
Incubation of cocaine craving coincides with changes in 
dopamine terminal neurotransmission

I. Pamela Alonso,

Bethan M. O’Connor,

Kathleen G. Bryant,

Rushi K. Mandalaywala,

Rodrigo A. España*

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 
PA 19129, United States

Abstract

Relapse to drug use is one of the major challenges in treating substance use disorders. Exposure to 

drug-related cues and contexts triggers drug craving, which drives cocaine seeking, and increases 

the probability of relapse. Clinical and animal studies have shown a progressive intensification of 

cocaine seeking and craving that develops over the course of abstinence, a phenomenon commonly 

referred to as incubation of cocaine craving. Although the neurobiology underlying incubation 

of cocaine craving has been examined – particularly within the context of glutamate plasticity– 

the extent to which increased cocaine craving engenders mesolimbic dopamine (DA) changes has 

received relatively little attention. To assess whether incubation of cocaine craving is associated 

with alterations in DA terminal neurotransmission in the nucleus accumbens core (NAc), we used 

ex vivo fast scan cyclic voltammetry in female and male rats to assess DA dynamics following 

short access, long access, or intermittent access to cocaine self-administration followed by 28 days 

of abstinence. Results indicated that both long access and intermittent access to cocaine produced 

robust incubation of cocaine craving, which was associated with increases in cocaine potency. In 

addition, intermittent access self-administration also produced a robust increase in DA uptake rate 

at baseline. In contrast, short access to cocaine did not engender incubation of cocaine craving, nor 

produce changes in DA neurotransmission. Together these observations indicate that incubation of 

cocaine craving coincides with changes in DA transmission, suggesting that underlying changes 

in mesolimbic DA signaling may contribute to the progressive intensification of drug craving that 

occurs across periods of abstinence.
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1. Introduction

Cocaine users often experience intense desire for drug when encountering cues associated 

with cocaine [1,2]. Clinical and animal studies have demonstrated a time-dependent increase 

in cue-induced cocaine seeking that develops over the course of abstinence [3–5], and 

this phenomenon has been commonly referred to as incubation of cocaine craving [4]. 

Importantly, it is posited that incubation of cocaine craving contributes to the propensity 

for relapse, even after prolonged abstinence [6–9]. As such, identifying the neural processes 

that underlie incubation of cocaine craving may lead to the development of tolerable and 

effective treatments for cocaine use disorder.

Most research investigating the neural correlates of incubation of cocaine craving have 

focused on postsynaptic glutamatergic adaptations in the nucleus accumbens (NAc) [10–13]. 

However, emerging evidence suggests that dopamine (DA) adaptations after abstinence from 

cocaine may be associated with progressive increases in cocaine seeking and motivation 

to obtain cocaine. For example, a human study demonstrated increased DA transporter 

(DAT) availability in the striatum after a week of cocaine abstinence [14], and in rhesus 

monkeys, abstinence from cocaine self-administration increased DAT binding in the NAc 

[15]. Similarly, abstinence from cocaine increased DAT levels in the prefrontal cortex of rats 

and this persisted for up to 90 days [16]. Consistent with these findings, intermittent access 

(IntA) to cocaine self-administration increased DAT function and DAT sensitivity to cocaine 

after a week of abstinence and these changes were associated with increased motivation 

for cocaine [17]. Altogether, these studies suggest the possibility that the time-dependent 

increase in cocaine seeking and craving observed during abstinence may be associated with 

alterations in DA neurotransmission.

Previous studies have shown that consumption and temporal patterns of cocaine 

administration/access produce distinct DA terminal transmission changes. While long access 

(LgA) to cocaine has been associated with tolerance in DA responses to cocaine [18–21], 

IntA to cocaine has been shown to sensitize DA responses to cocaine [17,21,22]. Despite 

these observations, to what extent changes in DA neurotransmission exist after prolonged 

periods of cocaine abstinence, when incubation of drug craving is at its highest, has not been 

sufficiently studied.

In the current studies, we examined whether short access (ShA), LgA, and IntA to cocaine 

generate incubation of cocaine craving and DA neurotransmission using fast scan cyclic 

voltammetry (FSCV) after 28 days of abstinence. These schedules of reinforcement were 

selected because previous studies indicate that LgA to cocaine produces robust incubation 

of cocaine craving [10,12,16,23], while ShA typically does not have this effect [16,24]. IntA 

to cocaine was selected due to its potential translational relevance [17,25,26], and because 

there is emerging evidence that it may engender exaggerated drug-seeking behavior and 

considerable alterations in DA neurotransmission.
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2. Methods

2.1. Animal housing and conditions

Female and male adult Sprague-Dawley rats (females 200–225g; males 325–350g; Envigo, 

Frederick, MD, USA) were maintained on a 12-h reverse light/dark cycle (lights on at 15:00; 

lights off at 03:00), and given ad libitum access to food, water, and enrichment material. 

