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Abstract: Bi-allelic pathogenic variants in MERTK cause retinitis pigmentosa (RP). Since deletions of
more than one exon have been reported repeatedly for MERTK, CNV (copy number variation) analysis
of next-generation sequencing (NGS) data has proven important in molecular genetic diagnostics
of MERTK. CNV analysis was performed on NGS data of 677 individuals with inherited retinal
diseases (IRD) and confirmed by quantitative RT-PCR analysis. Clinical evaluation was based on
retrospective records. Clinical re-examination included visual field examination, dark adaption,
scotopic and photopic full-field electroretinograms (ffERG), multifocal ERG (mfERG) and optic
coherence tomography (OCT). Fourteen variants were detected in MERTK in six individuals, three of
which were deletions of more than one exon. Clinical examinations of five out of six individuals
revealed a severe phenotype with early-onset generalized retinal dystrophy with night blindness and
progressive visual field loss; however, one individual had a milder phenotype. Three individuals had
hearing impairments. We show that deletions represent a substantial part of the causative variants in
MERTK and emphasize that CNV analysis should be included in the molecular genetic diagnostics
of IRDs.

Keywords: retinitis pigmentosa; MERTK; CNV

1. Introduction

Inherited retinal diseases (IRD) encompass a broad range of clinical diagnoses characterized by the
progressive loss of photoreceptors, with variable ages of onset and variable clinical representation. IRD
is highly genetically heterogeneous with more than 250 associated genes (https://sph.uth.edu/retnet/),
which show all modes of Mendelian inheritance (autosomal dominant, autosomal recessive, X-linked),
mitochondrial inheritance, and even digenic inheritance [1]. The majority of the genes encode proteins
exerting their function in either the photoreceptor or in the retinal pigment epithelium (RPE) cells.
They are involved in various cellular processes such as RNA splicing, visual cycle, primary cilia
function and phototransduction [2]. Retinitis pigmentosa (RP) is the most frequent of the IRD specific
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diagnostic subgroups with a worldwide prevalence of 1:3500 [3]. RP is characterized by dysfunctional
rod photoreceptors in the early stages of disease, causing night blindness; but eventually, the cone
photoreceptors may also be affected, leading to visual field constriction and central vision loss [2].

More than 120 genes are known to be associated with RP [2] and MERTK (MER tyrosinase kinase
protooncogene) is associated with autosomal recessive RP type 38 (OMIM 613862) [4]. A recent review
shows that the MERTK associated RP comprises around 2% of RP [5]. MERTK is located at 2q14.1 and
consists of 19 exons encoding a receptor tyrosine kinase of 999 amino acids belonging to the TAM
(TYRO3/AXL/MER) receptor family [6]. It is highly expressed on the apical membrane of the RPE
cells as well as in the monocytes/macrophages, ovary, prostate, testis, lung and kidney [7]. MERTK is
involved in the internalization of the photoreceptor outer segment (POS) prior to phagocytosis in
RPE [8]. MERTK ligands GAS6 (growth arrest-specific protein 6) and PROS1 (protein S) is secreted by
the RPE cells and binds to phosphatidylserines (PS) on the surface of POS and to MERTK on the surface
of RPE cells; this leads to MERTK phosphorylation and activation of phagocytosis of POS of RPE
cells [9,10]. Pathogenic variants in MERTK cause a severe RP phenotype with early age of onset and
early involvement of the macular region, very often leading to blindness. The disease is characterized
by night blindness in the childhood or teens, abnormal color vision, reduced visual acuity and visual
field constriction [4].

More than 90 disease-causing or probably disease-causing variants are reported in HGMD®

Professional (2020.3), including nine gross deletions, 29 missense variants, 15 nonsense variants,
16 splicing variants, 16 small deletions, three small insertions and three small indels [11]. A founder
variant of MERTK (deletion of exons 1 to 7) was found in the Faroe Islands and is responsible for
approximately 30% of all RP cases within the Faroese population [12].

Copy number variations (CNV) has become an important contributor to the cause of retinal
dystrophies [13–15].

We report the molecular genetic findings in MERTK and the clinical representation in six individuals
as part of a large screening study of 677 individuals with a clinical diagnosis of IRD [16].

2. Materials and Methods

2.1. Editorial Policies and Ethical Considerations

The project was approved by The National Committee on Health Research Ethics,
Denmark (project ID 1301394, 1418960 and 1809595). The project was performed according to
the Declaration of Helsinki and approved by the Regional Ethics Committee. Written informed consent
was obtained before the molecular genetic testing.

