, induced A-375 cell apoptosis by generating
ROS via a caspase-related pathway [106]. In another study, two novel skeletal metabolites (159–160)
possibly biogenetically derived from citrinin were found. Perinadine A (159), a scalusamide A-type
pyrrolidine isolated from a fish gastrointestinal fungus, P. citrinum, exhibited mild cytotoxicity against
a murine leukemia L1210 cell line (IC50 = 20 µg/mL) [107]. However, herqueiazole (160), obtained
from a marine sediment-derived fungus, Penicillium sp. F011, possessed a novel pyrrole-containing
phenalenone moiety and demonstrated weak cytotoxicity against A549 cells (IC50 = 67.3 µM), while
doxorubicin was used as a positive control with an IC50 value of 3.3 µM [108].
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Other fungal azaphilone polyketides include comazaphilones D–F (161–163) (Figure 24),
pinophilins A, B, and Sch 725680 (164–166), which were isolated from a marine sediment-derived
fungus, P. commune QSD-17 (comazaphilones D–F), and a marine seaweed-derived P. pinophilum
Hedgcok (pinophilins A-B and Sch 725680). Comazaphilones D–F (161–163) showed selective but
weak cytotoxicity against SW1990 cell line (IC50 = 51, 26, and 53 µM, respectively), while fluoruoracil
was used as a positive control with an IC50 value of 120 µM) [109]. Azaphilone derivatives (164–166)
were suggested to suppress cancer cell proliferation by inhibiting DNA replication via the inhibition
of mammalian DNA polymerases A, B, and Y [110].
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Penicillium sp. strain OUPS-79, which is derived from the marine alga Enteromorpha
intestinalis, yielded various cytotoxic polyketides, including penostatins A–C, E–I (167–169, 171–175)
(Figure 25) [111,112]. They were found to be significantly cytotoxic to P388 lymphocytic leukemia
cells (ED50 = 0.8, 1.2, 1.0, 0.9, 1.4, 0.5, 0.8, and 1.2 µg/mL, respectively). However, penostatin D (170)
exhibited moderate cytotoxicity (ED50 = 11.0 µg/mL), which may be attributed to the absence of the
cyclic conjugated enone system. Moreover, penostatin C (169) exhibited significant cytotoxicity
in seven of the 36 cell lines tested with ED50 values ranging from 1 to 2 µg/mL. Recent studies have
shown that penostatins A–C (167–169) may be tyrosine phosphatase 1B (PTP1B) inhibitors, which
can be used to treat type II diabetes and other associated metabolic diseases (IC50 = 15.87, 33.65,
and 0.37 µM, respectively), while sodium orthovanadate was used as a positive control with an IC50
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value of 0.65 µM [113]. The total synthesis of penostatins A, B, and F (167, 168, 172) was previously
reported [114,115].
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Fungal phenolic polyketides have diverse biological activities and unique structures [116].
A weak DNA topoisomerase I inhibitor, compound (176) (Figure 26), was obtained from the marine
sediment-derived P. oxalicum HSY05 [117], whereas a racemic mixture (177–178) was obtained
from the co-cultivation of marine mangrove-derived Penicillium sp. WC-29-5 and Streptomyces
fradiae 007. Compounds 177–178 displayed significant cytotoxicity against H1975 cell lines
(IC50 = 3.97 and 5.73 µM, respectively). Moreover, compound 178 exhibited cytotoxicity against
HL-60 cells (IC50 = 3.73 µM) [118]. Using a bioinformatics tool, Marine Halogenated Compound
Analysis (MeHaloCoA), three halogenated bioactive metabolites, (+)-5-chlorogriseofulvin (179) as well
as griseophenones I and G (180–181), were isolated from a marine-derived P. canescens. They inhibited
the growth of KB cells at a concentration of 0.6 µM (IR% = 49, 58, and 47%, respectively) [119].
Furthermore, one benzophenone, iso-monodictyphenone (182), and two diphenyl ether derivatives,
penikellides A and B (183–184), were isolated from a mangrove endogenous fungus, Penicillium
sp. MA-37. These three metabolites exhibited moderate brine shrimp lethality (LD50 = 25.3,
14.2, and 39.2 µM, respectively), while colchicine was used as a positive control with an LD50

value of 1.22 µM [120]. Penicillide (185), a multifunctional metabolite produced by a marine
sediment-derived Penicillium sp. strain, was shown to be an acyl-CoA cholesterol acyltransferase
(ACAT) [121], nonpeptide calpain inhibitor [122], and oxytocin antagonist [123]. Furthermore,
compound 185 was found to exhibit cytotoxic, antibiotic, and plant growth inhibitory properties.
Recently, two marine fungi, P. pinophilum (derived from a gorgonian) and Penicillium sp. ZLN29
(derived from a sediment), were found to produce penicillide (185) and penicillide derivatives
(186–187) that exhibited potent cytotoxicity against HepG2 cell line (IC50 = 9.7 and 9.9 µM for
185–186, respectively); moreover, compound 187 showed additional cytotoxicity against Hela cell
line (IC50 = 6.1 µM) [124,125]. Two anthraquinone derivatives, nidurufin (188) and averantin (189),
isolated from a marine sediment-derived fungus, P. flavidorsum SHK1-27, were cytotoxic against K562
cell line (IC50 = 12.6 and 27.7 µM, respectively), while adriamycin was used as a positive control
with an IC50 value of 1.5 µM. Nidurufin (188) was suggested to induce cell cycle arrest at the G2/M
transition in a time-dependent manner [126]. The total synthesis of (±)-nidurufin (188), an aflatoxin
precursor, was previously described [127].
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shock protein (HSP90) inhibitor [132]. (10E, 15S)-10,11-Dehydrocurvularin (199) was isolated from 
marine sponge-derived Penicillium sp. DRF2 and Curvularia sp. It exhibited significant cytotoxicity 
with mean IC50 values ranging from 0.28 to 6 μM in 14 different solid tumors (36 tumor cell lines) 
[133,134]. Penicillium fungi are also a good source of tanzawaic acid polyketides, which exhibit 
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Figure 26. Chemical structures of compounds 176–189.

