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ABSTRACT
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII
isoforms continues to be an important enrichment factor for designing anticancer agent development
libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating
candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying
numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising can-
didates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now
in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo
and more recently, in-patient data.
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Introduction

Tumour growth and proliferation are strongly associated with hyp-
oxic stress due to poor vascularisation and oxygen deprivation of
neoplastic tissues1. Adaptive metabolic changes observed in can-
cer cells include elevated production of acidic metabolites which
leads to tumour acidosis2–4. Human carbonic anhydrase (hCA) iso-
forms IX and XII are crucial effectors that regulate extracellular pH
thus mediating cancer cell proliferation, invasion, and metasta-
sis5,6. These membrane-bound proteins are zinc metalloenzymes
that catalyse the reversible hydration of CO2 to bicarbonate anion
and proton on cell surface (Equation (1))7. Many studies confirmed
hCA IX/XII upregulation in hypoxic tumours8,9. In particular, hCA
IX which has limited expression in normal tissues, is a marker of
aggressive and drug-resistant cancer cell phenotypes indicating
poor prognosis for patients10. Arguably, hCA XII is widely distrib-
uted in the human body and considered a marker for less malig-
nant tumours11. Targeting the catalytic activity of the cell surface
carbonic anhydrases has been and continues to be considered a
promising therapeutic approach in the antineoplastic field, either
for suppressing tumour growth or overcoming drug resistance of
cancer cells12,13.

CO2 þ H2O�HCO�
3 þ Hþ (1)

Much progress has been made in the last decade towards anti-
cancer agents based on small-molecule inhibitors of hCA IX and/
or XII14,15. These efforts typically involved screening of compound
libraries in search for potent and selective blockers of these iso-
zymes, followed by detailed in vitro and in vivo characterisation of
the most promising candidates. Many new compounds have been
thus identified capable of inhibiting recombinant hCA IX and/or
XII in the low nanomolar to subnanomolar range with remarkable

selectivity over other carbonic anhydrase isoforms. These chemo-
types often contained a primary sulphonamide or sulfamate (e.g.
1 and 2) group or were based on a coumarin and sulfocoumarin
core (such as 3 and 4, respectively)16–19. Of these classes, ureido-
substituted benzene sulphonamides (USBs) made the most pro-
gress with SLC-0111 recently entering phase Ib/II clinical trials
(Figure 1)20,21.

Despite significant advances, the discovery of hCA-targeted
anticancer agents is not a straightforward endeavour, with many
aspects remain unclear. In fact, our own efforts as well as those
reported in the literature often yield structures, which display frus-
tratingly modest antiproliferative effect, although possessing pro-
found inhibition of isolated hCA IX/XII. Such inconsistencies
occurring between the ability of some hCA inhibitors to block the
recombinant enzyme catalytic function and their effects on cancer
cells constitute a challenge that has been much less addressed, in
comparison to those related to the SAR and selectivity stud-
ies22–24. Thus, although the potential of hCA IX and XII as anti-
cancer targets is supported by much evidence, including the well-
documented efficacy of hCA-inhibitory antibodies in vitro and
in vivo, the success rate of small-molecule inhibitors upon the
transition to cell culture setting is still below the desirable
level18,25–29. Taking this into account, attempts to re-evaluate the
conventional drug discovery workflow that has existed in this field
are of importance. Indeed, while factors affecting the activity in
cells are poorly understood, the drug-discovery funnel beginning
with recombinant protein-based profiling should be critically eval-
uated. Therefore, we undertook a literature survey and analysis
regarding possible disconnects for hCA inhibitors, leading to a
dramatic change of the compound’s activity upon the transition
from the recombinant isolated protein to the cell-based models.
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Discussion

Disappointingly, a large fraction of publications on the subject
reported compounds’ cytotoxicity data obtained in normoxic con-
ditions thus making the involvement of hCA IX and XII debate-
able30–45. Although such testing can be relevant in some cases,
we consider these conditions irrelevant as long as antiproliferative
activity of hCA inhibitors is concerned. This is primarily due to lim-
ited expression of the target isoforms, if any, reported for many
cancer cell lines under these conditions8,46. The studies which
employ normoxic MCF-10A cells lacking hCAIX/XII on their surface
are illustrative47. Furthermore, some investigations involved cell
lines displaying robust hCA IX activity in the cytosol, such as
MDA-MB-231 and MCF-748. The said non-default localisation of
hCA IX could lead to overestimation of the protein expression and
activity on the cell membrane, thus leading to the problematic
interpretation of the data obtained16. Thus, the choice of experi-
mental conditions often renders the results ambiguous, making
them rather difficult to analyse.

