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Abstract: Intravital microscopy and other direct-imaging techniques have allowed for a charac-
terisation of leukocyte migration that has revolutionised the field of immunology, resulting in an
unprecedented understanding of the mechanisms of immune response and adaptive immunity.
However, there is an assumption within the field that modern imaging techniques permit imaging
parameters where the resulting cell track accurately captures a cell’s motion. This notion is almost
entirely untested, and the relationship between what could be observed at a given scale and the un-
derlying cell behaviour is undefined. Insufficient spatial and temporal resolutions within migration
assays can result in misrepresentation of important physiologic processes or cause subtle changes in
critical cell behaviour to be missed. In this review, we contextualise how scale can affect the perceived
migratory behaviour of cells, summarise the limited approaches to mitigate this effect, and establish
the need for a widely implemented framework to account for scale and correct observations of cell
motion. We then extend the concept of scale to new approaches that seek to bridge the current “black
box” between single-cell behaviour and systemic response.

Keywords: cell migration; chemotaxis; chemokine; leukocytes; scale; live cell tracking

1. Introduction

Advances in experimental techniques have led to significant improvements in our
understanding of the processes that govern adaptive immunity. These processes rely on
directed cell migration to facilitate precisely timed encounters between multiple cell types.
Cells are directed by endogenous signals, such as chemokines, as well as environmental
cues like the structure of the extracellular matrix (ECM) and interstitial flow. The migration
of immune cells from the periphery to lymph nodes (LNs) and other secondary lymphoid
organs (SLOs), as well as within the SLOs, play a critical, intrinsic role in adaptive immunity.
In homeostasis, a small number of semi-mature dendritic cells (DCs) constantly sample
tissues and migrate to lymphatic vessels to be transported to LNs. Here, they join a network
of resident antigen-presenting cells (APCs) that sample tissue-derived lymph and encounter
high densities of lymphocytes that entered the LN primarily from the blood. Inflammation,
tissue damage, or infection induces DCs to rapidly mature and causes them to migrate en
masse to lymphatic vessels. Whether semi-mature or mature, DCs process the proteins they
acquired in the tissue and present peptide antigens on major histocompatibility-complex
(MHC) proteins to T cells in the LNs. The LN microarchitecture guides DC localisation
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and the migratory tracks of lymphocytes, increasing the probability of T cells finding their
cognate antigen [1,2]. Semi-mature DCs migrating from healthy tissue present antigens
derived from harmless or self-proteins and induce T cell anergy or deletion to eliminate
potentially autoreactive T cells and thereby maintain immune tolerance. However, mature
DCs, which may carry antigens from pathogen-derived proteins, can activate cognate naïve
T cells, resulting in their clonal expansion and their differentiation into effector cells armed
to destroy the pathogen.

Naïve T cells enhance the probability of encountering cognate antigen by migrating
within LNs and other SLOs and by moving between SLOs via the lymphatic and blood-
vessel networks [3]. After a residency period of 6–24 h in SLOs, naïve T cells egress via
efferent lymph or blood vessels, leaving space for other T cells to enter. Activated T cells
remain in SLOs for longer to give them time to complete their maturation before they leave
as effector cells and home to inflamed tissue. Naïve T cells primarily enter LNs through
high endothelial venules (HEV) [4–6], but they can also enter via afferent lymph when LNs
are arranged in series. Likewise, memory T cells and regulatory T cells, depending on their
precise phenotype, can enter LNs via HEVs or from tissue-draining afferent lymph [7].

Chemokines and their receptors are the essential messengers of leukocyte trafficking [8,9].
To guide their short-term migration, leukocytes polarise their morphology and orient their
movement according to differences in chemokine concentration across their diameter
(1–10 µm). They must integrate these with adhesion cues, antigens, and the local ECM
topology to follow longer-range chemotactic signals [6,10]. This type of migration is
commonly observed in interstitial DC migration in peripheral tissue and LNs. While the
chemotactic response of cells to chemokines is only relevant to some lymphatic trafficking,
chemokines can also influence cell behaviour in other ways. For example, with naïve T
cells, CCR7 ligands on HEVs stimulate T cell arrest on the HEV, while in the T cell zone of
the paracortex, these chemokines enhance speed but do not regulate cell directionality, a
process known as chemokinesis [5].

Our understanding of adaptive immune response has been aided by advancements
in the experimental techniques used to study cell migration. As our understanding of
adaptive immunity continues to expand, the temporal and spatial scales over which these
phenomena occur has gotten larger, but the temporal and spatial scales of the assays used
to investigate these effects have not kept pace. There is an assumption in the field that,
with modern imaging techniques, leukocytes move sufficiently slowly such that imaging
can occur frequently enough to accurately capture the cell path. However, this assumption
is almost entirely untested; as a result, the influence of scale on the characterisation of cell
migration is overlooked and under-appreciated in the literature. Experimental limitations
of live cell imaging constrain quantitative measurements in ways that can obscure the true
nature of migratory behaviours. This can place a limit on image acquisition frequency,
which, if insufficient, can result in an underestimation of cell velocity and an overestimation
of chemotaxis. Furthermore, small fields of view increase the probability that cells enter or
leave during the acquisition time or before another image can be taken. Insufficient spatial
and temporal resolutions within migration assays can significantly influence quantitative
statements about cell migration or cause subtle cell behaviours to be missed.

