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Abstract

The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic
membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability
barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer
membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is
transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a
transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the
biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to
severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on
Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of
lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant
grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC
depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell
division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS
transport defects to restore outer membrane functionality.
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Introduction

The outer membrane (OM) of Gram-negative bacteria [1] is an

asymmetric membrane containing phospholipids and a unique

glycolipid lipopolysaccharide (LPS) in the inner and outer leaflet,

respectively [2]. OM proteins (OMPs) and lipoproteins are also

embedded and anchored, respectively, in the OM [3]. LPS is a

complex molecule that can be structurally divided in three

elements: lipid A, the hydrophobic moiety that anchors LPS in

the outer membrane, the core oligosaccharide and the O-antigen

(Figure 1). The OM mainly serves as a protective barrier enabling

Gram-negative bacteria to survive in harsh environments and to

exclude several toxic molecules effective against Gram-positive

organisms [1]. LPS mainly contributes to the OM permeability

barrier properties as LPS molecules are tightly packed in the OM

and form a very effective barrier against hydrophobic compounds

[2]. Biosynthesis of LPS components occurs in the cytoplasm and

at the cytoplasmic side of the inner membrane (IM). The core-lipid

A moiety is first flipped by the essential ABC transporter MsbA

across the IM [4,5] ligated with the O-antigen and then

transported across the periplasm by a transenvelope device, the

Lpt protein machinery, composed in E. coli by seven essential

proteins (LptABCDEFG) (reviewed by [6,7]) (Figure 1). At the IM,

the LptBFG complex constitutes an ABC transporter that provides

the energy for LPS transport. LptC is a small bitopic protein [8]

that resides in the IM and interacts with the LptBFG complex [9]

and with the periplasmic protein LptA [10] [11]. LptA is thought

to transfer LPS to the LptDE protein complex of the OM. Thus,

LptA is the periplasmic protein that connects the IM Lpt

components to the OM LPS translocon (LptD and LptE), which

ensures the assembly of LPS at the cell surface [12–14]. The Lpt

machinery appears to operate as a single device as depletion of any

Lpt component leads to common phenotypes that includes the

appearance of an anomalous LPS form decorated by repeating

units of colanic acid [8,15], and in such depleted strains the

majority of de novo synthesised LPS accumulates in a novel

membrane fraction (hIM) with higher density than the IM [8].

The process by which hydrophobic LPS is transported across the

periplasm to the cell surface is not fully understood. The current

model postulates that the Lpt proteins, through homologous

domains interactions, create a transenvelope bridge that connects
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IM and OM [14,16], thus forming a continuous channel through

which LPS is moved to the cell surface [17].

The OM is an essential structure for bacterial survival and the

first site of interaction with the mammalian host [18]; mutants

defective in OM biogenesis typically display alterations of the OM

permeability barrier properties [3]. The crucial role of this

structure is highlighted by the fact that in E. coli at least five

different pathways (Bae, Cpx, Psp, Rcs and sE) constitute

signaling systems that detect and respond to alterations of the

bacterial envelope [19–22]. These pathways regulate expression of

complementary functions whose discrete contributions are inte-

grated to mount a full adaptive response [23].

In this work we sought to analyze on a global level the response

of E. coli cells to a severe OM biogenesis defect, namely the block

of transport of LPS upon LptC depletion, to investigate on the cell

response to an OM stress. To this purpose we used a proteomic

approach based on two-dimensional chromatography coupled to

tandem mass spectrometry (2DC-MS/MS), called MudPIT

(Multidimensional Protein Identification Technology) [24] to

monitor the cell envelope protein content of an arabinose

dependent lptC conditional mutant [8] grown under permissive

and non permissive conditions. Our results highlight pathways and

strategies adopted by E. coli cells to respond to severe OM

biogenesis defects.

Materials and Methods

Bacterial strains and growth conditions
The bacterial strains used in this study are derivatives of AM604

(MC4100 ara+; [25]. FL905 (AM604 W(kan araC araBp-lptC)1) is a

conditional arabinose dependent mutant carrying lptC under the

control of araBp promoter [8]. Bacteria were grown in LD medium

[26] at 37uC. When required, 0.2% (w/v) L-arabinose (as an

inducer of the araBp promoter), and 25 mg/ml kanamycin, were

added. The strain PS200 (MC4100 ara+ asmA-SPA::kan) was

obtained by moving the asmA-SPA::kan allele from CAG64009 to

AM604 by P1 transduction using standard procedures [8].

Subsequently, the kan cassette was removed from PS200 by

pCP20-encoded Flp recombinase [27], generating the mutant

PS201. The removal of the kan genes was verified by colony PCR.

Finally, to construct strain PS202 [AM604 W(kan araC araBp-lptC)1

asmA-SPA], the kan araC araBp-lptC allele was moved from FL905

(AM604 W(kan araC araBp-lptC)1) into PS201 byP1 transduction

and selecting on media containing kanamycin and 0.2%

arabinose.

Transductions were verified by colony PCR and by immuno-

blotting on whole cell extract using anti-FLAG M2 antibodies

(Sigma-Aldrich Inc., St.Louis, MO, USA).

Whole membrane proteins extraction
AM604 and FL905 cells were grown in LD supplemented with

0,2% arabinose up to OD600 = 0.2 at 37uC. Cells were then

harvested, washed in LD, diluted five hundredfold (in fresh

medium with or without 0,2% arabinose) and incubated with

aeration at 37uC. After 330 minutes, 125 OD of cell cultures were

harvested, re-suspended in 3 ml of 10 mM Tris (pH = 8.0), 1 mM

EDTA, 1 mM PMSF, 0,2 mg/ml lisozyme and incubated on ice.