After arrival, rats were given 7 days to acclimate before surgery. All protocols and animal 

procedures were conducted in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals under the supervision of the Institutional Animal 

Care and Use Committee at Drexel University College of Medicine.

2.2. Intravenous catheter surgery

Rats were anesthetized using 2.5% isoflurane and implanted with a silastic catheter with 

an inner diameter (ID) of 0.012 in., and an outer diameter (OD) of 0.025 in. (Access 

Technologies, Skokie, IL) in the right jugular vein for intravenous delivery of cocaine. The 

catheter was connected to a cannula which exited through the skin on the dorsal surface 

in the region of the scapulae. Ketoprofen (Patterson Veterinary, Devens, MA; 5mg/kg s.c. 

of 5 mg/ml) and Enrofloxacin (Norbrook, Northern Ireland; 5 mg/kg s.c. of 5 mg/ml) 

were provided at the time of surgery and a second dose was given 12 h later. In addition, 

antibiotic/analgesic powder (Neopredef, Kalamazoo, MI) was applied around the chest and 

back incisions. Rats were subsequently singly housed and allowed to recover for 7 days 

prior to self-administration training. Intravenous catheters were manually flushed with saline 

every 2–3 days during recovery to maintain catheter patency. After recovery, rats were 

randomly assigned to three groups: ShA, LgA, or IntA.

2.3. Self-administration

All self-administration sessions took place in a standard test chamber (Med Associates, 

St Albans, VT) located inside sound-attenuating cabinets. A ventilating fan masked 

background noise. Within the test chamber, two levers were located 6 cm above the floor 

on the left- and right-hand side of the left wall, the right lever was designated active and 

the left inactive. A house light was located at the top center of the right wall. Pressing the 

active lever resulted in an intravenous infusion of cocaine hydrochloride (obtained from the 

National Institute on Drug Abuse) dissolved in 0.9% sterile saline. Pump times for each 

rat were adjusted based on body weight to deliver 2.5 mg/ml (ShA and LgA) or 5 mg/ml 

(IntA) of cocaine at a constant rate of 1.064 ml/min as previously described [21,27]. All 

measures were recorded using Med Associates software. Each rat underwent one cocaine 

self-administration session per day, with an average of 5 days per week in the middle of the 

dark phase. However, rats always self-administered the day prior to the cue-induced seeking 

test on abstinence day 1 (AD1). Controls were cocaine-naive rats housed in the same room 

as rats undergoing self-administration.

2.3.1. Short access—Rats were first trained to self-administer cocaine on a 6-h FR1 

schedule whereby a single active lever press initiated an intravenous injection of cocaine 

(0.75 mg/kg, infused over 2.5 – 4 s) paired with a cue light. Acquisition occurred when 

a rat obtained ≥40 infusions in one session. During this acquisition period, sessions were 
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terminated after a maximum of 40 infusions or after 6 h, whichever occurred first. Then, 

rats were allowed to self-administer cocaine on a 2-h FR1 schedule in which a single active 

lever press resulted in a single 0.75 mg/kg cocaine infusion over 2.5 – 4 s, paired with a cue 

light. At the start of each infusion, the stimulus light above the active lever was illuminated 

for the length of the infusion and the house light was illuminated for 20 s signaling no 

drug availability (i.e., timeout). Lever presses during this 20-s timeout were recorded but 

had no consequence. Inactive lever presses were recorded but had no consequence. Rats 

self-administered cocaine for 2 h per session for 5 sessions. Sessions were terminated after 

a maximum of 100 infusions or after 2 h, whichever occurred first. These experimental 

conditions are similar to those used previously to show incubation of cocaine craving [28].

2.3.2. Long access—Rats were allowed to self-administer cocaine on a 6-h FR1 

schedule in which a single active lever press resulted in a single 0.75 mg/kg cocaine infusion 

over 2.5 – 4 s, paired with a cue light. At the start of each infusion, the stimulus light 

above the active lever was illuminated for the length of the infusion and the house light 

was illuminated for 20 s signaling the timeout period. Lever presses during the 20-s timeout 

were recorded but had no consequence. Inactive lever presses were recorded but had no 

consequence. Rats self-administered cocaine for 6 h per session for 10 sessions. Sessions 

were terminated after a maximum of 100 infusions or after 6 h, whichever occurred first. 

Rats assigned to this schedule did not undergo an acquisition period; however, rats that did 

not receive on average >50 infusion during the last 5 days of LgA were excluded from the 

study. These experimental conditions are similar to those used previously to show incubation 

of cocaine craving [10,12].