Members of the sorbicillinoid family are hexaketide metabolites isolated from various
fungi. In 2005, Zhu et al. found two sorbicillin analogues (benzoquinone (190–191)),
two bisvertinolones (192–193), and three bridged bicyclic bisorbicillinoids (194–196) (Figure 27)
in a marine sediment-derived fungus, P. terrestre. Dihydrobisvertinolone (192) and trichodimerol
(196) demonstrated the strongest cytotoxic effects (IC50 = 0.52 µM in A549, IC50 = 0.33 µM in P388,
respectively), while etoposide was used as a positive control with IC50 values of 1.4 and 0.064 µM,
respectively [128,129]. The preliminary SAR showed that an intact sorbyl side chain played a decisive
role [130]. Further investigation of this strain yielded two additional chlorinated sorbicillinoids
(197–198). Interestingly, the configuration at C-19 was found to largely determine the cytotoxicity,
wherein chloctanspirone A (197) (R configuration) was 4-fold more active than chloctanspirone B (198)
(S configuration) in HL-60 and A549 cancer cell lines [131].
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marine sponge-derived Penicillium sp. DRF2 and Curvularia sp. It exhibited significant cytotoxicity
with mean IC50 values ranging from 0.28 to 6 µM in 14 different solid tumors (36 tumor cell
lines) [133,134]. Penicillium fungi are also a good source of tanzawaic acid polyketides, which exhibit
antibiotic resistance [135], as well as anti-inflammatory [136] and cytotoxic activities. Tanzawaic
acid P (201), isolated from a marine-derived fungus, Penicillium sp. CF07370, was selectively toxic
to U937 cancer cells via the activation of the mitochondrial apoptotic pathway [137]. Computational
ligand-protein-DNA binding analysis revealed that tanzawaic acid D (202), isolated from P. steckii,
effectively and selectively bound to the transcription factor, forkhead box O1 (FOXO1), which
can regulate epidermal growth factor receptor (EFGR) signaling, suppress cell cycle progression,
and stabilize the conformation of FOXO1-DNA [138].
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6. Miscellaneous Compounds

Polyphenol derivatives are the most abundant fungal secondary metabolites. Unsurprisingly,
marine Penicillium sp. is a good source of polyphenol derivatives. Two trimeric peniphenylanes A,
B (213–214) and three dimeric peniphenylanes D, F, G (215–217) (Figure 30) were isolated from the deep
sea sediment-derived fungus, P. fellutanum HDN14-323. Peniphenylane D (215) displayed more potent
and extensive cytotoxicity with IC50 values in the range of 9–30 µM in three cancer cell lines (Hela,
HL-60, and HCT-116), while doxorubicin was used as a positive control with the IC50 values of 0.2, 0.6,
and 0.2 µM, respectively [141]. The marine sediment-derived fungus, P. terrestre was found to produce
several gentisyl alcohol derivatives, including trimeric terrestrol A (225) and dimeric terrestrols B–H
(218–224), which were found to be cytotoxic against HL-60, MOLT-4, BEL-7402, and A549 cancer cell
lines with IC50 values in the range of 5–65 µM [142]. Interestingly, the marine mangrove endogenous
P. expansum 091006 yielded four novel cytotoxic phenolic bisabolane sesquiterpenoids (expansols A–C;
E (226–229)) with IC50 values of 15.7, 5.4, 18.2, and 20.8 µM, respectively, in HL-60 cells. In addition,
expansol B (227) showed significant cytotoxicity against A549 cells (IC50 = 1.9 µM), while etoposide was
used as a positive control with IC50 values of 0.042 and 0.63 µM for two cell lines, respectively [143,144].
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Patulin (230) (Figure 31) is a mycotoxin commonly found in rotting fruits, and is used
as a potassium-uptake inhibitor or inducer of ion flux across cell membranes. An alga-derived
Penicillium sp. was found to produce patulin (230) along with (+)-epiepoxydon (231), both of which
exhibited extraordinary cytotoxic effects in P388 cells (IC50 = 0.06 and 0.2 µg/mL, respectively).
Furthermore, (+)-epiepoxydon (231) had significant cytotoxicity against seven other cancer cell
lines with IC50 values in the range of 0.3–1.5 µg/mL [111]. The isobenzofurannone derivative (232)
isolated from a mangrove endophytic Penicillium sp. displayed moderate cytotoxicity against KB and
KBV200 cells (IC50 = 6 and 10 µg/mL, respectively) [145], whereas the penicillic acid (233), isolated
from marine-derived Penicillium strain, exhibited moderate cytotoxicity against POS1, AT6-1(murine
prostatic carcinoma), and L929 (murine fibroblasts) cell lines (IC50 = 7.8, 29.4, and 12.9 µM, respectively)
while doxorubicin was used as a positive control with IC50 values of 0.04~2 µM [84].
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7. Conclusions

The rapid development of marine biotechnology and ever increasing needs of industrial
applications resulted in the emergence of marine natural products as alternative drug sources
in the early 1990s [146]. Marine-associated microorganisms are sensitive to culture conditions;
therefore, strains living in extremely competitive environments tend to provide high potency
leads (compound 154 in this review inhibited OVCAR-3 cell line at nanomolar concentrations).
Furthermore, the activation of silent gene clusters may activate new biosynthetic pathways that
produce compounds with novel structure, which provide equally valid leads (compounds 44 and
45, which have unique skeletons, had cytotoxic effects in the five cancer cell lines with IC50 values
of ~10 µM). Interestingly, the halogenation of compound 31, which was completely inactive, produces
compound 32, which exhibited a much greater potency (compound 32 had significant cytotoxicity
in 22Rv1 cells at nanomolar levels) [147].