After 30 minutes, 0,2 mg/ml DNAse was added and cells were

disrupted by sonication (6 cycles of 10 seconds at 20% amplitude).

The cleared lysates were then subjected to centrifugation at

100,0006g for 60 min at 4uC. Pellets, that contain whole cell

membranes, were re-suspended in MilliQ water and lyophilized,

or analysed by western blotting using anti-LptC, anti-LptE, anti-

LptB, anti-AcrB or anti-FLAG M2 antibodies (Sigma-Aldrich Inc.,

St.Louis, MO, USA).

Figure 1. LPS structure and transport in Escherichia coli. A) Chemical structure of LPS. O-antigen is indicated in parenthesis as it is not
synthesized in E. coli K12 derivatives. B) LPS transport from IM to OM. The MsbA protein catalyzes LPS flipping across the IM that is then exported to
the cell surface by the Lpt machinery.
doi:10.1371/journal.pone.0100941.g001
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Cell fractionation
AM604 and FL905 cells were grown as described above. Cells

were chilled in ice and harvested by centrifugation. IM and OM

were separated by discontinuous sucrose density gradient centri-

fugation of a total membrane fraction obtained by spheroplast lysis

as described previously [28]. Step gradients were prepared by

layering 2 ml each of 50, 45, 40, 35, and 30% (wt/vol) sucrose

solutions over a 55% sucrose cushion (0.5 ml). Fractions (300 ml)

were collected from the top of the gradient, 50 ml of each fraction

was assayed for NADH oxidase activity [28]. The total protein

concentration of each fraction was determined by the Bradford

assay (Thermo Fisher Scientific Inc. Waltham, MA) as recom-

mended by the manufacturer. The protein profiles of OmpC,

OmpF, and OmpA across the gradient were estimated by

separating 20 to 40 ml of each fraction on 12.5% SDS-PAGE

and by staining the gels with Coomassie blue. Fractions

corresponding to IM, hIM, and OM were lyophilized and

analyzed.

For the subcellular localization of AsmA-SPA, PS201 [AM604

asmA-SPA] and PS202 [AM604 W(kan araC araBp-lptC)1 asmA-SPA]

cells were grown in LD or LD with 0.2% arabinose up to

OD600 = 0.2. Cells were then harvested, washed in LD, diluted

three hundredfold (in fresh medium with or without 0,2%

arabinose) and incubated with aeration at 37uC. After 280 min-

utes, 125 OD of cell cultures were harvested. IM and OM were

separated by discontinuous sucrose density gradient centrifugation

of total membranes as described above. 20 ml of each fraction

collected from the gradient were separated on 10% SDS-PAGE

followed by immunoblot analysis using monoclonal anti-FLAG

M2 antibodies (Sigma-Aldrich Inc., St.Louis, MO, USA) to detect

AsmA-SPA.The 55 kDa IM protein that is detected by anti-LptD

antibodies and the OM protein LamB were used as IM and OM

markers, respectively [8].

Proteomic Analysis
Lyophilized samples were first resuspended in 0.1 M ammoni-

um bicarbonate, pH 8.0, and then treated with RapiGest SF

(Waters Corporation, Milford, MA, USA) at the final concentra-

tion of 0.2% (w/v). After incubation at 100uC for 5 min, the

samples were cooled to room temperature and digested with

trypsin (Sequencing Grade Modified Trypsin, Promega, Madison,

WI, USA). Initially, trypsin was added to mixtures at an enzyme/

substrate ratio of about 1:50 (w/w) and incubated at 37uC
overnight, then another aliquot of enzyme was added at an

enzyme/substrate ratio of 1:100 (w/w) and the samples were

incubated at 37uC for 4 hours.

The enzymatic reactions were chemically stopped by acidifica-

tion with TFA 0.5% (Sigma-Aldrich Inc., St.Louis, MO, USA),

incubation at 37uC for 45 min and centrifugation at 13,0006g for

10 min in order to remove hydrolytic RapiGest SF by-products.

Before MudPIT analysis, samples were desalted by PepClean C-

18 spin columns (Pierce Biothecnology Inc., Rockford, IL, USA),

concentrated in a SpeedVac (Savant Instruments Farmingdale,

NY, USA) at 60uC and finally resuspended in 0.1% formic acid

(Sigma-Aldrich Inc., St.Louis, MO, USA).

Trypisn-digested peptides were analyzed by two dimensional

micro-liquid chromatography coupled to ion trap mass spec-

trometry (Multidimensional Protein Identification Technology

(MudPIT)) using ProteomeX-2 configuration (Thermo Electron

Corporation, San Josè, CA, USA) [29]. 10 ml of the digested

peptide mixtures were loaded by means of an autosampler

(Suveyor AS Thermo) onto a strong cation exchange column

(BioBasic-SCX, 0.32 i.d.6100 mm, 5 mm, Thermo Electron

Corporation, Bellofonte, PA, USA) and then eluted using eight

steps of increasing ammonium chloride concentration (0, 20, 40,

80, 120, 200, 400, 700 mM). Eluted peptides, obtained by each

salt steps, were at first captured in turn onto two peptide traps

(Zorbax 300 SB C-18, 5 mm, 0.3 id65 mm, Agilent technologies,

Santa Clara, CA, USA) mounted on a 10-port valve, for

concentration and desalting, and subsequently loaded on a

reversed phase C-18 column (BioBasic-18, 0.180 i.d.6100 mm,

5 mm, Thermo Electron Corporation, Bellofonte, PA, USA) for

separation with an acetonitrile gradient. The gradient profile was:

5–10% eluent B in 5 min, 10–40% eluent B in 40 min, 40–80%

eluent B in 8 min, 80–95% eluent B in 3 min, 95% eluent B for

10 min, 95–5% eluent B in 4 min and 5% eluent B for 15 min

(eluent A, 0.1% formic acid in water; eluent B, 0.1% formic acid

in acetonitrile). The flow rate was 100 ml/min slit in order to

achieve a final flux of 1 ml/min.