To our delight, however, there is a large number of mechanis-
tically relevant experiments reported in the literature which
address the ability of hCA IX/XII inhibitors to block the growth of
hypoxic cancer cells overexpressing the target isozymes49–67.
Moreover, a certain cohort of studies revealed compounds
possessing both favourable hCA inhibitory profile and significant
anticancer activity, as exemplified by structures 5–13
(Figure 2)49–56,58–61,64–67. In fact, quite a number of single-digit
nanomolar hCA IX/XII inhibitors significantly suppressed cancer cell
growth. Additional data underscoring the specificity of this antiproli-
ferative action in cancer over normoxic and non-cancerous cells
highlight the potential of these findings for practical applications.
Meanwhile, the drug-like character of some frontrunners makes
them intriguing starting points for medicinal chemistry optimisation.
Once selected based on their hCA inhibitory profiles, these com-
pounds might be useful indeed in designing antineoplastic drugs
either of combinative or single-agent use49–53,55,56,61,65.

In contrast to the aforementioned examples of good correl-
ation between hCA IX/XII inhibition and cytotoxicity against can-
cer cells in hypoxic conditions, the reverse is true for a strikingly
large number of examples50,55–57,60–63,67. In these cases, many
potent hCA IX/XII inhibitors, such as 14–19, did not possess a sub-
stantial activity against cancer cells. Furthermore, these examples
often share structural similarity with the hit compounds originat-
ing from the same screening series (cf. examples in Figure 2).
Despite the obvious resemblance, no effect observed under identi-
cal conditions, again, indicates our limited understating of the fac-
tors influencing hCA inhibitors activity in the intact cells
(Figure 3)50,55,56,61–63. According to the existing discovery work-
flow in this field, if these compounds are selected for the detailed
evaluation based solely on their enzyme inhibitory profile, this
could have diverted the investigator’s attention from potentially
efficacious anticancer agents.

A large portion of compounds may be overlooked in the anti-
cancer agent development projects because of their moderate
inhibitory properties towards hCA IX/XII cancer-related isozyme
duo. This fairly populated category of compounds possessing
moderate to low inhibitory properties towards recombinant hCA
IX/XII features many compounds that are based on privileged che-
motypes (e.g. 20–25). Evidently, in most studies, these relatively
inactive molecules would have not been progressed based solely
on their inhibitory profile. At the same time, several reports reveal
that and unexpectedly good cytotoxicity towards cancer cells can
be demonstrated by such compounds (Figure 4)30,33,34,68–70.

These occasional findings supported the questioning of the dir-
ect predictive power of hCA IX/XII inhibitory profile for a com-
pound’s anticancer activity. Understanding the significance of the
candidate molecule prioritisation problem in question is essential
while ignoring it may lead to many promising compounds being
overlooked in want of more potent hCA IX/XII inhibitors. Aiming
to draw a more informative picture, we have graphically repre-
sented the relationship between the anticancer effect (in this case,