In recent years, multiple works, and reviews of those works, have focused on the
inference of the mechanisms of adaptive immunity, but there has been limited review of
the methods employed to study cell migration in the adaptive immune response. In this
review, we do not discuss the molecular mechanisms involved in leukocyte migration, as
other reviews have made substantial efforts to summarise and detail this [11–14]. Here, we
focus on the different methods of studying cell migration and contextualising the impact
of scale-based phenomena on estimations of leukocyte migration. In this review, we firstly
summarise the various experimental techniques implemented to quantify cell motility and
the different approaches of measuring immune cell migration with respect to scale. Then,
we review how scale can affect cell migration parameters and confound the interpretation
of cell tracking results. Finally, we discuss how some of these technical constraints can
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be addressed and how we can bridge the scale gap between single-cell and organ-scale
behaviour. A hybrid approach of experimental assays and mathematical models allow for
the characterisation of immune cell migration under a variety of conditions that would be
significantly more difficult or unfeasible in experimental assays alone [15,16].

2. Measuring Migration: Techniques and Motivation

Observation and quantification of leukocyte migration can be achieved through a
variety of in vivo, ex vivo, and in vitro techniques. In general, in vivo assays represent
a gold standard in understanding complex leukocyte migration. In the past, this was
limited to endpoint assays [17–20], where the location of cells is not tracked during the
assay. Recently, advances in microscopy have resulted in the development of in vivo
techniques, such as intravital imaging with two-photon microscopy [21–23], which do
allow for direct analysis of single-cell dynamics and interactions with the surrounding
environment, generally referred to as a “kinetic assay”; this type of assay can also be
extended to in vitro techniques. Here, a summary of the current state of the art with
regards to migration assays is presented. An overview is provided of how leukocyte
migration is measured in both endpoint and kinetic assays at varying scales, their associated
advantages and limitations, as well as a review of common motility parameters used to
describe cell migration.

2.1. From Endpoint Assays to Single-Cell Analysis: The Evolution of Migration Assays
2.1.1. Endpoint Assays
Boyden Assay

The Boyden, or transwell, assay was one of the first techniques developed to assess
the chemotactic behaviour of leukocytes [24]. Cells are incubated inside a transwell with
a chemoattractant in the well underneath, resulting in cell migration through the pores
of the transwell chamber and into the well (Figure 1). Cells are then analysed by mi-
croscopy of the lower surface of the transwell, counting with a haemocytometer, or by
flow cytometry [17,25–27]. Several mathematical models were developed to estimate the
motility coefficient and chemotaxis of cells during this assay, as well as assay modifications
to improve these measurements [28–30]. The advantages of the Boyden assay include its
relative simplicity and the wide variety of pore sizes commercially available to analyse
different cell types [31]. The assay can be conducted with the cells in suspension or on top
of a matrix, with both wild-type and gene-knockout cells. However, the Boyden assay is
unable to maintain a stable chemokine gradient long-term or to fully recreate the biologi-
cal conditions found in vivo during migration. There is also the potential for functional
or phenotypic alterations in ex vivo and cultured cells, which can impact the migratory
behaviour of cells. Lastly, the results of a Boyden assay are population-averaged and, as a
result, cannot capture cellular heterogeneity.
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Figure 1. Overview schematic of a Boyden assay. Cells migrate through the filter of a cell culture insert after a chemoattrac-
tant gradient has been established. As illustrated, this chemokine gradient changes over time and is not stable long-term.
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Adoptive Cell Transfer Assays

Adoptive cell transfer assays require the injection of fluorescently labelled donor
cells into recipient mice. These assays allow the investigation of large-scale, macroscopic
migration of leukocytes from the site of injection to an end location of interest, such as
a LN or SLO. They can be differentiated by the injection location, which can be subcuta-
neous (footpad or tail base), intravascular/intravenous, or intralymphatic (Figure 2). After
subcutaneous injection of labelled donor cells, the draining LNs are analysed, typically by
flow cytometry to determine the number of transferred cells [18,25,32–44]. Microscopic
examination of fixed LN sections after immunohistochemical or immunofluorescence
processing is also commonly used to assess donor cell presence and location [32,44–48].
Adoptive cell transfer via intravenous injection can be used to assess homing from the
bloodstream to other tissues [49]. However, intravenous injection leads to systemic and
circulatory cell migration, targeting multiple organ systems, which requires the analy-
sis of multiple organs by flow cytometry to determine the number of labelled cells they
contain [19,20,40,48,50–53]. Intralymphatic injection is a technique that transfers donor
cells directly into the afferent lymphatic vessels of a LN [20,54] and is used to monitor
traffic of bone marrow-derived DCs (BMDCs) and other cells in and out of the subcapsular
sinus and through the parenchyma. One of the primary advantages of this technique is the
removal of cell migration from the skin into the lymphatics, reducing the complexity of the
migratory process to just entry from the lymph into the LN. After a fixed period of time,
the LN is fixed, stained, and imaged.

The primary advantage of these assays is the ability to manipulate donor cells and
recipient mice, through fluorescent labelling, genetic manipulation, and the use of congenic
mice, enabling the molecular mechanisms of cell migration to be studied in a large-scale
macroscopic assay. However, there is the potential for an altered cell phenotype resulting
from the extraction, culture, and labelling of the donor cells, which can influence cell
migratory behaviour [13]. Furthermore, both subcutaneous and intravascular injections
require a non-physiological number of donor cells. In contrast, intralymphatic injections
require fewer cells to be transferred, but it is a technically challenging procedure, requiring
anaesthesia that may influence immune cell migration and lymphatic pumping [55]. Can-
nulation of the afferent lymphatic vessel may also result in an inflammatory response by
the recipient mouse.

Dermal Sensitisation Assay

Dermal sensitisation is a well-established migration assay used to evaluate the traf-
ficking of cutaneous DCs to LNs in response to a sensitising agent. In its simplest form,
the abdomen, back, or, ears of mice are inflamed (Figure 2), and the number of DCs in
the draining LN are quantified by flow cytometry. Fluorescein isothiocyanate (FITC) can
be included in the sensitising agent and the trafficked DCs identified by the presence of
the stain [32,34–36,41,48,56–58]. This assay is advantageous as it is technically straight-
forward, extensive DC migration can be induced [59], and knockout mice can be used to
analyse the effect of gene deletion on cell migration. There are several limitations to this
technique, however. In particular, it depends on the successful uptake of FITC to track
cells from skin to LN. More recently, photoswitchable mice have been used to mitigate this
limitation [60]. Furthermore, this technique does not allow for homeostatic cell migration
to be investigated.