The genus Penicillium has been explored for antitumor leads in recent years [148]. However,
the marine ecological diversity of this genus offers more opportunities for drug discovery. This review
includes more than 200 cytotoxic or antitumor compounds isolated from marine Penicillium fungus
and chemically synthesized analogues. Of these, the major metabolites are alkaloids, particularly
diketopiperazine alkaloids and indole alkaloids (Appendix A, Table A1). Cytochalasan alkaloids,
which are indole alkaloids, constitute a large class of mycotoxins that exhibit significant cytotoxicity
against P388 cells (IC50 < 1 µg/mL). Furthermore, a series of diketopiperazine alkaloids, gliotoxin
analogues, and roquefortine analogues with remarkable cytotoxicity at nanomolar levels are potential
anticancer leads. Terpenoid metabolites appear to be more effective against cancer cell lines than
steroids; in particular, compounds 99, 104, and 132 were effective at nanomolar levels. Furthermore,
citrinins (chromone analogues) and their derivatives, which are polyketide mycotoxins, possess
excellent cytotoxic activities. Penostatins (cytotoxic polyketides) are cytotoxic to P388 cells with
IC50 values of ~1 µg/mL. With the exception of 210 and 211, lipopeptides exhibited moderate
cytotoxicity. In addition, the Penicillium genus can produce polyphenolic compounds (terrestrols) with
pronounced cytotoxicity.

Although our review includes most of the cytotoxic metabolites described in the literature,
more compounds are yet to be identified in marine Penicillium sp. Different marine hosts and
environments can also affect the biosynthesis of metabolites by endozoic fungi. Notably, over 99% of the
symbiotic microorganisms cannot be cultured. Further investigations may utilize metagenome libraries
of the host organisms to identify more metabolites produced by symbiotic microorganisms [149].
Additionally, further studies are needed to explore the functional mechanisms of the bioactive
compounds and to optimize their production.
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Appendix A

Table A1. Secondary metabolites from Penicillium strain of marine origin. Items are listed according to the metabolite numbers used in this review.

Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

Penochalasin A (1) Penicillium sp. Marine alga Indole alkaloid P388 0.4 µg/mL [8]

Penochalasin B (2) Penicillium sp. Marine alga Indole alkaloid P388 0.3 µg/mL [8]

Penochalasin C (3) Penicillium sp. Marine alga Indole alkaloid P388 0.5 µg/mL [8]

Penochalasin D (4) Penicillium sp. Marine alga Indole alkaloid P388 3.2 µg/mL [7]

Penochalasin E (5) Penicillium sp. Marine alga Indole alkaloid P388 2.1 µg/mL [7]

Penochalasin F (6) Penicillium sp. Marine alga Indole alkaloid P388 1.8 µg/mL [7]

Penochalasin G (7) Penicillium sp. Marine alga Indole alkaloid P388 1.9 µg/mL [7]

Penochalasin H (8) Penicillium sp. Marine alga Indole alkaloid P388 2.8 µg/mL [7]

Penochalasin I (9) P. chrysogenum
V11 Mangrove Indole alkaloid MDA-MB-435,

SGC-7901, A549 (7.55, 7.32, 16.13) µM [6]

Penochalasin J (10) P. chrysogenum
V11 Mangrove Indole alkaloid MDA-MB-435,

SGC-7901, A549 (36.68, 37.70, 35.93) µM [6]

Chaetoglobosin A (11) P. chrysogenum
V11 Mangrove Indole alkaloid P388, MDA-MB-435,

SGC-7901, A549
0.6 µg/mL (37.56, 7.84,

6.56) µM

Cell-cycle arrest
induction,

membrane ruffling
inhibition, and cell

migration

[6,8,9]

Chaetoglobosin C (12) P. chrysogenum
V11 Mangrove Indole alkaloid MDA-MB-435,

SGC-7901, A549 (19.97, 15.36, 17.82) µM [6]

Chaetoglobosin E (13) P. chrysogenum
V11 Mangrove Indole alkaloid A549 36.63 µM [6]

Chaetoglobosin F (14) P. chrysogenum
V11 Mangrove Indole alkaloid P388, MDA-MB-435,

SGC-7901, A549
0.9 µg/mL, (37.77, 26.53,

27.72) µM [6,8]

Chaetoglobosin G (15) P. chrysogenum
V11 Mangrove Indole alkaloid MDA-MB-435,

SGC-7901, A549 (38.77, 25.86, 27.63) µM [6]

Chaetoglobosin O (16) Penicillium sp. Marine alga Indole alkaloid P388 2.4 µg/mL [7]

Cytoglobosin C (17) P. chrysogenum
V11 Mangrove Indole alkaloid MDA-MB-435,

SGC-7901, A549 (12.58, 8.15, 3.35) µM [6]

18 Penicillium sp.
JMF034 Deep sea sediment Diketopiperazine P388 3.4 µM [12]
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Table A1. Cont.

Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

19 Penicillium sp.
JMF034 Deep sea sediment Diketopiperazine P388 0.058 µM HMT G9a

(IC50 = 55 µM) [12]

20 Penicillium sp.
JMF034 Deep sea sediment Diketopiperazine P388 0.11 µM [12]

21 Penicillium sp.
JMF034 Deep sea sediment Diketopiperazine P388 0.11 µM HMT G9a

(IC50 = 58 µM) [12]

22 Penicillium sp.
JMF034 Deep sea sediment Diketopiperazine P388 0.056 µM HMT G9a

(IC50 = 2.6 µM) [12]

Gliotoxin (23) Penicillium sp.
JMF034 Deep sea sediment Diketopiperazine P388 0.024 µM

HMT G9a
(IC50 = 6.4 µM)

Dual inhibitor of
farnesyltransferase

and
geranylgeranyltransferase I

[12,13]

Gliotoxin G (24)
Penicillium sp.

JMF034
P. brocae MA-231

Deep sea sediment
Mangrove Diketopiperazine P388 A2780, A2780

CisR
0.02 µM (0.664,

0.661) µM
HMT G9a

(IC50 = 2.1 µM)
[12]
[14]

Brozazine A (25) P. brocae MA-231 Mangrove Diketopiperazine

Du145, Hela, HepG2,
MCF-7, NCI-H460,
SGC-7901, SW1990,

SW480, U251

(4.2, 6.8, 6.4, 5.5, 4.9, 2.6,
6.0, 2.0, 5.2) µM [16]

Brozazine B (26) P. brocae MA-231 Mangrove Diketopiperazine

Du145, Hela, HepG2,
MCF-7, NCI-H460,
SGC-7901, SW1990,

SW480, U251

(3.6, 5.3, 5.5, 6.1, 4.0, 2.4,
6.4, 1.2, 3.5) µM [16]

Brozazine E (29) P. brocae MA-231 Mangrove Diketopiperazine

Du145, Hela, HepG2,
MCF-7, NCI-H460,
SGC-7901, SW1990,

U251

(11.2, 4.3, 5.6, 9.0, 12.4,
3.3, 2.1, 6.1) µM [16]

Brozazine F (30) P. brocae MA-231 Mangrove Diketopiperazine

Du145, Hela, HepG2,
MCF-7, NCI-H460,
SGC-7901, SW1990,

U251

(1.7, 6.9, 2.9, 3.0, 0.89,
8.0, 5.9, 5.3) µM [16]

N-methylpretrichodermam
ide B/adametizines A (32)

P. adametzioides
AS-53

Penicillium sp.