The peptides eluted from the C-18 column were directly

analysed with an ion trap mass spectrometer (LCQ Deca XP plus)

equipped with a nano electrospray ionization source (nano-ESI)

(Thermo Finnigan Corp., San Josè, CA, USA). The heated

capillary was held at 185uC; full mass spectra were acquired in

positive mode and over a 400–2000 m/z range, followed by three

MS/MS events sequentially generated in a data-dependent

manner on the first, second and third most-intense ions selected

from the full MS spectrum, using dynamic exclusion for MS/MS

analysis (collision energy 35%).

The experimental mass spectra produced by MudPIT analyses

were correlated to tryptic peptide sequences by comparing with

theoretical mass spectra, obtained by in silico digestion of Escherichia

coli protein database downloaded from the NCBI website (www.

ncbi.nlm.nih.gov/Ftp/index.htlm). Data processing was per-

formed using the 3.3.1. Bioworks version, based on SEQUEST

algorithm (University of Washington,licensed to Thermo Finnigan

Corp., San Josè, CA, USA), and the following parameters: Xcorr

scores greater than 1.5 for singly charged peptide ions and 2.0 and

2.5 for doubly and triply charged ions, respectively, the peptide

probability #0.001 and the protein consensus score value $10.

These filters guaranteed that the resulting proteins have a

probability value p#0.001.

Data were treated with an in-house algorithm called MAProMa

[30] (Multidimensional Algorithm Protein Map), in particular a

tool of MAProMa permits the comparison of the protein list obtain

from the analysis of the samples.

Two biological replicates for the three samples of total

membrane and for the samples obtained from the fractionation

of the membranes were analysed and for each of them two

technical replicates were made.

The reproducibility of the method was evaluated as described in

our previous work [31].

Proteins with significant differences in level, were identified by

other two tools of MAProMA: DAve (Differential Average) and

DCI (Differential Coefficient Index) [32]. These two algorithms

are based on score values assigned by SEQUEST software to

each identified protein in samples to be compared. Specifically,

DAve is an index of the relative ratio between control and mutant

and DCI is an index to evaluate the absolute variation of score

value of each protein. Briefly, using MAProMA each identified

protein in the two samples were aligned and then DAve and DCI

indexes were calculated for all proteins. The threshold values

imposed were very stringent: DAve .0.4 and DAve,–0.4,

DCI.400 and DCI,–400. To increase the confidence, it is

necessary that both indexes, DAve and DCI, satisfy these

thresholds.
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Results and Discussion

Proteomic profiles of cell envelope upon LptC depletion
To understand how cells respond to severe OM damage, we

compared the cell envelope protein content of the conditional

mutant FL905 grown under permissive and non-permissive

conditions for LPS transport to the cell surface. In FL905 lptC,

which encodes a component of the LPS transport (Lpt) machinery,

is under control of the arabinose inducible araBp promoter and,

upon LptC depletion in the absence of arabinose, LPS transport is

blocked [8]. FL905 was grown under permissive (with 0.2%

arabinose, FL905+A) and non-permissive (without arabinose,

FL905–A) conditions and membrane proteins were extracted

and analysed by MudPIT. As a control, the isogenic lpt+ strain

AM604 [25] was used. MudPIT has been extensively used for

protein identification and characterization and provides a

significant improvement over gel-based analysis, as it represents

a fully automated and high-throughput technology. By this

approach we identified about 300 proteins in each sample (Table

S1). In particular, a total of 864 proteins were identified in the

three samples of total membrane analysed in replicate and among

these, 323 were detected in all the three samples. 115 were

detected in AM604 and FL905+A and 35 in AM604 and FL905–

A, whereas 47 were shared between FL905+A and FL905–A. 107,

78 and 159 unique proteins were exclusively detected in AM604

strain, in FL905+A and in FL905–A, respectively (Figure 2).

Using a in-house software called MAProMA [30], the protein

lists identified in the three samples of total membranes were

plotted on a 2-D map according to the theoretical MW and pI of

identified proteins. Figure S1 reports as an example the 2D-map of

the proteins obtained by the analysis of the FL905–A mutant

membranome.

Using DAve and DCI algorithms of MAProMa software, the

relative protein abundance, of AM604 and FL905 grown under

permissive conditions, was evaluated by means of a label-free

quantitative approach. DAve and DCI were calculated for each

pairwise comparison. Only the proteins that exceed the set

threshold values were considered. In FL905 the araBp promoter

drives the expression of lptCAB [8]. Thus as expected we found

increased abundance of LptC and the IM associated protein LptB

in FL905 as compared with the wild type AM604 control. On the

contrary, the periplasmic LptA protein was not detected in the

membrane fraction of either strain. It is worth to mention that in

the lptC depletion strain grown under non-permissive conditions

lptAB are expressed from a sE dependent promoter located within

the lptC coding sequence [33]. With the exception of proteins

involved in arabinose metabolism (Table S1) no other significant

differences in protein relative abundance were detected between

AM604 and FL905+A. For this reason the latter was used as the

reference condition in all comparisons with FL905 grown without

arabinose (data not shown).