2.2. Clinical Evaluation

Clinical examinations were performed by the Eye clinic at the Kennedy Center, Rigshospitalet
(former National Eye Clinic for the Visually Impaired). The clinical evaluation was based on available
retrospective clinical records with information on clinical diagnosis, clinical history, fundus changes,
OCT imaging, slit lamp examination, ERG, visual acuity and Goldmann visual fields. Furthermore,
P152, P155, P156 and affected brother of individual P152 were re-examined after the genetic diagnosis
was made.

2.3. Molecular Genetic Analysis

Genomic DNA of 677 individuals with IRD who was sequenced with targeted NGS of 125 genes
as described previously [16] (Table S1). In brief, the enriched DNA libraries were sequenced using
the Illumina HiSeq 2000 (San Diego, CA, USA). Raw sequencing image files and base-calling were
processed with the Illumina Pipeline and raw paired-end low quality reads and adapter sequences were
removed using the SOAPnuke software (https://bio.tools/soapdenovo). The remaining high-quality
reads were aligned to the human reference genome (GRCh37/hg19) using Burrows–Wheeler Algorithm

https://bio.tools/soapdenovo
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(BWA) version 0.7.1023, with the MEM algorithm. The SAMtools (version 0.1.19) [17] was used to sort
and index SAM/BAM files and the Picard (version 1.117, http://broadinstitute.github.io/picard/) was
used to mark PCR-duplicates. Local realignment and base recalibration were performed using GATK
(version 3.3-0) [18] and single nucleotide variants (SNVs) and insertions/deletions (InDels) were called
with GATK HaplotypeCaller.

CNV analysis for the data was carried out by using the ExomeDepth algorithm based on the
coverage data [19]. For each tested individual, the ExomeDepth algorithm builds the most appropriate
reference set from the BAM files of a group of samples and ranks the CNV calls by their confidence level.
A subset of samples was analyzed using the CNV algorithm in Varseq (Golden Helix, Bozeman, MT,
USA). The Varseq software generates a set of matched reference controls and the sample is compared
to this set. A ratio and z-score are computed for each region defined in the BED file defining the
targeted region. The z-score indicate the number of standard deviations that a sample’s coverage is
from the mean coverage of the reference set. CNVs were verified with quantitative RT-PCR (qPCR)
using SYBR green and analysis on a 7500 ABI SDS system (Applied Biosystems, Foster City, CA,
USA). Breakpoint mapping of the deletion including exon 1 to exon 7 was performed using a standard
PCR method for amplification of fragment spanning the breakpoint followed by Sanger sequencing.
Primers were designed assuming the breakpoint was in the same region as the deletion found by
Ostergaard et al. [12]. Primer sequences for qPCR and breakpoint mapping are listed in Table S2.

Variants were classified according to ACMG guidelines [20] and ACGS guidelines [21]. The CADD
score was calculated for missense variants [22]. Variants in splice sites were evaluated using
SpliceSiteFinder-like [23,24], MaxEntScan [25], NNSPLICE [26], GeneSplicer [27].

3. Results

3.1. Clinical Characteristics

Clinical data are presented in Table 1 and Figure 1. Pedigrees for three families are shown in
Figure 2.

In general, the fundoscopic changes were characterized by a pale optic nerve, attenuated retinal
vessels, peripheral retinal degeneration and bone spicule hyperpigmentation. Five out of the six
individuals showed fundus and/or OCT signs of macular atrophy. The OCT analysis showed severe
retinal degeneration and abnormal structure. In two individuals (P152 and P153) the retinal dystrophy
was already generalized and severe when full-field ERG was performed, resulting in undetectable
responses. This was also seen in the brother of P152. In P151, P156 and P423, earlier full-field ERG
measured at disease onset were available and showed reduced rod and cone responses with primary
loss of rod function. Additionally, all individuals had night blindness as the initial symptom consistent
with the clinical classification of rod-cone dystrophy or RP.

Three individuals (P151, P152 and P155) were diagnosed with hearing impairment. P152 and his
brother were diagnosed with a progressive bilateral hearing loss in the higher frequencies (2–4 KHz)
diagnosed in their mid-thirties. P151 and P155 had anamnestically unspecific hearing loss in older age,
with no hearing curves available.

http://broadinstitute.github.io/picard/
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Figure 1. Electroretinograms (ERG) data shown for P151, P153 and P156. Fundus pictures shown for 
P151, P155, P156 and P423. OCT pictures for P155 and P423. Descriptions of data are listed in Table 1. 

 
Figure 2. Pedigrees of families of P151, P152 and P156. Individuals marked with an asterix (*) has 
been genotyped, and has the genotype listed in Table 2. 