Marine
sponge/sediment/alga Diketopiperazine

Artemia salina 4.8 µM
[17–19]L5178Y, 22Rv1, PC-3,

LNCaP (2, 0.51, 5.11, 1.76) µM
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Table A1. Cont.

Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

Roquefortine C (33) Penicillium sp. Deep sea sediment Diketopiperazine

Activate
P-glycoprotein and
inhibit P450-3A and
other haemoproteins

[20,22]

Roquefortine F (34) Penicillium sp. Deep sea sediment Diketopiperazine A549, HL-60,
BEL-7402, MOLT-4

(14.0, 33.6, 13.0,
21.2) µM [22]

Roquefortine G (35) Penicillium sp. Deep sea sediment Diketopiperazine A549, HL-60 (42.5, 36.6) µM [22]

Meleagrin (38)
Penicillium sp.

P. commune
SD-118

Deep sea sediment Indole alkaloid
A549, HL-60 HepG2,

NCI-H460, Hela,
DU145, MDA-MB-231,

(19.9, 7.4) µM (12.0, 22.0,
20.0, 11.0, 5.0) µg/mL

Arrest the cell cycle
through G2/M

phase
Inhibitor of tubulin

polymerization

[21–23]

Meleagrin B (39) Penicillium sp. Deep sea sediment Indole alkaloid A549, HL-60,
BEL-7402, MOLT-4 (2.7, 6.7, 1.8, 2.9) µM [21,22]

Meleagrin C (40) Penicillium sp. Deep sea sediment Indole alkaloid A549, BEL-7402,
MOLT-4 (9.9, 10.0, 4.7) µM [22]

Meleagrin D (41) Penicillium sp. Deep sea sediment Indole alkaloid A549 32.2 µM [21]

Meleagrin E (42) Penicillium sp. Deep sea sediment Indole alkaloid A549 55.9 µM [21]

Penicimutanin (43)
Mutant P.

purpurogenum
G59

Marine soil Diketopiperazine K562, Hela, MCF-7 IR% (100 µg/mL):
22.6%, 17.9%, 26.5% [24]

Penicimutanin A (44)
Mutant P.

purpurogenum
G59

Marine soil Diketopiperazine K562, HL-60, Hela,
BGC-823, MCF-7

(11.4, 5.4, 9.5, 8.0, 5.4)
µM [24]

Penicimutanin B (45)
Mutant P.

purpurogenum
G59

Marine soil Diketopiperazine K562, HL-60, Hela,
BGC-823, MCF-7

(19.9, 12.1, 17.7, 16.6,
8.0) µM [24]

Fructigenine A (46)
Mutant P.

purpurogenum
G59

Marine soil Diketopiperazine K562, Hela, MCF-7,
BGC-823

IR% (100µg/mL): 20.8%,
55.3%, 65.6%, 34.8% [24,25]

11,11′-dideoxyverticillin A
(49) Penicillium sp. Marine alga Diketopiperazine HCT-116 30 ng/mL

Induce G2/M arrest
through p38 MAPK

pathway;
Epidermal growth

factor receptor
tyrosine kinase

inhibitor

[28,30,31]
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Table A1. Cont.

Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

11′-deoxyverticillin A (50) Penicillium sp. Marine alga Diketopiperazine HCT-116 30 ng/mL [28]

Penitrem A (51) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)
MDA-MB-231
(anti-invasion)

(11.9, 9.8) µM
8.7 µM

IR% (15 µM)> 75%
BK channel inhibitor [34]

Penitrem B (52) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)

(5.5, 13.7) µM
10.3 µM [34]

Penitrem D (53) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)

(8.3, 29.7) µM
9.2 µM [34]

Penitrem E (54) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)

(17.5, 25.4) µM
20.3 µM [34]

Penitrem F (55) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)

(15.0, 13.8) µM
35.0 µM [34]

6-bromopenitrem B (56) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)
MDA-MB-231
(anti-invasion)

(19.3, 18.8) µM
30.3 µM

IR%(15 µM) > 40%
[34]

6-bromopenitrem E (57) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)

(16.7, 8.5) µM
9.6 µM BK channel inhibitor [34]

Emnidole SB (59) P. commune
isolate GS20 Sponge/Sediment Indole alkaloid

MCF-7, MDA-MB-231
(antiproliferative)

MDA-MB-231
(antimigratory)

(10.1, 21.3) µM
19.0 µM [34,37]
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Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

Communesin A (60) Penicillium sp. Marine
alga/Sediment Indole alkaloid P388 3.5 µg/mL [38,40]

Communesin B (61) Penicillium sp. Marine
alga/Sponge/Sediment Indole alkaloid

P388, U-937, THP-1,
NAMALWA, MOLT-3,

SUP-B15

(0.45, 10.4, 11.4, 9.9, 8.1,
7.2) µg/mL [38–40]

Communesin C (62) Penicillium sp. Marine sponge Indole alkaloid
U-937, THP-1,

NAMALWA, MOLT-3,
SUP-B15

(11.3, 13.1, 8.2, 8.6,
10.8) µg/mL [39]

Communesin D (63) Penicillium sp. Marine sponge Indole alkaloid
U-937, THP-1,

NAMALWA, MOLT-3,
SUP-B15

(13.1, 16.2, 14.6, 9.9,
9.0) µg/mL [39]

Penioxamide (64) P. oxalicum
EN-201 Mangrove Indole alkaloid A. salina 5.6 µM [42]

65 P. brefeldianum
SD-273 Marine sediment Indole alkaloid A. salina 9.4 µM [43]

Penipaline B (66) P. paneum SD-44 Marine sediment Indole alkaloid A549, HCT-116 (20.44, 14.88) µM [44]