The comparative analysis of the cell envelope protein profile of

FL905+A versus FL905–A cells showed 123 proteins differentially

represented (Table S2). These proteins are related to different

cellular pathways that collectively give a snapshot on cellular

pathways modulated by E. coli cells to respond to severe OM

biogenesis defects. As reported in the following paragraphs the

functions assigned to the proteins differentially expressed fall in

two main pathways: cell envelope biogenesis/remodeling, and

protein transport/assembly at the OM. In addition we observed

lower abundance for several proteins with a function in (i) central

metabolism, (ii) translational apparatus (iii) protein folding/

degradation. (Table S2). As lower abundance of these proteins

may be correlated with growth arrest imposed by block of LPS

transport [8,10,15,34], these functions will not be further

discussed. Interestingly the expression of many functions identified

by our analysis is under the control of signalling systems (Bae, Cpx,

Rcs, and sE) that in E. coli detect and respond to alterations of the

bacterial envelope [19–22].

Previous work [8,15] showed that mutant cells depleted of any

Lpt component exhibit strikingly similar multilayer membranous

bodies in the periplasm (hIM). In this contest, to understand the

nature of the hIM and the changes that occur at the level of

bacterial membrane in order to restore homeostasis, we used

discontinuous sucrose density gradient centrifugation to fraction-

ate IM, OM and hIM from FL905+A and FL905–A and we

analysed the protein profile of each fraction by MudPIT (Table

S1).

Below the main pathways showing different protein levels when

comparing FL905+A and FL905–A are discussed.

Cell envelope biogenesis/remodeling
Peptidoglycan synthesis and cell division. Lpt proteins

depletion leads to growth arrest and in the late phase of depletion

cells show mostly short filaments [8,10]. In line with this

phenotype we found that the level of many proteins implicated

in peptidoglycan biosynthesis decreases (Table 1). The transgly-

cosylase MurG, the transpeptidase MrdA (PBP2), peptidoglycan

hydrolases AmiA, EmtA, and MltB all have a role during cell

elongation [35,36] and show decreased abundance in FL905-A.

The same applies to LpoA and LpoB OM lipoproteins that

modulate the activity of transpeptidases involved in cell elongation

[37]. TolB, a periplasmic protein that binds peptidoglycan via the

Pal lipoprotein [36,38] and required for OM invagination also

shows a decreased level whose significance is difficult to explain.

On the contrary the level of proteins involved in peptidoglycan

remodeling and cell division appears to increase in LptC depleted

cells (Table 1). In fact we found increased abundance for DacA

(PBP5) and DacC (PBP6) carboxypeptidases that remove terminal

D-alanine residues from pentapeptide side chains thus preventing

those side chains from serving as donors for transpeptidation [39].

Also the level of PBP1B a major peptidoglycan synthase involved

in cell division [39], FtsZ the key player at the division machinery

Figure 2. Venn diagram of proteins distribution across strains
and growth conditions analysed. Proteins are identified from total
membrane samples. wt, (PS201); LptC+ (PS202, araBp-lptC) grown under
permissive condition (0,2% arabinose); LptC-depleted, PS202 grown
under non permissive condition (without arabinose).
doi:10.1371/journal.pone.0100941.g002
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apparatus [40] and ZipA a protein interacting with FtsZ and

required for preseptal peptidoglycan synthesis [41], increases upon

LptC depletion.

Thus it appears that in LptC depleted cells the synthesis of

peptidoglycan is inhibited and that the arrest of cell wall growth

shifts LptC depleted bacteria to the cell division program as

suggested by the increased level of functions implicated in

septation; this is in line with the notion that bacteria must

somehow coordinate peptidoglycan synthesis with OM assembly.

The recent discovery of OM lipoproteins LpoA and LpoB as

modulators of PBPs activity suggests that they may play a crucial

role in coupling OM biogenesis with PG synthesis [37].

Interestingly we found that the level of both lipoproteins decreases

in LptC depleted cells further strengthening the idea that

peptidoglycan synthesis is also controlled from outside of the

sacculus.

Known/putative proteins involved in LPS/OMP

biogenesis. Upon LptC depletion the level of proteins involved

in LPS biogenesis (LptD, MsbA, WbbK and WbbI) decreases

(Table 2). The decreased level of the OM LptD protein (Table 2) is

in line with our previous observation that the steady state level of

LptA is affected by depletion of LptC or LptD/E [11]. In fact

depletion of LptC or LptD removes the IM and OM docking site,

respectively, of LptA resulting in LptA degradation [11]. Assembly

of LptD requires lipoprotein LptE [42] and the Bam complex [43].

LptE was not detectable even in samples grown under permissive

conditions, possibly because it resides within the LptD b-barrel

[13] and therefore it may be protected from trypsin degradation.

However, LptE level does not change upon LptC depletion

(Figure 3A) in line with previous data [11]. LptF, and LptG were

not detectable even in samples grown under permissive conditions

due to their very low abundance in the cell [15]. Interestingly our

data show a decreased level of BamA and BamD, two members of

the Bam machinery (see Protein transport/assembly paragraph

below). The lower LptD level may thus be the result of a less

efficient assembly at the OM. Recently it has been shown that the

periplasmic protease BepA, whose expression is regulated by sE,

specifically degrades LptD when it fails to form the OM LPS

translocon [44]. As an alternative hypothesis we suggest that LptC

depletion might affect the formation of a functional OM

translocon that undergoes degradation by BepA [15]. Overall,

from our data it is not possible to discriminate whether decreased

LptD level is the result of lower synthesis, less efficient assembly or

degradation of non-functional translocon.

MsbA is the essential ABC transporter implicated in flipping

LPS across the IM [4,5] and operates in the LPS export pathway

just upstream the Lpt protein machinery (Table 2). No physical

interactions have been detected so far between MsbA and the Lpt

machinery. Our data for the first time point to a functional

interaction between the two systems and suggest that arrest of LPS

transport and its accumulation at the periplamic face of the IM

somehow affects MsbA level.