Figure 1. Potent and selective hCA IX/XII inhibitors from among sulphonamides (1), sulfamates (2), coumarins (3), and sulfocumarins (4) and SLC-0111 with its CA
inhibition profile.
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irrespective of the specific experimental conditions employed in
various studies) and the hCA IX/XII inhibitory activity of the com-
pounds30–45,49–58,71–74. In order to summarise the somewhat het-
erogeneous literature data, we have visualised the reported
antiproliferative agents in the plots with the Y-axis displaying Ki’s
against hCA IX (Figures S1 and S2) and hCA XII (Figures S3 and
S4). Several groups of compounds were distinguished and marked
by a different colour with regard to their effect on cancer cells: (1)
<50% cell survival at 10 mM (or IC50¼0.1–10 mM), green; (2) <50%
cell survival at 50 mM (or IC50¼11–50 mM), blue; (3) IC50
51–100 mM, tangerine; (4) IC50¼101–150 mM, cyan; (5)
IC50¼151–200 mM, magenta; (6) IC50 >200 mM, red; (7) <50% cell
growth inhibition at 10 or 50 mM, yellow. As is evident from
Figures S1–S4, potent cancer cell growth suppressors can possess
vastly different levels of inhibitory activity against hCA IX/XII.
However, the low nanomolar region of Ki values appears to be
most populated with compound possessing strong effect on can-
cer cells (Figures S1 and S3). Meanwhile, a fairly large portion of
compounds did not possess noticeable antiproliferative activity
while displaying various levels of Ki values towards recombinant
hCAs (Figures S2 and S4). The prevailing occurrence of these com-
pounds in the nanomolar range of hCA IX/XII inhibitory activity is

likely the result of the currently applied drug discovery funnel
where the best hCA IX/XII inhibitors are primarily selected for sub-
sequent evaluation for their effects on cancer cells.

The supremacy of in vitro potency for drug discovery decision
making has been much debated with respect to different fields of
medicinal chemistry75. In complex biological environment, mul-
tiple variables such as ligand residence time or metabolic stabil-
ity76,77 can determine the observed efficacy. However, the said
parameters are not routinely looked at when screening for poten-
tial hCA IX/XII inhibitors. While tens to hundreds nanomolar levels
of on-target activity prevail among clinically used drugs77, such
activity levels are easily achievable for primary sulphonamides
hCA IX and\or XII isoforms, as can be deduced from Figures
S1–S4. This gives us an idea of a different approach to the discov-
ery of anticancer agents based on hCA IX/XII inhibition.
Considering, that multiple factors appear to be at play when cyto-
toxicity towards cancer cells is concerned, front-loading hCA IX/XII
inhibition as a candidate selection criterion should be taken with
caution. In vitro screening is indispensable for identifying chemo-
types with a clear tendency to inhibit the target isozymes. Once
identified and expanded into larger, SAR-informative follow-on
libraries, these candidate chemotypes should perhaps be screened

Figure 2. Potent hCA IX/XII inhibitors displaying good translation of their activity into antiproliferative activity against cancer cells under hypoxia.
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Figure 3. Potent hCA IX/XII exhibiting poor antiproliferative activity under hypoxic conditions.

Figure 4. Sulphonamides and coumarins demonstrating potent antiproliferative properties despite being weak inhibitors of the recombinant hCA IX/XII.
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primarily against cancer cells so as not to overlook promising can-
didates which may not necessarily be endowed with the best hCA
IX/XII inhibitory potency.

Conclusions

Literature data indicate that inhibition of the recombinant protein
possesses a somewhat limited predictive power for the com-
pounds’ ability to block cancer cell growth. Not questioning the
role of the cell surface hCA isoforms in tumour growth and sur-
vival, this conclusion, however, highlights the imperfection of the
existing approach to the design and discovery of antineoplastic
drugs in this field. In fact, by selecting compounds for in vitro and
in vivo characterisation based solely on their inhibitory profile, one
could discard many promising hit-structures. Resources expended
for optimising molecules’ potency and selectivity towards the tar-
get recombinant protein may also be wasted as they do not
necessarily ensure antiproliferative activity. On the other hand, a
wealth of positive examples in the literature of a strong correl-
ation between hCA IX/XII inhibition and cytotoxicity towards can-
cer cells indicates that demonstrated tendency of new
chemotypes to inhibit these isoforms can serve as a robust enrich-
ment factor for designing screening libraries that target cancer
cells. Moreover, detailed SAR studies of different carbonic anhy-
drase inhibitors with regard to hCA IX and/or XII are of import-
ance due to the significance of developing new ligands of these
targets for tumour imaging, drug delivery and other purposes78.
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