Penipaline C (67) P. paneum SD-44 Marine sediment Indole alkaloid A549, HCT-116 (21.54, 18.54) µM [44]

Terretrione A (68) P. vinaceum Marine sponge 1,4-diazepane alkaloid MDA-MB-231 17.7 µM [45]

Terretrione C (69) Penicillium
sp.CYE-87 Marine tunicate 1,4-diazepane alkaloid MDA-MB-231 17.6 µM [46]

Terretrione D (70) Penicillium
sp.CYE-87 Marine tunicate 1,4-diazepane alkaloid MDA-MB-231 16.5 µM [46]

Penicillenol A1 (71) Penicillium sp.
GQ-7/P. citrinum

Mangrove/Marine
sediment Pyrrolidinone alkaloid A-375, HL-60, A549,

BEL-7402, P388
3.2 µg/mL (0.76, 23.8,

13.03, 8.85) µM [47,49]

Penicillenol A2 (72) Penicillium sp.
GQ-7/P. citrinum

Mangrove/Marine
sediment Pyrrolidinone alkaloid A-375

HL-60
13.8 µg/mL

16.26 µM [47,49]

Penicillenol B1 (73) Penicillium sp.
GQ-7/P. citrinum

Mangrove/Marine
sediment Pyrrolidinone alkaloid A-375

HL-60
2.8 µg/mL

3.2 µM [47,49]

Penicillenol B2 (74) Penicillium sp.
GQ-7/P. citrinum

Mangrove/Marine
sediment Pyrrolidinone alkaloid A-375

HL-60
0.97 µg/mL

7.65 µM [47,49]

Penicillenol D1 (75) P. citrinum Marine sediment Pyrrolidinone alkaloid A549, HL-60 (17.2, 18.5) µg/mL [48]

Penicillenol D2 (76) P. citrinum Marine sediment Pyrrolidinone alkaloid A549, HL-60 (12.1, 14.5) µg/mL [48]
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Penitrinine A (77) P. citrinum Marine sediment Pyrrolidinone alkaloid A-375, SPC-A1,
HGC-27 (20.12, 28.67, 29.49) µM

Upregulate Bax,
downregulate Bcl-2,

suppress MMP-9
and TIMP-1

[50]

78 P. janczewskii Sea water Quinolinone

MDA-MB-231,
DU-145, SKOV-3,

HT-29, A549, CAKI-1,
SK-MEL-2, K562

IR % (10 µg/mL) =
20~50% [52]

79 P. janczewskii Sea water Quinolinone

MDA-MB-231,
DU-145, SKOV-3,

HT-29, A549, CAKI-1,
SK-MEL-2, K562

IR % (10 µg/mL) =
30~90% [52]

80 P. janczewskii Sea water Quinolinone
MDA-MB-231,

DU-145, SKOV-3,
HT-29

IR % (10 µg/mL) =
91.6%, 69.2%, 79.8%,

96.0%
[52]

81
Penicillium sp.

ghq208/Penicillium
sp.

Marine
sediment/Mangrove Quinolinone 95-D, HepG2 (0.57, 6.5) µg/mL [53,54]

82 Penicillium sp.
ghq208 Marine sediment Quinolinone HepG2 13.2 µM [53]

83 P. commune
SD-118 Deep sea sediment Quinazolinone SW1990 20 µg/mL [23]

84 P. chrysogenum
EN-118 Marine alga Quinazolinone DU145, A549, Hela 8 µg/mL [56]

85 P. oxalicum
0312F1 Marine (not clear) Quinazolinone SGC-7901, BEL-7404 IR % (200 µg/mL) =

30~40% [55]

Penipacid A (86) P. paneum SD-44 Deep sea sediment Amidine alkaloid RKO 8.4 µM [57]

Penipacid E (87) P. paneum SD-44 Deep sea sediment Amidine alkaloid RKO 9.7 µM [57]

88 P. paneum SD-44 Deep sea sediment Imine alkaloid Hela 6.6 µM [57]

Penipanoid A (89) P. paneum SD-44 Deep sea sediment Triazole alkaloid SMMC-7721 54.2 µM [58]

Bis-sclerotioramin (90) Penicillium 303# Mangrove Azaphilone alkaloid MDA-MB-231 7.13 µM [59]

Sorbicillactone (91) P. chrysogenum Marine sponge Miscellaneous
Alkaloid L5178Y 2.2 µg/mL Selective

anti-leukemic [60]
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Brocaeloid B (92) P. brocae Mangrove Miscellaneous
Alkaloid A. salina 36.7 µM [62]

Varitatin (93) Mutant P. varibile Mangrove Amide alkaloid HCT-116 2.8 µM

IR%(1µM) = 50%
and 40%

(PDGFR-βand
ErbB4)

[63]

18-hydroxydecaturin B (94) P. oxalicum
EN-201 Mangrove Pyridinyl-α-pyrone

alkaloid A. salina 2.3 µM [42]

Xantocillin X (95) P. commune
SD-118 Deep sea sediment Isocyanide alkaloid

MCF-7, HepG2,
NCI-H460, Hela,

DU145, MDA-MB-231

(12, 7, 10, 10, 8,
8) µg/mL

Inhibit MEK/EPK
pathway and

activate class III
PI3K/Beclin 1

pathway

[23,67]

96 Penicillium sp.
PR19 N-1 Marine sludge Sesquiterpene HL-60, A549 (45.8, 82.8) µM [70]

97 Penicillium sp.
PR19 N-1 Marine sludge Sesquiterpene HL-60, A549 (28.3, 5.2) µM [70]

98 Penicillium sp.
PR19 N-1 Marine sludge Sesquiterpene HL-60, A549 (11.8, 12.2) µM [71]

99 Penicillium sp.
BL 27-2 Sea mud Sesquiterpene P388, A549, HL-60,

BEL-7402
(0.073, 0.096, 0.065,

4.59) µM [72]

Sporogen-AO 1 (100) Penicillium sp.
BL 27-2 Sea mud Sesquiterpene P388, A549, HL-60,

BEL-7402 (10.1, 8.81, 10.4, 5.7) µM [72]

101 Penicillium sp.
BL 27-2 Sea mud Sesquiterpene P388, A549, HL-60,

BEL-7402
(8.71, 3.51, 7.75,

11.8) µM [72]