2.3.3. Intermittent access—Rats were first trained to self-administer cocaine on a 

6-h FR1 schedule whereby a single active lever press initiated an intravenous injection of 

cocaine (0.75 mg/kg, infused over 2.5 – 4 s) paired with a cue light. Acquisition occurred 

when an animal obtained ≥40 infusions in one session. During this acquisition period, 

sessions were terminated after a maximum of 40 infusions or after 6 h, whichever occurred 

first. Rats were then allowed to self-administer cocaine on a 6-h FR1 schedule in which 

active lever presses resulted in a single 0.375 mg/kg cocaine infusion delivered over 0.7 – 

1.1 s, paired with a cue light. At the start of each infusion, the stimulus light above the active 

lever was illuminated for the length of the infusion. There was no timeout period following 

each infusion, to allow a binge-like pattern of consumption. During the 6-h session, rats had 

access to cocaine for 5-min trials followed by 25-min timeout periods, totaling 12 trials per 

session. During the 25-min timeout period, the levers were retracted. Rats self-administered 

cocaine for 6 h per session for 7 sessions. These experimental conditions are similar to 

those used previously to show increased motivation for cocaine after a period of abstinence 

[17,21].

2.4. Abstinence and cue-induced seeking tests

Following the last self-administration session, rats underwent a forced abstinence period 

of 28 days. During this phase, rats remained in their home cage (except for performing 

cue-induced drug seeking tests), in the absence of enrichment material. To assess incubation 

of cocaine craving, rats performed a cue-induced drug seeking test on abstinence day (AD) 
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1 and AD 28. During the 2-h seeking test, a single active lever press resulted in presentation 

of the cue light that was previously paired with cocaine, but no cocaine delivery. Under these 

conditions, the number of active lever presses was interpreted as representing the degree of 

cocaine seeking or craving.

2.5. Ex vivo fast scan cyclic voltammetry

Eighteen hours after the last seeking test, rats were anesthetized with 2.5% isoflurane for 

5 min and subsequently decapitated. The brain was rapidly dissected and slices containing 

the NAc core were transferred to ice-cold, oxygenated artificial cerebrospinal fluid (aCSF) 

containing NaCl (126 mM), KCl (2.5 mM), NaH2PO4 (1.2 mM), CaCl2 (2.4 mM), MgCl2 

(1.2 mM), NaHCO3 (25 mM), glucose (11 mM), and L-ascorbic acid (0.4 mM), with pH 

adjusted to 7.4. A vibrating microtome was used to produce 400 μm-thick coronal sections 

containing the NAc core. Slices were then transferred to room-temperature oxygenated 

aCSF and left to equilibrate for 45 min before being transferred into a recording chamber 

flushed with aCSF (32°C).

A bipolar stimulating electrode was placed on the surface of the tissue in the NAc core, and 

a carbon fiber microelectrode was implanted between the stimulating electrode leads. DA 

release was evoked every 3 min using a single electrical pulse (400μA; 4ms; monophasic) 

and measured using Demon Voltammetry and Analysis Software [29]. Once baseline DA 

release was stable (3 successive stimulations within <10% variation), the slice was exposed 

to a gradual increase in cocaine concentrations (0.3 – 30μM) as previously described [30–

32].

2.6. Estrous cycle monitoring

Estrous cycle determination was based on a vaginal lavage obtained from all female 

rats immediately after seeking tests on AD1 and AD28, as well as immediately prior to 

decapitation for FSCV. Vaginal fluid samples were collected with a plastic pipette filled 

with 50 μL of sterile saline (NaCl 0.9%) by placing the end of the tip at the opening 

of the vaginal canal, taking care to not penetrate the orifice. Vaginal fluid was placed on 

glass slides. Unstained material was observed under a light microscope, with 10x and 40x 

objective lenses. Three types of cells could be recognized: 1) round and nucleated epithelial 

cells; 2) irregular shaped, anucleated cornified cells; and 3) small round leukocytes. The 

proportion among them was used for the determination of the estrous cycle phase [33]. A 

proestrus sample consisted of a predominance of nucleated epithelial cells an estrous sample 

primarily consisted of anucleated cornified cells. A metestrus sample consisted of the same 

proportion among leukocytes, cornified, and nucleated epithelial cells. A diestrus sample 

consisted of a predominance of leukocytes. As observed in Supplemental Fig. 1, there was a 

similar distribution of females in proestrus, estrous, metestrus, and diestrus after cue-induced 

seeking tests and for FSCV experiments.

2.7. Data analysis

All active and inactive lever presses were measured, including those made during the 

timeout period when no cocaine was delivered. The number of inactive lever presses served 

as a measure of nonspecific behavior. The rate of cocaine intake was calculated by dividing 
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the intake (mg) by cocaine availability time. For example, 120 min for ShA and 360 min 

for LgA minus the 20 s time out period after every active lever press (active lever presses * 

0.333 min), and 60 min for IntA.

Three ShA and 2 IntA rats were excluded during cocaine training because they did not meet 

acquisition criteria after 7 days. Two LgA rats were excluded because they did not meet the 

inclusion criteria (average >50 infusion during the last 5 sessions). Two IntA and 2 ShA rats 

were excluded because of faulty catheters.