 

Figure 1. Electroretinograms (ERG) data shown for P151, P153 and P156. Fundus pictures shown for
P151, P155, P156 and P423. OCT pictures for P155 and P423. Descriptions of data are listed in Table 1.
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Table 1. Clinical symptoms.

ID Sex
(M/F)

Clinical
Diagnosis

Decade
First

Symptoms
Clinical History

First
OPH
Exam,
Year

(Age)

Latest
OPH
Exam,
Year

(Age)

BCVA
OD/OS

First
Visit
(Age)

BCVA
OD/OS

Last Visit
(Age)

Refractive
Error OD/OS

First Visit

Refractive
Error OD/OS

Last Visit

VF First
Exam (Age)

VF Latest
Exam
(Age)

(Phph)Colour Vision
(Age)

Slit Lamp
(Age)

Dark
Adoptometry

(Age)
ERG (Age) Latest Fundoscopy

(Age)
Latest OCT

(Age)
Other

Symptoms/Signs

151 M RP 1st

At age 7 poor night
vision and peripheral
visual field loss. Slow

progression

1964
(9)

1991
(36)

0.67/0.80
(9)

0.6/0.6
(36)

−4.5−1.00 ×
0/−4.5−1.00× 0

−8.5−2.00 ×
170/−7.75−1.75
× 170

Normal (ad
modum

Donders) (11)

Both eyes
constricted
to 20◦ (36)

1 ND Normal (36) Normal (36)

Reduced
responses,
rod-cone

dysfunction (36)

Normal optic nerve,
peripapillar atrophy,

normal macula,
attenuated retinal

vessels, bone spicule
hyperpigmentation in

the periphery (36)

N/A Mild hearing
impairment

152 M RP 1st

First symptoms were
night blindness and

during early
childhood progressive

constrictive visual
field and colour vision
defects. Visual acuity
1/60 both eyes and a
visual field of only a

few degrees at the age
of 24 years

1971
(17)

2016
(62)

0.40/0.40
(17) no LP (62) −1.50−1.50

× 80
−1.50−0.50
× 90

Both eyes
contricted to

5◦ (17)

No visual
field (62) 2

Ishihara only
errors both eyes

(17)

Right eye:
aphacic
(phaco,

2016). Left
eye:

moderate
nuclear and
subcapsular
cataract (62)

N/A Undetectable
(30)

Pale atrophic optic
disc, attenuated
vessels, severe

generalized retinal
degeneration with

numerous
hyperpigmentation

both central and in the
periphery (62)

Severe
retinal

degeneration
and

abnormal
structure

(62)

Hearing
impairment,

chronic lymphatic
leukemia and
hypertension

153 M RP 1st

First symptoms of
night blindness and

photophobia at age 7.
Thereafter slow

progression of visual
acuity and visual field

loss

1984
(21)

2003
(40)

0.33/0.33
(21)

0.10/0.10
(40)

+2.00−0.50
× 100

+1.00−0.50
× 80

Slightly
constricted
(ad modum

Donders) (21)

Both eyes
constricted
to 5◦ (40)

1 N/A Normal (40)

Delayed and
final threshold

elevated
approximately 2
log units above

normal level
(30)

Undetectable
(30)

Pale atrophic optic
disc with peripapillary

drusen. Attenuated
vessels, severe

generalized retinal
degeneration with

peripheral bone
spicule

hyperpigmentation
(38)

N/A No

155 M RP 1st

Since childhood
decreased central
vision and night

vision. Slow
progression of visual

field loss

1973
(17)

2018
(61)

0.10/0.10
(17)

LP/LP
(61) −5.00/−4.00

+0.25−1.50 ×
170/−0.25-1.25
× 172

Both eyes:
constricted to

1–2◦,
preserved
temporal

island (17)

Cannot
cooperate
to visual
field test

(61)

1 ND

Cataract
operation in

2016,
otherwise

normal (61)

ND ND

Waxy optic disc pallor,
attenuated retinal
vessels, pigment

deposits in the macula,
bone spicule

hyperpigmentation in
periphery (61)

Right eye:
macular
atrophy.
Left eye:

epiretinal
membrane,

macular
atrophy and
edema (61)

Hearing
impairment since

2015

156 M RP 2nd

Since early teens
decreased central

vision and poor night
vision. Slow

progression of visual
field loss

1993
(22)

2017
(46)

0.50/0.25
(22)

0.04/0.03
(46)

−0.25−1.75 ×
10/−0.25−2.00

× 10

+1.00−1.50 ×
120/+0.50−0.75
× 175

Both eyes:
constricted to

20◦ (22)