Split-Ear Assay

The split-ear migration assay is an ex vivo technique used to track the attraction of
BMDCs towards dermal lymphatics (crawl-in assay) or the egress of endogenous DCs out
of the dermis (crawl-out assay). The ears of mice are split into dorsal and ventral halves and
then incubated with BMDCs for a crawl-in assay or with media only for a crawl-out assay.
For a crawl-in assay, the ear halves are fixed, stained, and then imaged with confocal mi-
croscopy [37,40,46,61–65]. Images are analysed to determine the percentage of labelled DCs
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within lymphatic vessels or the dermis, as well as the distance the DCs are from a lymphatic
vessel. For a crawl-out assay, the media are harvested and analysed by flow cytometry
to determine the number of DCs that migrated out of the ear dermis [17,18,23,40,56–58].
However, the use of ex vivo tissue has its limitations. The protocol for preparing the
explanted ear half may result in a change in its cellular structure [66]. In addition, the
removal of the tissue from its in vivo environment will limit its ability to reproduce all
relevant biological conditions, which may result in altered DC behaviour [13].

°

I

II

III

IV

V

Tail SubcutaneousI IntralymphaticII  Dermal SensitisationIII

Tail IntravenousIV Footpad SubcutaneousV

Figure 2. An overview of different in vivo endpoint assays, including adoptive cell transfer assays
and dermal sensitisation by FITC painting. Adoptive cell transfer assays typically inject cells by
three primary methods: subcutaneous injections of the tail and footpad, intravascular/intravenous
injection, or intralymphatic injection. In all assays depicted, cells of interest migrate to the draining
LN, which is harvested and analysed.

2.1.2. Kinetic Assays

The primary disadvantage of all endpoint assays is that it is not possible to directly
visualise the cells of interest during their migration. As a result, there is no information
available to probe the mechanisms determining the different migratory processes along
that pathway or to assess cellular heterogeneity within a population. However, with the
development of advanced microscopy techniques, such as two-photon microscopy, and the
creation of novel in vitro models, such as microfluidic chips, direct single-cell tracking is
now attainable with in vivo, ex vivo, and in vitro kinetic assays. While the advent of single-
cell tracking and analysis has led to considerable advances within the field of immunology,
it is limited by the restricted spatial resolution of available microscopy techniques. This
limits the ability to extrapolate the observed cell behaviour to larger scales, including the
organ-scale. Here, we review the primary in vivo, ex vivo, and in vitro kinetic assays
within the literature and summarise their specific advantages and disadvantages.
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Intravital Microscopy

Intravital microscopy (IVM) is a well-established in vivo technique to analyse single-
cell behaviour during leukocyte trafficking and immune response within the native in vivo
environment [66]. Genetic manipulation of both the donor cells and recipient mice can be
implemented, including knockout, reporter, and transgenic mice. IVM can be used in a
variety of anatomical locations in murine models [21,23,32,37,67,68]; cells of interest are
labelled and injected into recipient mice, including subcutaneously, intravenously, intra-
lymphatically, and intraperitoneally. Specific to intralymphatic injection, the synchronous
arrival of cells into the subcapsular sinus is advantageous to track cell location over time,
which is not possible with a footpad injection. Some time after adoptive transfer, which can
vary from 1 h to several days, mice are anaesthetised and prepared for intravital imaging,
with the tissue of interest surgically exposed, most commonly a LN or immobilised ear
pinnae (Figure 3). Imaging is typically conducted with a two-photon or inverted confocal
microscope. The resulting cell tracks are determined either with a commercial software,
such as Imaris (Oxford Instruments, Switzerland) or Volocity (Quorum Technologies Inc.,
Canada) or with an in-house custom method. Parameters of interest are estimated from
the tracks, including the mean or instantaneous velocity (µm/min), the displacement
(µm), the chemotactic index, the turning angle, the persistence, and the motility coefficient
(µm2/min).

While IVM has led to significant advancements in the field of immunology, it has its
limitations. IVM is a technically challenging procedure that requires a specialised imaging
setup. Only a small region of cell migration can be imaged at any point in time, typically
on the order of hundreds of microns, and, depending on the microscope used, there can
be a restricted z-depth due to working-distance limitations. In addition, this technique
requires prolonged anaesthesia of the mouse, which is known to impact immune cell
dynamics [55]. Furthermore, surgery to expose LNs or other areas of interest can cause
considerable inflammation, which can influence cell behaviour. Like other in vivo assays,
it is difficult to finely control experimental conditions in IVM to elucidate preferred cell
behaviour, such as controlled chemotactic cell motion.

Ex Vivo Migration Assays

Ex vivo kinetic assays use high-resolution microscopy to observe the migration of
immune cells in explanted tissue, such as LNs, spleen, or ear halves. When utilising
explanted LNs, the tissue can be imaged intact or in slices. Prior to excision, labelled
cells of interest can be adoptively transferred through intravenous, intralymphatic, or
subcutaneous injection. LNs are explanted and prepared for imaging after a set amount
of time following cell transfer, which can vary from 40 min to 24 h [54,69–71]. For the
split-ear assay, the infiltrating DCs within the dermal lymphatics of the ear are imaged
microscopically [37,43,65].