Twelve rats were trained on ShA (6 females and 6 males), 16 on LgA (10 females 

and 6 males), and 11 on IntA (5 females and 6 males). As we were interested in the 

relationship between the progressive increase in cue-induced cocaine seeking and changes 

in DA neurotransmission after prolonged periods of abstinence, for FSCV experiments we 

excluded 2 ShA and 3 LgA that did not increase their active lever presses on AD 28 

compared to AD 1. All IntA rats increased lever pressing on AD28 and thus no IntA rats 

were excluded from DA analyses.

DA concentrations were calculated by comparing currents at the peak oxidation potential 

for DA in consecutive voltammograms with electrode calibrations determined using an in 

situ calibration method as describe previously [31,32,34]. To determine whether different 

schedules of cocaine self-administration followed by prolonged abstinence influence DA 

terminal neurotransmission, we assessed stimulated DA release, DA uptake rate (Vmax), and 

cocaine-induced DA uptake inhibition (app Km) using a Michalis-Menten based model [35–

37]. Baseline DA uptake was determined by setting Km values to 0.18 μM and all cocaine-

induced alterations in uptake were attributed to changes in apparent Km. Inhibition constants 

(Ki) were determined to calculate the necessary cocaine concentration to produce 50% 

DA uptake inhibition and were then calculated using the equation Km/slope [17,31,38,39]. 

Demon Voltammetry and Analysis software [29] was used for all acquisition and analysis of 

FSCV data.

Sex differences were examined for all behavioral and neurochemical parameters evaluated 

here. A statistically significant interaction between sex and the main measure of interest 

suggests that sexes responded differently to the condition [40–42]. In all our studies, we 

observed no interactions between sex and measures of interest; therefore, female and male 

data were combined. Nevertheless, in Supplemental Data we show data separated by sex and 

provide further discussion comparing our findings to previous studies [26,27].

2.8. Statistical analyses

Statistical analyses were conducted using IBM SPSS Statistics 24. Specific analyses are 

reported in the results section. Mauchly’s test of sphericity was used to confirm the 

assumption of sphericity in the two-way mixed ANOVA tests; when it was violated, a 

Greenhouse-Geisser correction was used to interpret the within-subjects effect and two-way 

interaction. Levene’s test for equality of variances was used to confirm the assumption of 

homogeneity in the one-way ANOVA tests; when it was violated, a Welch’s ANOVA was 

used to interpret differences between groups and Games-Howell post hoc tests were used for 

multiple comparisons.
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3. Results

Rats underwent ShA, LgA or IntA to cocaine self-administration to generate incubation of 

cocaine craving and assess whether increases in cue-induced seeking were associated with 

changes in DA neurotransmission in the NAc. Similar to what has been shown previously, 

by allowing largely unfettered access to cocaine, the ShA and LgA schedules generated 

sustained cocaine intake [12,16]. In contrast, the IntA schedule restricts access to 5 min 

bouts every 25 min for 6 h, and thus generated a ‘binge-like’ pattern of cocaine intake, 

which is akin to what is typically observed in human cocaine use [25,43] (Fig. 1A). Cocaine 

self-administration schedules were replicated from prior studies that have shown incubation 

of cocaine craving [10,12,17,28]. For this reason, acquisition period, number of sessions, 

and cocaine dose differed among the three schedules of reinforcement.

3.1. Cocaine self-administration remained relatively stable for all schedules

To determine whether self-administration varied across test session, we examined active 

lever presses, cocaine intake, and rate of intake for each schedule. A one-way repeated 

measures ANOVA determined that there were no significant difference in active lever 

presses across test sessions for any of the schedules (ShA: F(4,44) = 0.503, p = 0.733; LgA: 

Greenhouse-Geisser correction; F(2.890,43.351) = 1.283, p = 0.292; IntA: Greenhouse-Geisser 

correction; F(3.400,33.997) = 1.701, p = 0.180, Fig. 1B). In addition, a one-way repeated 

measures ANOVA determined that there were no significant difference in infusions across 

test sessions for any of the schedules (ShA: Greenhouse-Geisser correction; F(2.251,24.77) = 

0.7130, p = 0.5157). However, there were significant differences in cocaine intake across 

test sessions for LgA (Greenhouse-Geisser correction; F(3.832,57.48) = 1.283, p = 0.0035) and 

IntA (Greenhouse-Geisser correction; F(2.641,25.53) = 3.300, p = 0.0414, Fig. 1B). Moreover, 

a one-way repeated measures ANOVA determined that there were no significant differences 

in cocaine intake across test sessions for ShA (F(4,44) = 0.713, p = 0.588, Fig. 1C). However, 

there were significant differences in cocaine intake across test session for LgA (Greenhouse-

Geisser correction; F(3.760,56.397) = 3.859, p = 0.009) and IntA (F(6,60) = 3.463, p = 0.005, 

Fig. 1C). Further, a one-way repeated measures ANOVA determined that there were no 

significant differences in rate of cocaine intake across test sessions for ShA (F(4,44) = 0.461, 

p = 0.746) or IntA (Greenhouse-Geisser correction; F(2.432,24.321) = 2.021, p = 0.147, Fig. 