Both eyes
constricted
to 5◦ (46)

1 Affected (22) Incipient
cataract (46)

Monophasic
curve with loss
of rod mediated
dark adaptation

(22)

Reduced
responses,
rod-cone

dysfunction (22)

Pale optic nerve,
attenuated retinal
vessels, macular

atrophy, peripheral
bone spicule

hyperpigmentation
(22)

No

423 F RP 6th

Late onset with night
blindness at the age of

53 years. Slow
progression of visual
field loss thereafter

2005
(53)

2015
(62)

0.6/0.8
(53)

0.30/0.50
(62)

−1.00−1.25 ×
155/−0.5−0.5

× 0

−0.50−0.50 ×
0 (before
cataract

operation)

Normal (53)

Both eyes
constricted
to 5◦ and
preserved

inferior
islands of

10 ×
30◦(62)

1–2
Slight

dyschromatopsia
(53)

Normal (53)

Monophasic
curve with loss
of rod mediated
dark adaptation

(53)

Rod response
undetectable

and cone
response

reduced and
with prolonged

implicit time
(53)

Optic disc pallor and
slightly attenuated

vessels. Generalized
light retinal coloring.

No
hyperpigmentation

(53)

N/A

Thrombocytopenic
purpura,

rheumatoid
arthritis and

mixed connected
tissue disease

M: Male; F: Female; BCVA: Best-corrected visual acuity; OD: Oculus dexter; OS: Oculus sinister; Phph: Photophobia; VF: Visual field; LP: Light perception; ND: not determined; ERG:
Electroretinography; OCT: Optic coherence tomography; OPH: Ophthalmological.
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Table 2. Molecular genetic findings in MERTK.

ID cDNA1 Predicted Protein Change AF in gnomAD CADD Score SSF/MES/NNS/GS Class ClinVar ID Previously Reported

P151
c.345C>G p.(Cys115Trp) 12/281826/0 22.9 NA VUS (PM2, PS4(mod), PP3) RCV000787624.1 [28,29]
c.345C>G p.(Cys115Trp) 12/281826/0 22.9 NA VUS (PM2, PS4(mod), PP3) RCV000787624.1 [28,29]

P152 (+brother) chr2:112,648,150-112,739,208del (hg19) NA 1/21694/0 NA NA Pathogenic (PVS1, PM2, PP1) VCV000636043.1 [12,30]
chr2:112,648,150-112,739,208del (hg19) NA 1/21694/0 NA NA Pathogenic (PVS1, PM2, PP1) VCV000636043.1 [12,30]

P153
c.960+1G>A p.? NP NA -/-/-/- Likely pathogenic (PVS1, PM2) RCV000787626.1 [16]
c.960+1G>A p.? NP NA -/-/-/- Likely pathogenic (PVS1, PM2) RCV000787626.1 [16]

P155
c.757+1G>A p.? NP NA -/-/-/- Likely pathogenic (PVS1, PM2) RCV000787625.1 [16]

chr2:112,648,150-112,739,208del (hg19) NA 1/21694/0 NA -/-/-/- Pathogenic (PVS1, PM2, PP1) VCV000636043.1 [12,30]

P156
c.1450G>A p.(Gly484Ser), splice variant? 3/251408/0 25.3 NA VUS (PM2, PS4(sup)) RCV000132663.2 [28,31]
c.1450G>A p.(Gly484Ser), splice variant? 3/251408/0 25.3 NA VUS (PM2, PS4(sup)) RCV000132663.2 [28,31]

P423
c.2060G>T;2305A>G p.(Arg687Leu;Ile769Val) NP; 92/282478/0 32/19.01 NA VUS (PM2, PP3) RCV000787849.1/RCV787914.1 Novel
c.2060G>T;2305A>G p.(Arg687Leu;Ile769Val) NP; 87/276840/0 32/19.01 NA VUS (PM2, PP3) RCV000787849.1/RCV787914.1 Novel

NA: not applicable; NP: not present; AF: allele frequency. MAF are presented as total number of alternate allele/total number of alleles/homozygous individuals. VUS: variant with
unknown clinical significance; SSF: SpliceSiteFinder-like; MES: MaxEntScan; NNS: NNSPLICE; GS: GeneSplicer. MERTK transcript: NM_006343.2. 1 It was not possible to investigate the
phase of the variants.
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3.2. Genetic Analysis

Fourteen variants (seven unique variants) were found in six individuals (Table 2). Three variants
were the deletion of exons 1 to 7 (P151 and P155). Breakpoint mapping showed that the breakpoints
were identical in P151 and P155 and to the breakpoint mapped by Ostergaard et al. [12] (Figure 3).
The deletion includes chr2:112,648,150-112,739,208 (GRCh37/hg19). Results from qPCR analysis are
shown in Figure S1.
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Of the seven unique variants, five had not previously been reported in individuals with retinal
dystrophy (c.960+1G>A, c.757+1G>A, c.2060G>T and c.2305A>G). Two of the variants, c.2060G>T;
p.(Arg687Leu) and c.2305A>G; p.(Ile769Val)), were found in the same individual (P423). Both variants
were apparently homozygous and both were classified as variants of unknown significance (VUS).
The variants c.960+1G>A and c.757+1G>A are both splice variants predicted to alter RNA splicing.