There are distinct advantages to such ex vivo migration assays. They allow the
direct visualisation of cell dynamics in the native-tissue environment, without the use of
anaesthesia or invasive surgery. They also allow the genetic modification of the donor cells
and the recipient mouse, as well as chemical manipulation at the time of transfer, such as
immunisation. However, the implications of the ex vivo environment, such as the absence
of fluid flow (blood, lymph, or interstitial) or lack of physiologic solute concentrations and
transport on cellular function are not well understood [13,66]. In addition, the methods
of tissue preparation can potentially have a significant impact on the resulting cellular
behaviour.

Migration Assays on 2D Coated Surfaces

Migration assays on 2D coated surfaces are a commonly implemented in vitro tech-
nique to directly observe cell motion [31]. The complexity of such assays can vary sig-
nificantly from cell migration on coated plates to more complex microfluidic chips. The
coated-plate technique utilises a flat surface coated with an extracellular matrix component
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or a cell adhesion molecule, such as ICAM-1-Fc [31], plus a coating of chemokine. The Dunn
chamber is a chemotaxis chamber consisting of multiple concentric rings (Figure 4a) [72].
Cells are cultured on a coated coverslip that is inverted on top of the chamber, after which
the outer and inner rings are filled with chemokine and media, respectively. This allows for
the creation of a chemokine gradient across the 20 µm gap between the coverslip and the
bridge separating the source and buffer rings. The under-agarose migration assay utilises a
cast agarose mould with two punched holes; one is the responder hole, filled with cells,
and the other is the attractor hole, filled with chemokine (Figure 4b).

Microfluidic chips are a commonly used technique for migration assays with a wide
range of designs (Figure 4c) [73–76]. The most common approach utilises a polydimethyl-
siloxane (PDMS) base with the desired channel geometry and is cast on a wafer etched by
photolithography. The PDMS is then bonded to a coverslip. For 2D migration assays, the
cell channel of the chip is typically coated with fibronectin or ICAM-1-Fc, with the adjacent
channels connected to a fluid source that provides chemokine solution or cell-culture media.
In all 2D migration assays described, cells are visualised over time as they migrate towards
the chemokine source. It should be noted that under-agarose and Dunn-chamber assays
can also be implemented as endpoint assays without the use of live-cell tracking.

1 cm

1 mm

100 μm
Cell Behaviour

Systemic Response

Black

Box

- Multiple Microscopy 

  Techniques

- Controlled 

  Environment

- Controlled Cell

  Population

- Homogenous

  Migration Media

- Multi-photon Microscopy 

-Vital Environment

  Motion Artefacts  

- Endogenous Cell

  Presence 

- Inhomogenous ECM  

- Prescribed 

  Microenvironment - Endogenous 

  Microenvironment 

In vitro Intravital

Figure 3. A schematic of an in vitro 3D migration assay using a microfluidic device (left) and in vivo migration assay
using intravital imaging of a murine inguinal LN (right). This schematic highlights the range of scales observed and the
critical features that differentiate in vivo and in vitro cell tracking. The limited observation window during live cell tracking
restricts the region that can be seen to a small region some two orders of magnitude below the organism scale.
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These migration assays have some advantages. Overall, they minimise the need for
complex animal procedures. They can be used with a wide variety of cell types, including
cells isolated from genetically modified mice [13]. In addition, in vitro migration assays
allow the isolation of chemokine-directed cell migration under controllable conditions, facil-
itating the study of non-directed cell motion, which is not easily isolated in vivo. However,
there are limitations. Chemokine gradients are not easily produced in migration assays on
coated plates [31], and while the under-agarose assay and the Dunn-chamber assay facili-
tate the development of chemokine gradients by diffusion, they do not allow for long-term
gradient stability (Figure 4d). As a result, microfluidic chips have a distinct advantage
over other in vitro migration assays. The resulting gradients have long-term stability and
can be shaped by the chip geometry and modified during experiments (Figure 4d). In
addition, microfluidic chips can be used to distinguish between chemotaxis and haptotaxis
in vitro [74]. However, the chemical and physical limitations of the in vitro testing envi-
ronment are the most significant. An in vitro assay cannot fully reproduce the biological
conditions found in vivo. Furthermore, the 2D testing environment implemented in these
assays is a simplistic representation of 3D tissue microenvironments [77].

Assay Setup

During Assay

Assay Finishes

(a)

(c)

(b)

(d)
Dunn Chamber (2D)

Under Agarose (2D)

Microfluidic Chip (2D/3D)

Chemotactic Agent Well

Buffer and Cells Well

Migration Region

Chemotactic Agent Well

Buffer and Cells Well

Migration Region

Chemotactic Source Channel

Buffer Source Channel 

Pre-seeded Coated Region (2D) / 

Cell Encapsulated Hydrogel (3D)

Figure 4. An overview of different in vitro kinetic migration assays. (a) The Dunn chamber consists of inner and outer
annular regions that represent the buffer and chemotactic agent wells, respectively. The thin region shown in purple shows
the cell migration region. (b) The under-agarose assay has holes punched in an agarose section poured on top of glass,
where one is filled with the chemoattractant and the other with buffer. Cells migrate in the space between the agarose and
the glass. (c) An example of a microfluidic chip, which can be used for 2D or 3D migration assays. A constant supply of
buffer and chemotactic agent are maintained on either side. The central region of the chip is coated and seeded with cells
(2D) or injected with a cell-encapsulated hydrogel (3D). (d) Three examples demonstrating cell migration and gradient
formation during an unsteady or steady chemoattractant 2D migration assay. On the left is an example of unsteady assays,
such as the Dunn-chamber or under-agarose assays, where the gradient changes with time. On the right is an example of
a steady assay often performed using a microfluidic chip, where cells migrate along the chemoattractant gradient on the
coated glass surface (shown in yellow). In these assays, a constant supply of buffer and chemoattractant maintain a stable
gradient over the migration assay.
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Migration Assays in 3D Matrices