We found that the level of WbbI (galactofuranosyl transferase)

and WbbK (glucosyl transferase) decreased upon LptC depletion

(Table 2). The wbbI and wbbK genes map at a locus encoding genes

involved in O-antigen subunits and other exopolysaccharides

(including colanic acid) biosynthesis [2]; in particular, wbbIJKL

genes have been implicated in biosynthesis of O16 antigen subunit

[45]. E. coli K12 LPS, however, is lacking the O-antigen as wbbL,

which codes for a rhamnosyltransferase, is interrupted by an IS5

insertion [46]. It thus appears that in strain FL905 (an E. coli K12

derivative) the loss of wbbL does not prevents the expression of

other wbb genes, whereas the block of LPS transport affects wbb

genes expression resulting in lower levels of WbbI and WbbK.

Finally, in LptC depleted cells the level of AsmA, a non-essential

IM protein of unknown function (Table 2, Figure 3A) for which a

possible role in OM biogenesis has been previously proposed [47],

decreases. The role of AsmA in OM biogenesis stems from the

observation that a mutant asmA allele is able to correct the

assembly defect of mutated OmpC and OmpF proteins [48,49]. In

agreement with a putative role in OM biogenesis, asmA null

mutants show increased sensitivity to hydrophobic antibiotics and

Table 1. Envelope proteins exhibiting a significant variation upon LptC depletion: peptidoglycan synthesis/remodeling and cell
division.

Categorya GI Accessionb Protein Activity DAvec

Peptidoglycan synthesis 16128083 MurG Precursors synthesis - GTases 0,50

16128142 PBP1B Synthesis - GTases and DD-TPases 21,23

16128615 PBP5 Regulation of structure-DD-CPases 20,58

16128618 PBP2 Synthesis - DD-TPases 2,00

16128807 PBP6 Regulation of structure-DD-CPases 22,00

16129068 LpoB Regulation of synthesis-Synthase activators 0,50

16129156 EmtA Hydrolysis - Lytic transglycosylases 1,00

16129736 MipA Synthesis -Scaffolding protein 0,66

16130360 AmiA Hydrolysis - Amidases 1,19

16130608 MltB Hydrolysis - Lytic transglycosylases 0,85

16131039 LpoA Regulation of synthesis - Synthase activators 0,65

Cell division 16128088 FtsZ Cytosckeletal structure 21,26

16128715 TolB Outer membrane invagination 0,46

16130338 ZipA Early association with Z ring 20,76

ainferred from ecocyc.org.
bNCBI accession number.
cDAve value ranges from 22 and +2; positive value for DAve indicates that the protein is more abundant in LptC+ (grown with 0.2% arabinose); negative value for DAve
indicates that the protein is more abundant in LptC-depleted (grown without arabinose).
doi:10.1371/journal.pone.0100941.t001
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a decreased LPS level [47]. In contrast to previous reports [47] we

found that in wild type and in non LptC-depleted cells AsmA

localizes in both the IM and OM (Table 3), a typical behaviour of

membrane fusion proteins (MFP) that function in bridging IM and

OM in Gram-negative bacteria [50]. Interestingly, in LptC

depleted cells not only the level of AsmA decreased but also its

subcellular localization changed as the protein disappeared from

the IM and localized at the hIM and OM in LptC depleted cells

(Table 3 and Figure 3B). Our data support the role of AsmA in

OM biogenesis highlighting a functional link between the assembly

of OM proteins and that of LPS as the correct balance of both

OM components is required to build a functional OM.

Functions involved in OM biogenesis/

remodelling. Several proteins (WzzE, WzzB, WcaC, WcaK,

Gmd, WcaI, Wza, Wzc) belonging to the 19 genes wca (cps) cluster

and implicated in colanic acid biosynthesis [51,52] showed

increased abundance in LptC depleted cells (Table 2). This

finding is in agreement with our previous observation that

depletion of any Lpt protein leads to the production of LPS

decorated by colanic acid, indeed this modification is diagnostic of

defects in LPS transport occurring downstream of MsbA mediated

lipid A-core flipping across IM [8]. Interestingly, Salmonella enterica

mutants defective in LPS transport due to mutations in lptC also

show an altered LPS profile [53]. Although the chemical nature of

such modification is not known it is reminiscent of the high

molecular weight ladder observed upon Lpt proteins depletion.

Colanic acid is a cell surface polysaccharide synthesised by enteric

bacteria in response to envelope damaging conditions such as

osmotic, acid and cold stresses [21,54]. Expression of cps cluster is

controlled by the Rcs proteins that constitute a complex

phosphorelay system known to extend well beyond regulation of

colanic acid synthesis [21]. We recently showed that E. coli cells

treated with ammonium metavanadate, a phosphatase inhibitor

known to induce covalent modification of lipid A [55], also

produce LPS decorated by colanic acid [33]. The signals that

activate such pathways are not well known, however our data

support the idea that a specific ‘‘LPS’’ stress may induce the Rcs

system therefore activating functions needed for surface remodel-

ling.

In agreement with the notion that block of LPS export pathway

results in migration of phospholipids in the outer leaflet of the

OM, we found that the level of two components of Mla pathway,

Table 2. Envelope proteins exhibiting a significant variation upon LptC depletion: cell envelope biogenesis.