1D). However, there was a significant difference in rate of cocaine intake across test sessions 

for LgA (Greenhouse-Geisser correction; F(4.533,67.994) = 2.943, p = 0.022, Fig. 1D).

Extensive evidence has shown escalation of cocaine intake over the course of cocaine 

self-administration sessions for LgA and IntA [22,44–47]. Due to significant differences 

in cocaine intake across test sessions on LgA and IntA, post hoc tests were conducted 

between the first and last sessions of LgA and IntA to assess escalation. A Sidak’s post hoc 

test showed no significant difference between cocaine intake on the first session compared 

to the last session for either LgA (p = 0.986) or IntA (p = 0.310; Fig. 1C). Together 

these observations suggest no escalation of cocaine intake as a function of increasing 

self-administration experience.
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3.2. LgA results in greater cocaine consumption than ShA and IntA, but IntA results in a 
faster rate of intake

To examine whether cocaine consumption varied across schedules, we analyzed total 

cocaine intake (i.e. cumulative intake across all sessions) for ShA, LgA, and IntA. A 

Welch’s ANOVA indicated that total cocaine intake was significantly different across 

schedules (F(2,18.391) = 138.727, p < 0.001). Games-Howell post hoc analyses revealed a 

significantly higher total intake in LgA compared to ShA (p < 0.001) and IntA (p < 0.001), 

as well as higher total intake in IntA compared to ShA (p = 0.030; Fig. 2A).

To examine whether rates of intake varied across schedules, we compared the average rate 

of intake for ShA, LgA, and IntA. A Welch’s ANOVA determined that there were significant 

differences in the rate of cocaine intake across schedules (F(2,15.510) = 13.374, p < 0.001). 

Games-Howell post hoc analysis revealed that IntA promoted a higher rate of cocaine intake 

(i.e., mg/minute) compared to ShA (p = 0.019) and LgA (p = 0.004; Fig. 2B). The faster rate 

of intake observed with IntA is likely associated with the temporal profile of cocaine access 

on this schedule and is consistent with a previous study [26].

3.3. LgA and IntA engender incubation of cocaine craving

To examine the impact of different patterns of cocaine consumption on incubation of cocaine 

craving, we compared active lever presses during the cue-induced seeking test on abstinence 

day 28 (AD28) to abstinence day 1 (AD1) across the three schedules of reinforcement. A 

two-way mixed ANOVA with schedule as the between-subjects variable and abstinence day 

as the within-subjects variable revealed no significant effect of schedule (F(2,36) = 0.638, p 

= 0.534), or schedule X abstinence day interaction (F(2,36) = 2.866, p = 0.070) on responses 

during seeking test. However, there was a significant effect of abstinence day (F(1,36) = 

42.877, p < 0.001). Because of an a priori hypothesis that responses would vary between 

AD1 and AD28, post hoc analyses were conducted for each schedule. Sidak’s post hoc 

analysis revealed that responses on AD28 were significantly higher compared to AD1 for 

LgA (p < 0.001) and IntA (p < 0.001), but not for ShA (p = 0.2245).

An increase in responses on AD28 is the operational definition of incubation of cocaine 

craving [4]. Thefore, to further examine whether each schedule of reinforcement generated 

incubation of cocaine craving, responses on AD28 were compared to AD1. A paired 

samples t-test revealed a significant increase in active lever presses on AD28 compared 

to AD1 for LgA (t(12) = 3.706, p = 0.003; Fig. 2C). Further, because the data were not 

normally distributed, a Wilcoxon signed-rank test (nonparametric test) determined that there 

was a significant increase in active lever presses on AD28 compared to AD1 for IntA (z = 

2.934, p = 0.002; Fig. 2C). However, a paired sample t-test revealed no significant difference 

in active lever presses on AD28 compared to AD1 for ShA (t(11) = 1.619, p = 0.134; 

Fig. 2C). Therefore, as shown previously, LgA and IntA, followed by prolonged periods of 

abstinence, engender incubation of cocaine craving [10,12,26]. However, animals trained on 

ShA did not show a significant increase in responses following abstinence [16] (Fig. 2C).
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3.4. DA release did not differ between ShA, LgA or IntA compared to cocaine-naive rats

To assess whether ShA, LgA, or IntA to cocaine followed by abstinence alters DA release 

compared to cocaine naive rats, animals were sacrificed 18 h after the AD28 seeking test 

and DA release was examined in brain slices containing the NAc core using FSCV. Under 

baseline conditions, a one-way ANOVA demonstrated that DA release was not significantly 

different across schedules, (F(3,44) = 1.222, p = 0.313; Fig 3A), suggesting that cocaine 

self-administration followed by prolonged periods of abstinence did not alter electrically 

stimulated DA release in the NAc core.