In vitro migration assays using 3D matrices are designed to represent the migratory
motion of cells through sections of ECM. They are typically implemented with hydrogels
based on collagen, which is a major component of ECM [78]. There are two primary
methods by which hydrogels can be incorporated into in vitro migration assays. One
approach uses cell-encapsulated hydrogels polymerised in a well plate, dish, or custom
holder, with chemokines typically placed on top of the hydrogel to form a soluble gradient
within the matrix [20,37,40,46,62,63]. A modification of that approach uses hydrogels mixed
with chemokine, after which the cells are placed on top of the hydrogel and allowed to
migrate through the matrix towards the chemoattractant [34]. The second technique for
3D migration assays uses microfluidic chips, where the hydrogel is injected into a channel
with specifically designed posts to entrap the hydrogel (Figure 3). There are other chip
designs, but this is one of the most common. Channels adjacent to the hydrogel region are
connected to a fluid source, from which chemokines or media are continuously supplied to
facilitate chemokine gradient formation. In both techniques, after hydrogel polymerisation,
a microscope is used to image cell migration during the assay [31]. Cell images are then
processed either with commercial or in-house segmentation software, and the desired
motility parameters, such as the cell velocity or the chemotactic index, can be estimated.

The use of a 3D matrix-based migration assay has some distinct advantages over a 2D
system. Cells exhibit different migratory behaviour in 2D versus 3D environments, and it
has been shown that there is a significant dependency of cell migration on the structure of
ECM [79]. Hydrogels can be tailored to have mechanical properties similar to those of native
ECM. In addition, many hydrogels can be customised and functionalised with other ECM
components known to influence cell migration, such as proteoglycans and other matrix
proteins [77]. Glycosaminoglycans can bind to chemokines, creating gradients of bound
chemokine within the matrix [80,81]. In microfluidic chips, this facilitates both chemotactic
(from soluble gradients) and haptotactic (from bound gradients) motion of leukocytes.
This allows the elucidation of cell migratory behaviour in tightly controlled environmental
conditions. However, there are limitations with these techniques. 3D migration assays
conducted in a well plate or dish do not allow stable or consistent chemokine gradient
formation, which will affect chemotactic cell motion. In addition, the limited working
distance of the microscope objective may allow only a small section of hydrogel to be
imaged, depending on the height of the hydrogel and the thickness of the bottom of its
container. As with 2D in vitro migration assays, the primary limitation of these techniques
is the limited representation of the in vivo environment, although the use of a functionalised
hydrogel marks a significant improvement in comparison to its 2D assay counterpart [77].

2.2. How Can Cell Migration Be Quantified In Vivo and In Vitro?

Leukocyte migration can be estimated at a variety of scales from macroscopic to
microscopic. The techniques available to evaluate cell migration are highly scale-dependent,
where the type of assay conducted dictates how leukocyte migration can be assessed.
Endpoint assays allow for the observation of large-scale cell migration at a macroscopic
level, where a significant number of cells move from a known origin to an end location.
The spatial scale from one observation point to another limits the techniques available to
quantify the resulting cell migration as the cell path is not tracked during the assay. As
a result, it is not possible to elucidate cell behaviour in real-time or accurately estimate
migration parameters such as cell velocity, displacement, or chemotactic index. Instead,
the number of cells of interest identified at the end location are reported or presented
as a migration index (the number of cells present divided by the total number of cells
transferred). In contrast, kinetic assays allow for microscopic observation of single cells in
real-time, with the ability to track individual cells with high-resolution microscopy, albeit
within a small field of view. The resulting cell tracks can be used to quantify cell motility
parameters, such as the cell displacement (µm), the velocity (µm/min), and the chemotactic
index, as well as to characterise the type of cell migration observed.
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Characterising cell behaviours in kinetic assays requires appropriate recognition of
the uncertainties in quantifying migratory patterns, as illustrated in Figure 5, where a cell
has been tracked at an imaging interval of ∆t. The cell has moved from its origin to another
position some distance away after t = n∆t, where n is the number of imaging intervals.
Cell-motility parameters of interest can be quantified based on the resulting cell tracks.
However, every quantitative statement made about the motion of cells is dependent on
an assumed model for that motion. The resulting understanding of the motion of cells
depends on the assumptions taken as to what occurred during the unobserved aspects
of the assay and which aspects of the motion can be characterised as constant; the higher
the fidelity of these models of motion, the more representative their measured parameters
and the stronger their applicability in interpreting or predicting cell behaviours. In this
example, a cell migrates continuously in time during the assay, as depicted by the blue
path (Figure 5). In kinetic assays, the position of the cell is not known at all times; rather, it
is only known as a series of discrete positions at specific times, indicated by the apparent
path in red. The cell path is approximated by assuming that the cell moved in a straight line
between two consecutive observations and that it moved constantly in the time between
them. Therefore, the frequency at which a cell’s position is known (the frame rate) will
influence the fidelity of the apparent path.

A variety of cell-motility parameters can be estimated from the resulting tracks,
including cell displacement and mean or instantaneous cell velocity. The persistence
of a cell, defined as the tendency for a cell to continue in its current direction, can be
assessed by determining a persistence index (also commonly referred to as a meandering
index, a straightness index, or a confinement ratio). This is defined as the total cell
displacement divided by the apparent-path length. It is distinct from the chemotactic
index, which is conceptually defined as the ratio of chemotactic motion to total cell motion.
Most works represent chemotactic motion as the cell displacement in the direction of
a known chemokine gradient (defined in Figure 5 as d̂) and the total motion as either
the total displacement or the apparent-path length. However, there is not a consensus
within the field for the definition of the chemotactic index, and other definitions of the
chemotactic index do exist. A forward migration index has been used to describe the
chemotactic motility of cells [34], with a similar definition to that described previously. At
least one study has presented the chemotactic index as the dot product of the cell direction
and the direction of interest by calculating the cosine of the angle between them [62].
Chemotactic indices are commonly quantified from in vitro cell tracks, where known
chemokine gradients can be established and maintained. In vivo assays require a direction
of interest to be assumed in order for a chemotactic index to be estimated; as a result,
persistence indices are reported more often.