4. Discussion

In this study, we analyzed MERTK as a part of a targeted sequencing panel in individuals with
IRD. Variants in MERTK were found in six individuals of which six had a potential molecular genetic
diagnosis caused by variants in MERTK. These individuals were part of a cohort of 677, of which
421 had a clinical diagnosis of RP, corresponding to 1.7% of individuals with RP being caused by
variants in MERTK, which is comparable to the findings of Audo et al. [5]. A total of 24 CNVs were
found in the cohort of 677 individuals (3.5%) and of these four were in MERTK; only EYS with seven
CNVs had more deletions/duplications than MERTK [16]. Others have performed CNV analysis using
NGS data and found substantially higher yields of causal CNVs [13,15]. However, their numbers
are based on unsolved cases. This underscores the importance of CNV analysis in IRDs and reflects
that missing genetic explanations of IRDs can be found in already known IRD genes, as structural
variants and deep intron variants affecting splicing. Thus, robust bioinformatic pipelines analyzing
data from NGS targeted panels (and soon also data from whole-genome sequencing) are necessary,
as are methods to detect deep intronic variants (for example RNA seq).

Most individuals had a severe phenotype with an onset of night blindness in the first decade of
life and progressive visual field loss during childhood. Individual P423 however, presented with a
milder phenotype. P423 had a late-onset (age 53 years) of night blindness and a slow progression of
visual acuity and subsequent visual field loss. None of the individuals in our cohort had nystagmus.
P423 belongs to a large family with several members affected with RP, however, the closest affected
relative was a sister of her paternal grandmother and the affected descendants span three generations
resembling autosomal dominant inheritance. Testing of two affected family members showed that
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these did not have the missense variants in MERTK found in P423. Either the missense variants
(both classified as VUS) are not the genetic cause of IRD in P423, or there are two different IRDs in the
family, one type explained by MERTK variants and another with a yet unknown genetic cause.

The deletion of exon 1–7 (Chr2:112,648,150-112,739,208 (hg19)) of MERTK was first reported by
Ostergaard et al. [12] as a common founder variant in The Faroe Islands. The deletion has since been
found in individuals outside The Faroe Islands by Ellingford et al. [32] in a study from Manchester
Royal Eye Hospital, and in two individuals in this study (P152 and P155); it is unclear whether the
deletion is a hotspot or a founder variant.

The ophthalmological findings in the individuals in this study are consistent with previous
descriptions of individuals with MERTK-related retinal dystrophy [5]. Individuals with MERTK-related
retinal dystrophy have previously been described both with rod-cone dystrophy and cone-rod
dystrophy [5]. In our cohort, the phenotype of all individuals was clinically classified as rod-cone
dystrophy with night blindness as the first symptom and verified by full-field ERG with a primary
rod dysfunction in four individuals. One individual in our cohort, however, presented with a milder
phenotype with later onset and milder disease, but as discussed above the molecular genetic diagnosis
in this individual is questionable, although a broadened clinical spectrum of MERTK-related retinal
dystrophy cannot be excluded. Clinical variety in terms of disease severity is a known phenomenon in
individuals with RP with many other genetic causes [33]. The clinical variety may in part be explained
by the type of variant involved, but there may also be additional factors both genetic, epigenetic and
environmental factors that influence the phenotype.

To our knowledge hearing impairment has not been reported as part of the MERTK-related
phenotype. Individuals P151 and P155 had late-onset hearing loss while the hearing loss in P152 and
his brother was of another type. This points to the hearing loss in these individuals might as well be
coincidental, as a result of other genetic or non-genetic causes.

In conclusion, this study adds to the understanding of the genetic and clinical characteristics of
individuals with MERTK-related retinal dystrophies and underlines that CNV analysis should be added
to the genetic evaluation of individuals suspected of having retinal dystrophy. New treatments such as
gene therapy for retinal dystrophies are evolving and the understanding of the clinical characteristics
of genotype-specific disease entities is important.
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