Categorya GI Accessionb Protein Activity DAvec

Known proteins involved in LPS
biogenesis

16128048 LptD Transporter 0,43

16128881 MsbA Transporter 0,80

16129972 WbbK Biosynthesis-O antigen 1,40

16129974 WbbI Biosynthesis-O antigen 0,85

Putative proteins involved in OM
biogenesis

16130004 AsmA Assembly of OM proteins? 2,00

Functions involved in OM homeostasis 16128173 FabZ Biosynthesis - b-hydroxyacyl-ACP dehydratases 21,19

16128178 AccA Biosynthesis - Acetyl-CoA carboxylase A 20,54

16128757 YbhO Biosynthesis - Cardiolipin synthase 22,00

16129985 WcaK Synthesis - glycosyl transferase 22,00

16129990 WcaI Synthesis - glycosyl transferase 22,00

16129993 Gmd Synthesis - GDP-mannose 4,6-dehydratase 22,00

16129997 WcaC Synthesis - glycosyl transferase 22,00

16130002 Wza Export - capsular polysaccharide 22,00

16130251 AccD Biosynthesis - Acetyl-CoA carboxylase D 22,00

16130740 Aas Biosynthesis - Hydroxycinnamate-CoA ligase 1,19

16131083 MlaD Transporter - Phospholipids 21,19

16131084 MlaE Transporter - Phospholipids 22,00

16131641 WzzE Regulator of O length 20,50

16131985 Psd Biosynthesis - Phosphatidylserine decarboxylase 21,13

33347613 WzzB Regulator of O length 20,99

33347615 Wzc Export - capsular polysaccharide 22,00

33347817 PlsB Biosynthesis - Glycerol-3-phosphate acyltransferase 20,77

Protein membrane turnover 16128154 DegP Protease - Periplasmic serine protease 21,52

16131068 FtsH Protease - ATP-dependent metalloprotease 21,35

16131996 HflK Regulator of FtsH 21,55

16131997 HflC Regulator of FtsH 21,41

ainferred from ecocyc.org.
bNCBI accession number.
cDAve value ranges from 22 and +2; positive value for DAve indicat that the protein is more abundant in LptC+ (grown with 0.2% arabinose); negative value for DAve
indicates that the protein is more abundant in LptC-depleted (grown without arabinose).
doi:10.1371/journal.pone.0100941.t002
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MlaD and MlaE, increases upon LptC depletion (Table 2). The

Mla (Maintenance of OM lipid asymmetry) proteins function as an

inter-membrane transport system to prevent surface exposure of

phospholipids upon stressful conditions thus maintaining OM

asymmetry [56]. Several mutants in LPS biogenesis display

increased OM permeability as phospholipids may migrate from

the inner to the external leaflet of the OM thus generating locally

symmetric bilayer rafts freely permeable to hydrophobic com-

pounds [57]. As the Mla system appears to function by retrograde

trafficking of phospholipids from the OM to the IM, the increased

level of MlaD and MlaE proteins upon LptC depletion might be

needed to maintain lipid asymmetry and therefore OM homeo-

stasis. Our data provide the first functional connection between

the LPS export and the OM phospholipid removal pathways.

Proteins implicated in de novo fatty acids (AccD, AccA, FabZ)

and in phospholipids biosynthesis (PlsB, Psd) (Table 2) also show

an increased level in LptC depleted cells. AccA and AccD

constitute the heterodimeric carboxyltransferase involved in the

first reaction of fatty acid synthesis. FabZ is an R-3 hydroxyacyl-

ACP dehydrase which provides precursors for phospholipids

synthesis [58]. Interestingly, FabZ shares the substrate R-3

hydroxyacyl-ACP with LpxA and LpxD two enzymes involved

in lipid A biosynthesis [59] and is therefore a key enzyme in

controlling phospholipids and LPS synthesis. Our data suggest that

the modulation of levels of FabZ which competes with LpxA and

LpxD for the shared precursor, can be a strategy to shift the

synthesis towards the production of phospholipids thus limiting

lipid A synthesis. Indeed in LptC depleted cells LPS can not be

inserted in the outer leaflet of the OM and consequently cells need

to fill the ‘‘void’’ with phospholipids. On the other hand, the

increased level of PlsB and Psd (Table 2), which are involved in

phosphatidlyethanolamine (PE) synthesis [60] suggests that

increased synthesis of this specific phospholipid may help cells

upon severe cell envelope damage. In fact surface exposed

phosphatidlyethanolamine (PE) is the substrate of the inducible

EptA enzyme [61] that removes phosphoethanolamine from its

donor substrate (PE) and transfers it to the 1-phophate group of

lipid A. Such modification has been detected in lipid A of several

mutants defective in LPS transport [13,15] and contributes to

polymixin resistance in several organisms such as Helicobacter pylori

[62], Neisseria meningitidis [63] and Campylobacter jejuni [64]. Lipid A

modifications by EptA are thought to stabilize and/or balance the

Figure 3. AsmA protein abundance and subcellular localization. PS201 (asmA-SPA lptC+) and PS202 (asmA-SPA araBp-lptC) cells were grown
with or without arabinose as indicated. Total membrane protein extracts prepared as described in Materials and Methods were analysed by
immunoblotting (panel A) or fractionated by sucrose density gradient (panel B). A) 10 mg of total membrane proteins were loaded in each lane. 55-
kDa protein was used as loading control. B) Fractions were collected from the top of the gradient and immunoblotted using antibodies recognizing
the 55-kDa protein as IM marker, LamB as OM marker. a-Flag antibodies were used to detect AsmA-SPA protein. wt, PS201; LptC+, PS202 (araBp-lptC)
grown under permissive condition (with 0,2% arabinose); LptC-depleted, PS202 grown under non permissive condition (without arabinose).
doi:10.1371/journal.pone.0100941.g003

Table 3. AsmA level in membrane fractions.

Strain/condition IM hIM OM

Scorea Hitsb Scorea Hitsb Scorea Hitsb

wt 40,25 7 nd nd 50,26 9

LptC+ 30,23 4 nd nd 60,21 8

LptC-depleted 0 0 50,30 7 30,33 3

aSEQUEST score value, related to the confidence of identification.
bnumber of identified peptides.
doi:10.1371/journal.pone.0100941.t003
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surface electrostatics of the OM and can be thus considered an

additional mechanism to restore the OM barrier function when

LPS transport is defective. It is thus possible that in LptC depleted

cells PE synthesis increases the donor substrate for lipid A

modification as a strategy to restore the OM functionality.