3.5. IntA followed by prolonged abstinence generates a significant increase in maximal 
rate of DA uptake

To assess whether ShA, LgA, or IntA to cocaine followed by abstinence alters DA uptake 

(i.e., Vmax) compared to cocaine naive rats, animals were sacrificed 18 h after the AD28 

seeking test and DA uptake was examined in brain slices containing the NAc core using 

FSCV. Under baseline conditions, a one-way ANOVA demonstrated that DA uptake was 

significantly different across schedules, (F(3,45) =5.658, p = 0.002). Further, Sidak’s post 

hoc analysis revealed that DA uptake was significantly faster in IntA (p = 0.001) compared 

to naïve rats indicating that the efficiency of DA uptake is higher in rats trained on IntA 

followed by abstinence (Fig. 3B).

3.6. LgA and IntA increase the effects of cocaine at inhibiting DA uptake after prolonged 
abstinence

After baseline recordings in the same rats, NAc core slices were exposed to five cumulative 

concentrations of cocaine. Two-way repeated measures ANOVA with schedule as the 

between-subjects variable and cocaine concentration as the within-subjects variable revealed 

a significant effect of schedule (F(3,43) = 8.250, p < 0.001), cocaine concentration 

(Greenhouse-Geisser correction; F(1.175,50.506) = 440.319, p < 0.001), and a significant 

interaction between schedule and cocaine concentration on cocaine potency (Greenhouse-

Geisser correction; F(3.524,50.506) = 7.970, p < 0.001). Sidak’s post hoc analysis revealed that 

cocaine was significantly more effective at inhibiting DA uptake in the IntA schedule at 1 

μM cocaine (p = 0.003), 3 μM cocaine (p < 0.001), 10 μM cocaine (p < 0.001), and 30 μM 

cocaine (p = 0.002) compared to the naive group (Fig. 4A–B). In addition, a significantly 

higher cocaine potency in LgA at 30 μM cocaine (p = 0.016) was observed compared to 

the naive group. These data suggest that rats trained on LgA and IntA show a greater effect 

of cocaine on the DAT compared to ShA and cocaine naive rats. Consistent with this, a 

one-way ANOVA revealed that the cocaine concentration required to inhibit 50% of uptake 

(Ki) was significantly different across groups, (F(3,42)= 5.742, p = 0.002). Sidak’s post hoc 

analysis revealed a significant decrease in Ki in LgA (p = 0.017) and IntA (p = 0.003) 

compared to naive rats (Fig. 4C).

4. Discussion

In the present studies, we assessed whether incubation of cocaine craving engendered by 

different cocaine self-administration schedules was associated with changes in DA release, 

DA uptake, and cocaine potency in the NAc after a prolonged period of abstinence. Rats 
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that self-administered cocaine on a LgA or IntA schedule showed significantly higher 

cue-induced seeking on AD28 compared to AD1, indicating incubation of cocaine craving. 

However, rats trained on ShA did not show incubation of cocaine craving. Regarding 

DA dynamics, we observed no difference in baseline DA release across schedules of 

reinforcement. However, IntA to cocaine followed by abstinence significantly increased 

DA uptake rate at baseline compared to cocaine naive rats. In addition, both LgA and IntA 

followed by abstinence engendered an increase in cocaine potency. In contrast, rats trained 

on ShA did not show an increase in cocaine potency. These results indicate that incubation 

of cocaine craving coincides with increases in cocaine potency suggesting underlying 

adaptations in DATs in the NAc.

4.1. IntA and LgA to cocaine engendered incubation of cocaine craving despite 
differences in cocaine consumption and patterns of intake

Rats that self-administered cocaine on LgA consumed significantly more cocaine than 

rats that self-administered cocaine on ShA or IntA schedules. However, similar to a prior 

observation, IntA to cocaine promoted a faster rate of consumption leading to rapid spikes in 

cocaine intake during the 5 min access to cocaine [25].

Despite differences in self-administration, both LgA and IntA produced incubation of 

cocaine craving, although ShA did not. Interestingly, neither LgA nor IntA produced 

escalation of cocaine intake, indicating that escalation of drug intake is not necessary to 

promote incubation of cocaine craving [44,47,48]. In addition, these data suggest that high 

cocaine intake and/or a binge-like pattern of consumption might be important factors for the 

development of incubation of cocaine craving.

Consistent with our observations, previous studies have shown that ShA to cocaine generates 

a relatively modest increase in drug-seeking after a month of abstinence, compared to LgA 

[16]. In our studies, rats were exposed to only 5 days of ShA; thus, in addition to low 

and continuous levels of cocaine intake, these rats experiences fewer and shorter cocaine 

self-administration sessions than rats that self-administered on the LgA and IntA schedules. 