Another technique commonly used to assess leukocyte migration are plots of mean-
squared displacement (MSD) versus time [82]. They can be used to infer the type of
migration exhibited by the ensemble behaviour of many cells. For a sufficiently large
number of particles undergoing Brownian motion, there will be a linear relationship
between the MSD and time. The slope of this line is the motility coefficient, in µm2/min,
which is a metric used to describe the tendency of a cell to migrate from its origin in a
random fashion. This is analogous to the diffusion coefficient for Brownian particles. The
motility coefficient can be determined using the following formulae, M = d2/4t for 2D
motion, where d is the displacement of each cell at time t from its initial position [83], or
M = d2/6t for 3D motion [84]. Deviation from the slope indicates non-Brownian behaviour,
such as chemotactic motion. This technique has appeared with some of the earliest in vivo
observations of leukocyte motion, and its use continues to characterise cell behaviour in
modern works [85–88].
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Cell Motion

Definitions

• Position, r(t) : The position of the center of a
cell as observed at a given time, t.

• Actual Path: A continuous position as a func-
tion of time.

• Apparent Path: A piece-wise linear assumption
of the position as a function of time. The posi-
tion of the cell at all times is not known, only a
series of its positions at certain times. The cell
path can be approximated by assuming that the
cell moved in a straight line between two con-
secutive observations and moved constantly in
the time between them.

• Displacement, d: The difference in position be-
tween two times, usually over the course of an
assay. It is often given as a magnitude, |d|, in-
stead of a vector.

• d̂: The displacement of a cell in the direction of
interest, such as a chemoattractant.

• Cell Velocity: The true cell velocity is the rate
of change of its position, dr

dt . However, practi-
cally this has to be approximated either over the
whole duration of the assay, often referred to as

the mean velocity, or between two consecutive
observations, called the instantaneous velocity.

• Instantaneous Velocity: The cell velocity ap-
proximated between two consecutive observa-
tions, 1

∆t [r(n∆t)− r((n − 1)∆t)].
• Mean Velocity: The cell velocity approximated

over the total assay. This is defined in two ways:
the average of all observed instantaneous veloc-
ities, or the apparent cell path length divided
by the assay duration. For observations at uni-
form intervals, these definitions are equivalent:

1
n∆t ∑n

i=1(|r(i∆t)− r(i − 1∆t)|).
• Chemotactic Index, Forward Migration Index:

The displacement in the direction of interest d̂
divided by the length of the apparent cell path.

• Persistence Index, Meandering Index, Straight-
ness Index and Confinement Ratio: The dis-
placement of a cell divided by the length of the
apparent cell path.

• Turning Angle, θ: The resulting angle between
a cell’s initial direction vector, g, and subsequent
direction vector.

Figure 5. A representative schematic of a cell path, from time t = 0 to t = n∆t, where ∆t is the imaging interval and n is
the number of imaging intervals. Important cell motility parameters commonly quantified in kinetic assays are labelled
and defined.

3. Relating cell motion to spatial and temporal observation scales
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Cell migration is a complex phenomenon, where cells may pause or change direc-395
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Figure 5. A representative schematic of a cell path, from time t = 0 to t = n∆t, where ∆t is the imaging interval, and n is
the number of imaging intervals. Important cell-motility parameters commonly quantified in kinetic assays are labelled
and defined.

3. Relating Cell Motion to Spatial and Temporal Observation Scales
3.1. Phenomena of Scale in Kinetic Assays

Cell migration is a complex phenomenon, where cells may pause or change directions
due to external constraints or internal biological processes. MSD plots represent the
preferred tool to characterise the behaviour of cell migration (Figure 6). A qualitative
inspection of these plots can reveal deviations from Brownian motion; definitions of such
migratory behaviours are provided in Figure 7. Super-diffusive behaviour is visible as an
upward inflection in a MSD plot, where the scaling exponent is greater than one (Figure 6a).
In contrast, sub-diffusive behaviour is characterised by a downward inflection in a MSD
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plot, where the scaling exponent is less than one. MSD plots are the most commonly
used method to assess cell migratory behaviour, but they rely purely on the identification
of an inflection, and its interpretation is not always straightforward. In reality, there
are a number of factors at different scales that can affect the character of an MSD curve,
which may obscure the true nature of cell migration. Here, we give an overview of sub-
diffusive and super-diffusive motion and explore how different factors can influence these
behaviours. We also contextualise how the spatial and temporal scales can influence
quantitative statements on cell migration and demonstrate the resulting power-law scaling
of cell motion in experimental assays.
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Figure 6. A figure showing the effect of different phenomena on the apparent displacements of cells. (a) The inflection of
MSD plots for super–diffusive, Brownian, and sub-diffusive behaviours. (b) The effect of constrained motion, persistence,
and super–diffusive flights on MSD. (c) The expected inflection of the MSD when chemotaxis is introduced both in a
drift-diffusion sense and when this motion is ballistic. (d) The displacement–time plot for a simple multi-modal cell model,
where a cell moves in a constant direction, pausing and rotating periodically. (e) Shows the plot from (d) with dashed
coloured lines to indicate when an observation is taken, with frequency of observation increasing as the colour changes
from blue to red. (f) Shows example velocity distributions reconstructed from the observation patterns shown in (e).