Adametacorenol B (102) P. adametzioides
AS-53 Marine sponge Diterpene NCI-H446 5.0 µM [17]

Conidiogenone B (103) Penicillium sp. Deep sea sediment Diterpene A549, HL-60 (40.3, 28.2) µM [22]

Conidiogenone C (104) Penicillium sp. Deep sea sediment Diterpene HL-60, BEL-7402 (0.038, 0.97) µM [22]

Conidiogenone D (105) Penicillium sp. Deep sea sediment Diterpene A549, HL-60,
BEL-7402, MOLT-4 (9.3, 5.3, 11.7, 21.1) µM [22]

Conidiogenone E (106) Penicillium sp. Deep sea sediment Diterpene A549, HL-60, MOLT-4 (15.1, 8.5, 25.8) µM [22]

Conidiogenone F (107) Penicillium sp. Deep sea sediment Diterpene A549, HL-60,
BEL-7402 (42.2,17.8, 17.1) µM [22]
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Conidiogenone G (108) Penicillium sp. Deep sea sediment Diterpene A549, HL-60,
BEL-7402, MOLT-4 (8.3, 1.1, 43.2, 4.7) µM [22]

Brevione I (109) Penicillium sp. Deep sea sediment Diterpene MCF-7 7.44 µM [73]

Brevione A (110) Penicillium sp. Deep sea sediment Diterpene MCF-7 28.4 µM [73]

Penicisteroid A (111) P. chrysogenum
QEN-24S Marine alga Steroid Hela, SW1990,

NCI-H460 (15, 31, 40) µg/mL [74]

112 Penicillium sp. Marine moss Steroid HepG2 10.4 µg/mL [75]

113 Penicillium sp. Marine moss Steroid HepG2 15.6 µg/mL [75]

114 Penicillium sp. Marine moss Steroid HepG2 20.7 µg/mL [75]

115 Penicillium sp. Marine moss Steroid HepG2 16.8 µg/mL [75]

116 Penicillium sp. Marine moss Steroid HepG2 21.3 µg/mL [75]

117 P. stoloniferum
QY2-10 Sea squirt Steroid P388 4.07 µM [76]

118 Penicillium sp. Marine sponge Steroid K562 5.54 µM [77]

119 Penicillium sp. Marine sponge Steroid K562 4.38 µM [77]

Dankasterone A (120) Penicillium sp. Marine sponge Steroid HL-60, Hela, K562 (0.78, 4.11, 7.57) µM [77]

Dankasterone B (121) Penicillium sp. Marine sponge Steroid HL-60, Hela, K562 (3.25, 4.74, 7.89) µM [77]

7-deacetoxyyanuthone
(122) Penicillium sp. Marine (not clear) Meroterpene

A549, SKOV-3,
SKMEL-2, XF498,

HCT-15

(7.74, 6.35, 3.86, 10.04,
10.07) µg/mL [79]

Farnesylbenzenediol (123) Penicillium sp. Marine (not clear) Meroterpene
A549, SKOV-3,

SKMEL-2, XF498,
HCT-15

(4.73, 5.31, 4.80, 5.94,
6.11) µg/mL [79]

Farnesylquinone (124) Penicillium sp. Marine (not clear) Meroterpene
A549, SKOV-3,

SKMEL-2, XF498,
HCT-15

(25.44, 37.29, 18.41,
38.07, 42.56) µg/mL [79]

Penicillone A (125) Penicillium sp.
F11 Marine (not clear) Meroterpene HT1080, Cne2 (45.8, 46.2) µM [80]

Phenylpyropene E (126) P. concentricum
ZLQ-69 Sea water Sesquiterpene MGC-803 19.1 µM [81]
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Phenylpyropene F (127) P. concentricum
ZLQ-69 Sea water Sesquiterpene MGC-803 13.6 µM [81]

Penicillipyrone A (128) Penicillium sp.
F446 Marine sediment Sesquiterpene K562, A549 (28, 15) µM [82]

Penicillipyrone B (129) Penicillium sp.
F446 Marine sediment Sesquiterpene K562, A549 (50, 17) µM [82]

130 Penicillium 303# Mangrove Meroterpene MDA-MB-435, HepG2,
HCT-116, A549

(34.25, 24.56, 33.72,
37.82) µg/mL [59]

131 Penicillium 303# Mangrove Meroterpene MDA-MB-435, HepG2,
HCT-116, A549

(31.32, 23.87, 29.19,
34.06) µg/mL [59]

Ligerin (132) Penicillium sp. Sea water Merosesquiterpene POS1, SaOS2, MG63 (117/78, 137, 1459) nM [84,85]

Oxalicumone D (133) P. oxalicum
SCSGAF 0023 Marine gorgonian Chromone BGC823, MOLT-4 (10.10, 5.74) µM [87]

Oxalicumone E (134) P. oxalicum
SCSGAF 0023 Marine gorgonian Chromone

H1975, U937, K5652,
BGC823, MOLT-4,

MCF-7, HL-60, Huh-7

(5.45, 4.16, 8.80, 1.96,
1.36, 4.32, 2.96, 6.33) µM [87]

Oxalicumone A (135) P. oxalicum
SCSGAF 0023 Marine gorgonian Chromone

H1975, U937, K5652,
BGC823, MOLT-4,

MCF-7, HL-60, Huh-7,
A375, A549, Hela,

HepG2, SW-620, L-02

(10.38, 2.35, 4.53, 4.89,
0.30, 11.30, 2.55, 9.49,

11.7, 41.9, 46.2, 77.8, 22.6,
99.0) µM

[87,88]

Oxalicumone B (136) P. oxalicum
SCSGAF 0023 Marine gorgonian Chromone U937, MOLT-4, HL-60,

A375, Hela, SW-620
(5.00, 2.30, 6.41, 27.8,

60.9, 40.6) µM [87,88]

Chromosulfine (145)
Mutant P.

purpurogenum
G59

Marine (not clear) Chromone K562, HL-60, BGC-823,
Hela, MCF-7

(60.8, 16.7, 73.8, 75.4,
59.2) µM [91]