Therefore, it is possible that the amount of cocaine or the number of days exposed to cocaine 

could differentiate the effects of ShA from the other schedules. However, previous studies 

have shown that even when rats were exposed to 10 or more ShA sessions, resulting in 

higher overall cocaine intake, ShA rats did not show a robust increase in drug seeking 

and motivation for cocaine after abstinence [16,21]. Additionally, the inability of ShA to 

engender incubation of cocaine craving might be associated with short sessions lengths 

compared to LgA and IntA, in which session length was three times longer. However, 

recent evidence suggests that a 2-h IntA schedule generates a similar increase in motivation 

for cocaine compared to rats exposed to a 6-h IntA [49]. Altogether, these results support 

previous findings suggesting that how fast and how frequent cocaine reaches the brain may 

play a crucial role in the development of neuronal adaptations associated with substance use 

disorders [25,47,48].
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4.2. LgA and IntA to cocaine generated changes in DA dynamics

DA signaling has been implicated in the facilitation of cocaine cueevoked craving and 

susceptibility to relapse [22,50,51]. Thus, we hypothesized that the amount and patterns 

of cocaine intake that influenced incubation of cocaine craving after abstinence, might be 

associated with DA terminal adaptations. Although no change in DA release was observed 

under baseline conditions, there was an increase in DA uptake in rats exposed to IntA 

followed by 28 days of abstinence compared to cocaine naive rats. By comparison, ShA and 

LgA to cocaine did not generate significant changes in either DA release or uptake. These 

observations are similar to previous reports indicating that on the first day of abstinence 

from IntA to cocaine, DA release and uptake were both increased [17,21]. In contrast, LgA 

and ShA did not produce changes in DA neurotransmission after one day of abstinence [21]. 

Altogether, these observations suggest a time-dependent change in DA dynamics, where 

changes in DA release associated with IntA to cocaine might normalize over the course 

of abstinence, while DA uptake changes might remain the same or become potentiated as 

demonstrated previously after 7 days of abstinence [17]. Consistent with our ShA data, in 

vivo FSCV studies reported a decrease in DA release and uptake in the NAc core after 

prolonged abstinence compared to rats that self-administered saline [52], and no changes in 

DA release or uptake when comparing AD1 with AD30 [53]. Moreover, the increased DA 

uptake rate observed only in the IntA group suggests that the temporal patterns of cocaine 

intake might be driving this effect, perhaps by intermittent cocaine-DAT interactions.

Surprisingly, IntA followed by abstinence changed DA uptake but not DA release. We would 

predict that more efficient DA uptake biases DA intracellularly, which would then lead 

to greater release in response to stimulation [31,54]. However, there are mechanisms that 

may regulate DA release independently of DA uptake rate. For example, mobilization of 

vesicular DA reserve pools or changes in the expression of VMAT2 which transports DA 

into readily releasable vesicles intracellularly [55,56]. Further examination will be required 

to understand the mechanisms underlying the effects of IntA to cocaine on DA uptake but 

not DA release.

4.3. Changes in cocaine potency match the magnitude of incubation of cocaine craving

When NAc core slices were exposed to cocaine, we observed an increase in cocaine-induced 

DA uptake inhibition (i.e., cocaine potency) after abstinence from LgA and IntA to 

cocaine, but not following ShA. Studies during early abstinence have demonstrated that 

discontinuation of IntA to cocaine produced a sensitized cocaine response at the DAT. The 

opposite effect was observed after LgA (desensitization or tolerance), and no effect was 

observed after ShA compared to cocaine naive rats [19,21]. The increased cocaine potency 

after IntA has been shown to be further augmented following 7 days of abstinence [17] 

while the decreased cocaine potency after LgA has been shown to normalize following 

15 days of abstinence [19]. Comparing these effects with the present studies, we suggest 

a time-dependent change in cocaine potency that matches the magnitude of incubation 

of cocaine craving. In the case of LgA, the initial decrease in cocaine potency observed 

early in abstinence [19,21], may transition into increased cocaine potency in late abstinence 

as observed herein. By comparison, IntA appears to increase cocaine potency both early 

in abstinence [17,21] and later in abstinence. In fact, only the schedules that engendered 
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incubation of cocaine craving—LgA and IntA—were associated with increased cocaine 

potency, suggesting the possibility that DA terminal adaptations that contribute to increased 

cocaine potency may promote incubation of cocaine craving. Consistent with this, rats 

exposed to ShA followed by abstinence did not show changes in cocaine potency or 

incubation of cocaine craving. Similarly, a prior study showed that ShA followed by 

abstinence did not produce the glutamatergic changes in the NAc core necessary for the 

development of incubation of cocaine craving [57].

Incubation of cocaine craving is in part mediated by a progressive accumulation of calcium 

permeable AMPA receptors in the NAc. A previous study demonstrated that activation 

of CaMKII plays a key role as an interface between increases in DA and glutamate 

neurotransmission in the NAc that contribute to reinstatement of cocaine seeking [58]. In 

addition, it appears that AMPAR redistribution depends on cocaine-induced DAT inhibition 

[59]. Overall, these studies suggest possible ways in which cocaine potency and glutamate 

plasticity in the NAc could be connected.

Interestingly, IntA followed by prolonged abstinence engendered both increases in DA 

uptake rate and cocaine potency while LgA only generated increases in cocaine potency. 