3.1.1. The Causes and Appearance of Sub-Diffusive Motion

While sub-diffusive behaviour could theoretically have a number of causes, the pre-
ponderance of literature on the matter has considered two main sources of origin; first,
the physical effects that can constrain motion creating sub-diffusive behaviour at certain
scales and, second, the observation artefacts that can create the impression of sub-diffusive
behaviour if the scale is not considered carefully. A fundamental assumption in the in-
terpretation of MSD plots is that all cells have moved unhindered and can be observed
no matter how far they move from their origin. In reality, cells are in a finite container
and are observed by an instrument with a limited field of view. The length scale of the
container and the time scale over which a cell will remain within the observation window
will constrain assay design and affect analysis.

In intravital and ex vivo microscopy, physical structures that can constrain cell motion
are often geometrically complex, can be difficult to see, and can potentially span multiple
scales. This can make their impact on the observed MSD plots difficult to predict. The
motion of cells may be constrained physiologically within a vessel or organ, in which case
the effect of the container on the motion must be considered. Constrained motion can also
be observed when a cell must pass around other cells during its migration. For example,
Hugues et al. observed that T cells exhibited constrained migration when in proximity
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to DCs along their path trajectory [89]. Constrained motion may also partially conceal
other cell behaviours, such as directed motion. Vroomans et al. demonstrated that the
chemotactic behaviour of T cells to DCs can be muted by spatial exclusion; i.e., for every
T cell that moved towards a DC, another is forced to leave to make room for it, resulting
in a decrease in the overall directional bias of the T cells [90]. When it comes to in vitro
observations, homogeneity of the migration media can be reproducibly achieved, and the
dimensions of any container are known a priori. However, the displacement of the cell will
never exceed the length scale of the container, which creates the appearance of sub-diffusive
behaviour. Therefore, microfluidic devices in particular need to be large enough to allow
the cells to exhibit the behaviours relevant to the phenomena being studied.

For most published assays, the volume or area available for cells to travel is larger
than that observed. This can create the impression of sub-diffusive behaviour that would
not be present with a larger observation window or a shorter assay time. If cells leave
the observation window during an assay, they are no longer tracked. As time progresses,
this biases the cells included in the MSD plot to be only those whose displacement is less
than the length scale of the microscope, creating the impression of sub-diffusive behaviour.
During in vivo tracking of T cells during parasitic encephalitis, Harris et al. state that
they limited their reported observations to 10 min to prevent the over-representation of
less-motile cells [86]. Theoretical studies on particles diffusing in cages have suggested a
point of inflection marks the scale at which the constraint dominates the motion, and this
approach has been used experimentally by Fricke et al. to mitigate this phenomena [87,91].
Friedl et al. reported the number of cells that left the observation window, though this
practice is not widespread [92].

Definitions

• Random walk: a generic term for mathematical
models of random motion, in which random walks
are classified according to the distribution the
steps are taken from.

• Brownian motion: the undirected, random mo-
tion of cells, where the jump lengths are drawn
from a Gaussian distribution.

• Sub-diffusive motion: a type of motion where
the scaling exponent of the mean squared displace-
ment with time is less than one; this gives the MSD
vs time curve a downward inflection.

• Contact guiding: the property of a material that
causes cells to move in a specific direction.

• Directed motion: the continued migration of cells
in a direction or path of interest.

• Super-diffusive motion: a type of motion where
the scaling exponent of the mean squared displace-
ment with time is more than one; this gives the
MSD vs time curve an upward inflection.

• Super-diffusive flight: a random walk where ob-
jects take steps with lengths drawn from a heavy-
tailed distribution.

• Lévy flight: a special instance of a super-diffusive
flight where the step lengths are drawn from a
heavy-tailed Lévy distribution.

• Ballistic motion: a cell or particle moving in a
straight line with constant velocity.

• Persistence: the tendency for a cell to continue in
its current direction.

• Chemoattractant: a signalling molecule that in-
duces directed cell motion.

• Chemotaxis: the directed migration of cells along
a soluble chemoattractant gradient.

• Haptotaxis: the directed migration of cells along a
bound chemoattractant gradient.

• Chemokinesis: when a chemokine concentration
affects the velocity of cells but not their direction-
ality.

Figure 7. A list of common terms and their definitions used to describe cell motion.

3.1.2. The Causes and Appearance of Super-Diffusive Motion

The most commonly considered cause of super-diffusive motion is directed motion,
the simplest of which is ballistic, where cells move in a straight line toward their attractant
at a constant velocity. In this model, the displacement increases linearly with time, which
results in a quadratic curve on an MSD plot and super-diffusive motion (Figure 6c). Pure
chemotaxis is an example of ballistic motion. In practice, cells continue to migrate randomly
but are biased over time. This drift-diffusion motion of cells is also super-diffusive, though
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this is less apparent on an MSD plot. Cells that are undergoing both chemotaxis and random
migration will have the appearance of drift-diffusion motion. A common technique used
to confirm that the observed deflection of the MSD plot is due to chemotaxis is to look
for a directional bias in the cell tracks. Here, the observation scale is critical as directed
motion will only be evident if the observation scale is smaller than the gradients that cause
directed motion.