Secalonic acid F (146) Penicillium sp. Deep sea sediment Xanthone HL-60

Modulate Rho GDP
dissociation

inhibitor 2 Activate
caspase 3 and

caspase 9

[92,93]

Penimethavone A (147) P. chrysogenum Marine gorgonian Flavone Hela,
rhabdomyosarcoma (8.41, 8.18) µM [94]

Bipenicillisorin (148) P. chrysogenum
SCSIO 41001 Deep sea sediment Coumarin K562, A549, Huh-7 (6.78, 6.94, 2.59) µM [95]
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Monocerin (149) Penicillium sp. Marine sponge Coumarin L5178Y 8.4 µM [96]

150 Penicillium sp.
ZH16 Mangrove Coumarin KB, KBv200 (5, 10) µg/mL [97]

Citrinin (151) Penicillium sp
FF001 Marine sponge Azaphilone

polyketide
Inhibit respiration

complex III [99,101]

Penicitrinol L (152) P. citrinum Marine sediment Azaphilone
polyketide SW-620 25.6 µM [48]

Penicitrinol M (153) P. citrinum Marine sediment Azaphilone
polyketide SW-620 20.9 µM [48]

Berkelic acid (154) Penicillium sp. Acid mine lake Azaphilone
polyketide OVCAR-3 (in NCI60) 91 nM

Inhibit MMP-3 (GI50
= 1.87 µM) Inhibit

caspase 1
(GI50 = 98 µM)

[102]

Sargassopenilline C (155) P. thomii Marine alga Azaphilone
polyketide

Inhibit the
oncogenic nuclear

factor AP-1
(IC50 = 15 µM)

[104]

Sculezonone A (156) Penicillium sp. Marine sponge Azaphilone
polyketide

Inhibit both DNA
polymerases (α

and β)
[105]

Sculezonone B (157) Penicillium sp. Marine sponge Azaphilone
polyketide

Inhibit both DNA
polymerases (α

and β)
[105]

Dicitrinone B (158) P. citrinum Marine sediment Azaphilone
polyketide

Induce apoptosis
through ROS-related

caspase pathway
[106]

Perinadine A (159) P. citrinum Marine fish Azaphilone
polyketide L1210 20 µg/mL [107]

Herqueiazole (160) Penicillium sp
F011 Marine sediment Azaphilone

polyketide A549 67.3 µM [108]

Comazaphilone D (161) P. commune
QSD-17 Marine sediment Azaphilone

polyketide SW1990 51 µM [109]

Comazaphilone E (162) P. commune
QSD-17 Marine sediment Azaphilone

polyketide SW1990 26 µM [109]
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Comazaphilone F (163) P. commune
QSD-17 Marine sediment Azaphilone

polyketide SW1990 53 µM [109]

Pinophilin A (164) P. pinophilum
Hedgcok Marine seaweed Azaphilone

polyketide

A549, BALL-1,
HCT-116, Hela,

NUGC-3

(52.5, 50.2, 51.3, 55.6,
54.7) µM

Inhibit the
mammalian DNA

polymerases A, B, Y
family

[110]

Pinophilin B (165) P. pinophilum
Hedgcok Marine seaweed Azaphilone

polyketide

A549, BALL-1,
HCT-116, Hela,

NUGC-3

(93.1, 90.4, 92.5, 99.0,
96.8) µM

Inhibit the
mammalian DNA

polymerases A, B, Y
family

[110]

Sch 725680 (166) P. pinophilum
Hedgcok Marine seaweed Azaphilone

polyketide

A549, BALL-1,
HCT-116, Hela,

NUGC-3

(65.7, 62.0, 64.6, 68.8,
66.4) µM

Inhibit the
mammalian DNA

polymerases A, B, Y
family

[110]

Penostatin A (167) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 0.8 µg/mL PTP1B inhibitor

(IC50 = 15.87 µM) [111,113]

Penostatin B (168) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 1.2 µg/mL PTP1B inhibitor

(IC50 = 33.65 µM) [111,113]

Penostatin C (169) Penicillium sp.
OUPS-79 Marine alga Polyketide

P388, BSY-1, MCF-7,
HCC2998, NCI-H522,
DMS114, OVCAR-3,

MKN1

(1.0, 2.0, 1.6, 2.0, 2.5, 1.9,
2.4, 1.7) µg/mL

PTP1B inhibitor
(IC50 = 0.37 µM) [111,113]

Penostatin D (170) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 11.0 µg/mL [111]

Penostatin E (171) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 0.9 µg/mL [111]

Penostatin F (172) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 1.4 µg/mL [112]

Penostatin G (173) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 0.5 µg/mL [112]

Penostatin H (174) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 0.8 µg/mL [112]

Penostatin I (175) Penicillium sp.
OUPS-79 Marine alga Polyketide P388 1.2 µg/mL [112]
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176 P. oxalicum
HSY05 Marine sediment Phenolic polyketide DNA topoisomerase

I inhibitor [117]

177
Co-cultured

Penicillium sp.
WC-29-5

Mangrove Phenolic polyketide H1975 3.97 µM [118]

178
Co-cultured

Penicillium sp.
WC-29-5

Mangrove Phenolic polyketide H1975, HL-60 (5.73, 3.73) µM [118]

(+)-5-chlorogriseofulvin
(179)

P. canescens
MMS460 Sea water Phenolic polyketide KB IR% (0.6 µM) = 49% [119]

Griseophenone I (180) P. canescens
MMS460 Sea water Phenolic polyketide KB IR% (0.6 µM) = 58% [119]

Griseophenone G (181) P. canescens
MMS460 Sea water Phenolic polyketide KB IR% (0.6 µM) = 47% [119]

Iso-monodictyphenone
(182)

Penicillium sp.
MA-37 Mangrove Phenolic polyketide A. salina 25.3 µM [120]

Penikellide A (183) Penicillium sp.
MA-37 Mangrove Phenolic polyketide A. salina 14.2 µM [120]

Penikellide B (184) Penicillium sp.
MA-37 Mangrove Phenolic polyketide A. salina 39.2 µM [120]

Penicillide (185) Penicillium sp.
ZLN29 Marine sediment Phenolic polyketide HepG2 (6.7/9.7, 7.8) µM

ACAT and
nonpeptide calpain

inhibitor
[121,122,124,125]

Prepenicillide (186) Penicillium sp.
ZLN29 Marine sediment Phenolic polyketide HepG2, RD 9.9 µM [124]

Hydroxypenicillide (187) P. pinophilum Marine gorgonian Phenolic polyketide Hela 6.1 µM [125]

Nidurufin (188) P. flavidorsum
SHK1-27 Marine sediment Anthraquinone K562 12.6 µM

Induce cell cycle
arrest at G2/M

transition
[126]

Averantin (189) P. flavidorsum
SHK1-27 Marine sediment Anthraquinone K562 12.6 µM [126]

190 P. terrestre Marine sediment Polyketide A549, P388 (5.3, 15.7) µM [128]



Mar. Drugs 2017, 15, 329 34 of 44

Table A1. Cont.

Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

191 P. terrestre Marine sediment Polyketide A549, P388 (7.6, 10.5) µM [128]

Dihydrobisvertinolone (192) P. terrestre Marine sediment Polyketide A549, P388 (0.52, 1.7) µM [128]

193 P. terrestre Marine sediment Polyketide A549 1.4 µM [128]

194 P. terrestre Marine sediment Polyketide A549, P388 (2.1, 2.8) µM [129]

195 P. terrestre Marine sediment Polyketide A549, P388 (4.3, 8.8) µM [129]

Trichodimerol (196) P. terrestre Marine sediment Polyketide A549, P388 (4.7, 0.33) µM [129]

Chloctanspirone A (197) P. terrestre Marine sediment Polyketide HL-60, A549 (9.2, 39.7) µM [131]

Chloctanspirone B (198) P. terrestre Marine sediment Polyketide HL-60 37.8 µM [131]

(10E,15S)-10,11-Dehydrocurvularin
(199)

Penicillium sp.
DRF2 Marine sponge Macrolide 36 tumor cell lines 0.28~6 µM [133,134]

Curvularin (200) Penicillium sp.
DRF2 Marine sponge Macrolide HSP90 inhibitor [132]

Tanzawaic acid P (201) Penicillium sp.
CF07370 Marine sediment Polyketide Jurkat, K562, Raji (28.6, 30.2, 20.3) µM

Active the
mitochondrial

apoptotic pathway
[137]

Tanzawaic acid D (202) P. steckii Marine (not clear) Polyketide

Bind to the FOXO1
which regulates

EFGR signaling and
stabilizes the
FOXO1-DNA
conformation

[138]

Penicimutamide A (203)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
10~40% [140]

Penicimutamide B (204)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
25~40% [140]

Penicimutamide C (205)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
10~40% [140]

Penicimutamide D (206)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
20~40% [140]
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Penicimutamide E (207)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
10~45% [140]

Penicimutamide F (208)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
10~50% [140]

Penicimutamide G (209)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
10~20% [140]

Fellutamide A (210) P. fellutanum Marine fish Lipopepetide P388, L1210 (0.2, 0.8) µg/mL [139]

Fellutamide B (211) P. fellutanum Marine fish Lipopepetide P388, L1210 (0.1, 0.7) µg/mL [139]

Fellutamide C (212)
Mutant P.

purpurogenum
G59

Marine soil Lipopepetide K562, HL-60, Hela,
BGC-823, MCF-7

IR% (100 µg/mL) =
30~50% [140]

Peniphenylane A (213) P. fellutanum
HDN14-323 Deep sea sediment Polyphenol Hela 14.5 µM [141]

Peniphenylane B (214) P. fellutanum
HDN14-323 Deep sea sediment Polyphenol Hela, HCT-116 (11.4, 15.8) µM [141]

Peniphenylane D (215) P. fellutanum
HDN14-323 Deep sea sediment Polyphenol Hela, HL-60, HCT-116 (9.3, 18.2, 31.7) µM [141]

Peniphenylane F (216) P. fellutanum
HDN14-323 Deep sea sediment Polyphenol Hela 29.3 µM [141]

Peniphenylane G (217) P. fellutanum
HDN14-323 Deep sea sediment Polyphenol Hela, HL-60, HCT-116 (16.6, 23.2, 24.7) µM [141]

Terrestol B (218) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (6.1, 5.8, 18.3, 62.3) µM [142]

Terrestol C (219) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (5.5, 5.6, 18.2, 57.3) µM [142]

Terrestol D (220) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (5.3, 5.5, 14.3, 38.5) µM [142]

Terrestol E (221) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (54.7, 6.4, 9.6, 59.0) µM [142]
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Table A1. Cont.

Metabolites Producing Stain Environment
Source Type Cell Lines/Brine

Shrimp IC50, LD50, or IR (%) Target References

Terrestol F (222) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402

(55.0, 58.1, 13.8,
63.2) µM [142]

Terrestol G (223) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (5.1, 6.5, 5.7, 6.0) µM [142]

Terrestol H (224) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (6.3, 5.8, 33.8, 61.9) µM [142]

Terrestol A (225) P. terrestre Marine sediment Polyphenol HL-60, MOLT-4, A549,
BEL-7402 (33.3, 5.5, 23.5, 57.0) µM [142]

Expansol A (226) P. expansum
091006 Mangrove Polyphenol HL-60 15.7 µM [143]

Expansol B (227) P. expansum
091006 Mangrove Polyphenol HL-60, A549 (5.4, 1.9) µM [143,144]

Expansol C (228) P. expansum
091006 Mangrove Polyphenol HL-60 18.2 µM [143]

Expansol E (229) P. expansum
091006 Mangrove Polyphenol HL-60 20.8 µM [143]

Patulin (230) Penicillium sp. Marine alga Other

P388, BSY-1, MCF-7,
HCC2998, NCI-H522,
DMS114, OVCAR-3,

MKN1

(0.06, 0.34, 0.65, 1.54,
0.30, 0.57, 0.37,
0.39) µg/mL

Potassium-uptake
inhibitor

Ion flux across cell
membranes inducer

[111]

(+)-Epiepoxydon (231) Penicillium sp. Marine alga Other P388 0.2 µg/mL [111]

232 Penicillium sp. Mangrove Other KB, KBv200 (6, 10) µg/mL [145]

Penicillic acid (233) Penicillium sp. Sea water Other POS1, AT6-1, L299 (7.8, 29.4, 12.9) µM [84]
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