Therefore, we and others speculate that the spiking pattern of high cocaine concentrations 

encountered with IntA contributes to DAT changes that promote faster uptake rates and 

greater cocaine potency, while the maintained high amounts of cocaine intake observed with 

LgA influence cocaine potency but leave DA uptake largely intact. Altogether, DA terminal 

adaptations after cocaine abstinence suggest that patterns of cocaine intake may be driving 

aberrant DAT function observed after prolonged periods of abstinence.

4.4. Increased cocaine potency may reflect alterations in DA neurotransmission that lead 
to enhanced drug craving

Exposure to drug cues during cocaine abstinence induces the activation of mesolimbic DA 

neurons, promoting an exaggerated incentive motivational state that primes individuals to 

seek drug and eventually relapse [60]. Consistent with this, prior evidence suggests that 

cocaine potency can influence behavior, with high cocaine potency associated with increases 

in cocaine self-administration and motivation to obtain cocaine [17,21,37], and reduced 

cocaine potency leading to reduced cocaine self-administration [21,61]. In the current 

studies, we observed an association between increased cocaine potency and incubation of 

cocaine craving. However, it is important to note that during cue-induced drug seeking tests 

there was no cocaine delivery, therefore a change in seeking behavior cannot be directly 

attributable to a change in the pharmacological effects of cocaine at the DAT. Consequently, 

our findings suggest that increased cocaine potency likely reflects a dysregulated DA state 

that promotes enhanced associations between the drug and drug-associated cues – even 

under conditions when no cocaine is present.

The mechanisms underlying changes in cocaine potency remain unclear. However, it has 

been posited that shifts in cocaine potency may reflect underlying adaptations in DAT 

function (e.g., post-translational modifications). Future experiments will need to examine 

DA neurotransmission in awake behaving rats to assess if re-exposure to cocaine or 

cocaine-associated cues promotes cue-induced DA signals that drive craving and motivation. 
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In addition, to examine potential mechanisms underlying increased cocaine potency at 

DA terminals, studies may need to assess post-translational modifications and subcellular 

localization of the DAT after prolonged periods of cocaine abstinence.

5. Conclusions

Here we assessed whether incubation of cocaine craving engendered by different cocaine 

self-administration schedules is associated with changes in DA neurotransmission after 

prolonged periods of abstinence. Both LgA and IntA to cocaine followed by 28 days 

of abstinence engendered incubation of cocaine craving. However, rats trained on ShA 

did not show incubation of cocaine craving. In addition, IntA to cocaine followed by 

abstinence significantly increased DA uptake rate at baseline compared to cocaine naive 

rats and both LgA and IntA followed by abstinence engendered an increase in cocaine 

potency. In contrast, rats trained on ShA did not show an increase in cocaine potency. 

These results suggest that DA terminal adaptations may contribute to incubation of cocaine 

craving over the course of abstinence. Understanding the relationship between changes in 

DA neurotransmission and intensification of cocaine seeking observed after abstinence may 

provide critical information for the development of therapeutics to prevent cocaine relapse.
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Fig. 1. 
Relatively stable cocaine self-administration was observed during ShA, LgA and IntA to 

cocaine. (A) Experimental design. (B) Active and inactive lever presses, (C) cocaine intake, 

and (D) rate of cocaine intake during cocaine self-administration. ShA n=12 (6F / 6M). LgA 

n=16 (10F / 6M). IntA n=11 (5F / 6M). Data are shown as mean ± SEM.
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Fig. 2. 
LgA and IntA to cocaine engender incubation of cocaine craving after prolonged abstinence. 

(A) Total cocaine intake and (B) average rate of cocaine intake across schedules of 

reinforcement. (C) Lever presses during cue-induced seeking tests on abstinence day 1 

(AD1) and 28 (AD28). ShA n=12 (6F / 6M). LgA n=16 (10F / 6M). IntA n=11 (5F / 6M). 

Data are shown as mean ± SEM. * p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 3. 
Abstinence from IntA to cocaine increases DA uptake in the NAc. (A) DA release and (B) 

maximal rate of DA uptake (Vmax) on AD29 of rats that incubated on ShA, LgA, and IntA. 

Naive; cocaine-naive rats n=15 (7F / 8M); ShA n=10 (5F / 5M); LgA n=13 (7F / 6M); IntA 

n=10 (5F / 5M). Data are shown as mean ± SEM. **p < 0.01.
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Fig. 4. 
Abstinence from LgA and IntA to cocaine increases cocaine potency. (A) Example color 

plots after exposure to 30 μM of cocaine. (B) Inhibition of DA uptake across cocaine 

concentrations. (C) Inhibition constants (Ki) for naive rats and rats that incubated on ShA, 

LgA and IntA. Naive n=13 (6F / 7M); ShA n=10 (5F / 5M); LgA n=10 (4F / 6M); IntA n=10 

(5M / 5F). Data are shown as mean ± SEM. # p < 0.05 LgA vs Naive. *p < 0.05, **p < 0.01 

IntA vs naive.
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