Finally, we found increased level for YhbO, a conserved protein

with unknown function that has been implicated in protection

against diverse environmental stresses such as oxidative, thermal,

osmotic and pH stresses [65]. YhbO increased level upon LptC

depletion may also help cells to recover from envelope damaging

stresses.

A decreased expression level upon LptC depletion has been

observed for Aas (Table 2), an enzyme implicated in membrane

phospholipid turnover [66]. The regulation of Aas expression has

been poorly investigated and the meaning of our observation is

presently not obvious.

Membrane protein turnover. The level of FtsH, HflK and

HflC proteins increases upon LptC depletion (Table 2). FtsH (also

named HflB) is an essential ATP dependent IM protease that

interacts with HflK and HflC membrane proteins to form a large

holoenzyme complex with a role in quality control and degrada-

tion of membrane proteins [67]. FtsH plays also a key role in

modulating LPS biosynthesis as it controls by proteolysis the

amount of LpxC, which catalyses the first committed reaction in

lipid A biosynthesis, and of KdtA, a glycosyltransferase involved in

Kdo synthesis [68]. The increased amount of FtsH in LptC

depleted cells might lower LPS synthesis as a strategy to cope with

the block of its transport and to prevent its accumulation at the

IM. Interestingly, in addition to the s70 dependent promoter, a sE

promoter has been predicted upstream the ftsH gene [69]. We

previously showed that LptC depletion activates the sE dependent

regulon [33]. Our data suggest that the predicted sE sequence

upstream of ftsH may represent a functional promoter.

DegP is a periplasmic protein functioning both as a protease

and as a chaperone whose expression is induced upon cell

envelope stresses [70]. DegP increased level in LptC depleted cells

(Table 2) fits with its dual role of protease and chaperone in being

able to both degrade irreversibly damaged proteins and to assist/

promote folding of partially unfolded periplasmic or OM proteins.

Protein transport/assembly
Upon LptC depletion we observe a decreased level for BamA

and BamD (Table 4) the essential components of the multiprotein

machinery responsible for OMP assembly at the OM [43]. LptD,

the only known essential OMP, is also a Bam complex substrate.

BamA, whose expression is regulated by sE [71], has recently been

shown to be a substrate of the BepA protease when BamA

assembly at the OM is compromised [44]. BamD interaction with

BamA appears to stabilize the Bam complex [72,73]; therefore

BamD may be an additional BepA substrate or may be degraded

by not yet known proteases. The non-essential OM lipoproteins

BamB [74] and YiaD instead showed increased abundance

(Table 4). YiaD has been identified as multicopy suppressor of a

temperature sensitive bamD allele [75] and BamB expression is

under sE control [76] possibly explaining their increased level. It

thus appears that in Lpt depleted cells growth arrest and damaged

envelope both contribute to a general reduction of protein

synthesis and therefore to lower level of components of the

machinery that insert b-barrel proteins in the OM.

An important function of the OM is the control of influx and

efflux of nutrients and toxic compounds playing an important role

in the adaptation to different environmental conditions. Accord-

ingly, in LptC depleted cells where the OM is damaged we

observed modulation of the level of proteins that regulate the

intracellular influx of toxic compounds. OmpF is a porin with a

role in the influx of small molecules [1] whose level decreases.

Instead, the level of components of efflux pumps, such as AcrA,

AcrB, MdtA increases (Table 4). AcrA, AcrB and MdtA are

proteins belonging to multidrug efflux pumps, whose expression is

up-regulated in response to envelope-damaging agents [77,78].

We confirmed by western blotting that AcrB level indeed increases

upon LptC depletion (Figure S2).

Extra-cytoplasmatic stress response
The OM functionality is essential for survival in Gram-negative

bacteria and therefore its integrity in E. coli is monitored by at least

five different but overlapping stress response systems (RpoE, Rcs,

BaeR, Cpx, Psp) [79]. In LptC depleted cells the relative

abundance of 26 proteins belonging to four such pathways (RpoE,

Rcs, BaeR, Cpx) increased and three (out of 10) belonging to

RpoE pathway (BamE, BamD, OmpF) decreased (Figure 4A).

Interestingly, this list includes most of the functions that have been

discussed in the previous paragraphs thus highlighting the

importance of such pathways in triggering adaptive responses to

OM dysfunction (Figure 4B).

Proteins of hIM
Depletion of any Lpt proteins results in appearance of a novel

membrane fraction with higher density of the IM (hIM) where

most of the novo synthesised LPS accumulates [8,10,15]. To better

clarify the nature of such fraction we analysed its proteome. We

considered hIM proteins those showing a score higher that 30

(Table S3). Out of the 53 hIM proteins matching the selected

parameter 44% are proteins normally localized at the IM, 21%

are OM proteins and the remaining fraction is represented by

cytoplasmic (26%), periplasmic (2%) and unknown (7%) proteins

(Figure S3). Most of the proteins enriched in the hIM fraction are

related to transport systems whereas the rest form a miscellaneous

group; notably none of the proteins displaying an increased level in

LptC depleted cells was found in hIM (Table S3). These data

suggest that that hIM is more similar to the IM than the OM and

are in line with the hypothesis that hIM corresponds to the

abnormal membrane structures visible by electron microscopy in

Lpt depleted cells [8,10,15] where proteins belonging to different

biological processes, unrelated to each other, remain trapped.

Conclusions

We used the MudPIT technology to analyze the envelope

proteome in LptC depleted cells, which experience a severe OM

biogenesis defect due to block of LPS transport to the cell surface.

The comparative proteomic analysis between LptC depleted and

not-depleted cells highlighted strategies adopted by bacteria to

maintain OM homeostasis. The envelope proteome of LptC

depleted cells displayed higher abundance of functions that

collectively may contribute to repair the OM and restore its

permeability barrier properties. Such functions include proteins

implicated in maintaining OM asymmetry or involved in the

synthesis of phospholipids and exopolysaccharides as substrates for

lipid A-core modification enzymes. Lipid A modifications are

generally not required for growth under laboratory conditions but

confer selective advantages, such as resistance to antimicrobial

peptides or the ability to evade the innate immune system [80].

Interestingly, we found that the level of several enzymes implicated

in peptidoglycan synthesis/remodeling changes in LptC depleted

cells. Indeed, our results suggest that when growth of the OM is

compromised by block of LPS transport cells switch from the

‘‘elongation mode’’ of peptidoglycan synthesis to the ‘‘constrictive
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mode’’ to direct cells towards the cell division program. It has been

recently shown that in E. coli the enlargement of the peptidoglycan

layer requires control or activation not only from the inside of the

cells but also from outside by proteins associated to the OM

[37,81]. Overall, our data further support the notion that OM

biogenesis and PG synthesis are tightly coordinated pathways.

The block of LPS transport result in growth arrest and as a

consequence the level of ribosomal and transport proteins as well

as many folding factors decreases in LptC depleted cells.

Conversely, the level of several IM, periplasmic and OM proteases

increases to cope with increased abundance of proteins that are

not assembled at the OM. Our data are consistent with the notion

that the extracytoplasmic stress response is activated upon block of

LPS transport as the expression of many functions implicated in

OM biogenesis, OM remodeling, protein folding/degradation

showing increased abundance in LptC depleted cells are under the

control of the Bae, Cpx, Rcs and sE signaling systems [23]. Of

note is the finding that the level FtsH, an essential IM anchored

protease, increases in LptC depleted cells. FtsH is known to

control LPS biosynthesis by degrading LpxC the enzyme that

catalyzes the first committed step of lipid A biosynthesis [82]. Our

data point for the first time to a feed-back control on lipid A

synthesis signaled from the external surface of the cell when LPS

transport to the OM is compromised. We do not know how such

signal may be transduced inside the cell; a possible candidate in

such signal transduction pathway is the recently identified YciM

IM protein that has been suggested to act in concert with FtsH to

regulate synthesis of lipid A [83,84,85].

Overall our results show a snapshot of pathways modulated by

E. coli cells to respond to a severe OM biogenesis defect namely

block of LPS transport, that act integrating complementary

functions to restore OM functionality.

Table 4. Envelope proteins exhibiting a significant variation upon LptC depletion: transport/assembly.

Categorya GI Accessionb Protein Activity DAvec

Protein transport 16128091 SecA Transporter -Sec Translocation Complex 1,55

16128170 BamA Transporter - OMPs 0,54

16128392 YajC Transporter -Sec Translocation Complex 0,66

16128393 SecD Transporter -Sec Translocation Complex 0,93

16128394 SecF Transporter -Sec Translocation Complex 0,66

16130437 BamB Transporter - OMPs 21,19

16130516 BamD Transporter - OMPs 0,57

16131423 YiaD Transporter - OMPs 21,42

Transport 16128446 AcrA Membrane fusion protein 21,63

16128447 AcrD Permease 21,17

16128896 OmpF General Bacterial Porin 0,83

16130014 MdtA Membrane fusion protein 21,32

ainferred from ecocyc.org.
bNCBI accession number.
cDAve value ranges from 22 and +2; positive value for DAve indicates that the protein is more abundant in LptC+ (FL905 grown with 0.2% arabinose); negative value for
DAve indicates that the protein is more abundant in LptC-depleted (FL905 grown without arabinose).
doi:10.1371/journal.pone.0100941.t004

Figure 4. List of proteins belonging to cell envelope stress response pathways whose level changes upon LptC depletion. A. Relative
abundance is calculated as the ratio beetween FL905 grown under permissive and non permissive conditions: q, increased; Q, decreased (see
Tables 1, 2. 4). B. Venn diagram showing functions whose regulations is shared by multiple envelope signaling systems.
doi:10.1371/journal.pone.0100941.g004
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Supporting Information

Figure S1 2D map of all the proteins identified in the
analysis of total membrane. MAProMa software plots all the

proteins according to the theoretical pI and MW. A color/shape

code is assigned to each protein according to relative SC value.

Proteins with SC$35 are reported as red/circle, proteins with

SC,35 and .15 are reported as blue/square, and proteins with

SC#15 are reported as yellow/triangle code. The dashed box

indicates the typical pI and MW ranges for 2-DE.

(TIF)

Figure S2 AcrB protein abundance upon LptC deple-
tion. PS201 (asmA-SPA lptC+) and PS202 (asmA-SPA araBp-lptC)

cells were grown with or without arabinose. Extracts of total

membrane proteins prepared as described in Material and

Methods were analysed by immunoblotting using anti-AcrB anti-

LptC antibodies. An IM 55-kDa protein was used as loading

control. 10mg of proteins were loaded in each lane. wt, PS201;

LptC+, PS202 grown under permissive condition (0,2% arabi-

nose); LptC-depleted, PS202 grown under non permissive

condition (without arabinose). The asterisk (*) indicates a band

cross reacting with anti-AcrB antibodies.

(TIF)

Figure S3 Localization of proteins identified in hIM.
(TIF)

Table S1 List of proteins identified in AM604, FL905+A
and FL905-A (total membrane, inner membrane, outer
membrane, heavy inner membrane (hIM)).

(XLS)

Table S2 Proteins identified by comparative analysis of
the cell envelope proteome of FL905+A versus FL905–A
cells.

(XLSX)

Table S3 List of proteins identified in the heavy inner
membrane (hIM) of FL905–A.

(XLSX)
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