Super-diffusive behaviour is not solely associated with directed motion. Super-
diffusive flights, such as Lévy flights, are also a common cause of super-diffusive behaviour,
which are found at all time scales. In super-diffusive flights, the distance a cell moves
before changing direction, called a jump length, is drawn from a heavy-tailed distribution.
This is in contrast to Brownian motion, where jump lengths are drawn from a Gaussian dis-
tribution resulting in a linear relationship between MSD and time. The difference between
these two behaviours on a MSD plot is shown in Figure 6b. Unlike in directed motion,
the resulting random walks of super-diffusive flights have no directional correlation, i.e.,
they are as likely to go in any direction as any other, but they produce super-diffusive
motion. This kind of behaviour produces efficient searches and has been proposed as
another solution to the “needle in a haystack” problem of T cell-APC contact presented
by Cahalan et al. [93]. This super-diffusive behaviour requires careful analysis to separate
it from directed motion. Harris et al. reported a Lévy flight behaviour in T cells during
encephalitis toxoplasmosis [86]. While MSD plots were indicative of Brownian motion,
the log-log MSD plots showed straight lines with a gradient indicative of super-diffusive
motion. The distribution of jump lengths more closely agreed with a Lévy distribution
than a Gaussian distribution. Identifying any of these behaviours does not preclude other
behaviours. To rule out additional types of directed motion, Harris et al. verified that the
aspect ratios of cell tracks produced by such Lévy flights agreed with those found. Fricke
et al. expanded on this approach with a more rigorous series of statistical methods that
suggested that, in the LN, the motion is better described with a series of steps drawn from
a log-normal distribution producing a super-diffusive flight that was not a Lévy flight [87].

Another cause of super-diffusive behaviour is persistence, which is similar to directed
motion. At its smallest scale, the fundamental mechanisms of cell motion can cause a
persistence. In migrating cells, filopodia extend from the lamellipodium in the initial stage
of motion. This creates an arm-like projection filled with cytoplasm, called a pseudopod,
which drags the cell to a new location. These structures are then reorganised to form a new
lamellipodium, and the process continues in a new direction [94]. At a sufficiently fine
time scale, a strong dependence between the current and future direction will be observed
(Figure 8a). On an MSD plot, this phenomenon can be observed as a transition from ballistic
to Brownian motion at a certain time scale called the persistence time, tp, and a length
scale called the persistence length, lp, as shown in Figure 6c. Other examples of persistence
exist at other scales, including cell migration facilitated by contact guiding. Cells migrating
through ECM will preferentially move along sub-structures within the ECM, in particular,
collagen fibres, creating a persistence at a scale equal to the size of the fibres [88].

Insufficient temporal resolution can result in the appearance of super-diffusive motion,
particularly for multi-modal cell motion. Multi-modal motion can produce a variety of
observed velocities with different temporal correlations; this can complicate apparent paths
that are reconstructed from a series of discrete positions. For example, in vivo observations
of T cells in the LN have shown that T cells have periods of dormancy before and after
moving a certain distance in a constant direction [85]. Most models assume that cells
travel at a constant velocity and in a straight line between two subsequent positions; this
fallacy is revealed when the observation interval includes multiple behaviours. This causes
multi-modal velocities to appear as a series of different distributions depending on the
observation scale. An illustrative example is shown in Figure 6d–f.

The history of the “needle-in-the-haystack” question of how T cells find antigen-
presenting DCs within lymph nodes is an excellent example of the importance of careful
interpretation of cell tracks. Speculation of how T cells find antigen-presenting DCs
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predates the first reported in vivo observations of T cell motion, and the resulting data
suggested T cell chemotaxis would facilitate the search for antigen-presenting DCs. The
presence of CCL19 and CCL21 within the lymphoid organs, the up-regulation of CCR7 after
DC maturation, and reduced DC migration to T cell zones in CCR7 deficient mice suggested
that they use this signal to migrate to T cell regions to increase DC–T cell interaction. In
addition, mature DC expression of the naïve T cell attractant CCL18 suggested chemotaxis
may encourage initial antigen presentation [95]. The up-regulation of several activated
T cell attractants, such as CCL19 and CCL22, during DC maturation suggested they may
encourage additional DC contact for the latter stages of activation and proliferation [96].
However, when the first two-photon in vivo studies allowed cell motion to be observed
directly, the upward inflection characteristic of directed motion was absent from the MSD
plots [21,83]. This led to Cahalan et al. suggesting a new paradigm that an undirected
stochastic mechanism drives T cell–APC contact [93], rather than chemotaxis. However,
a review conducted by Bajénoff et al. challenged this notion, stating that there was no
conclusive study that demonstrated the percentage of cells required to be chemotactic
for a deflection in the MSD plot to be observed [97]. This was further emphasised by
Castro et al. [98], who stated that subtle biases in cell tracks could cause directed cell
motion to appear random and concluded that careful analysis of mixed-effects models is
required to tease out these subtle changes in biased motion.

The ability to differentiate between these variations in super-diffusive behaviours
is reliant upon subtle changes in MSD plots. The observation scale, or temporal resolu-
tion, that is used will have a significant impact on the ability to identify such changes.
Furthermore, quantitative estimations of cell motion will also be affected by the temporal
resolution. Most flights, including all Brownian and Lévy flights, will result in a power
law scaling for apparent-path length with a temporal scale. That is, as the time between
observations decreases, the total distance a cell is perceived to have travelled increases
(Figure 8b) and more closely follows the actual cell path. As a result, this will also cause
power-law scaling for the cell velocity and the chemotactic index (Figure 8c), where cell
velocity is underestimated, and the chemotactic index is overestimated, as ∆t increases.
When the observation scale is less than the persistence time, this phenomenon disappears,
and the velocity and the chemotactic index become independent of the observation scale
(Figure 8c). This scale will be heavily dependent on the individual experiment and is not
widely reported.

3.1.3. Variation of Temporal Scale in Experimental Assays

There is considerable variability in the temporal scales used for kinetic assays. This
inconsistency in temporal scales can have a significant influence on estimated migration
parameters. The fractal nature of a cell’s apparent path above the persistence scale will
induce a power-law scaling of any length-based parameters derived from it. In particular,
there is a power-law scaling of cell velocity and chemotactic and persistence indices at
different observation time intervals. As the imaging interval increases, cell velocity is
underestimated, and chemotactic and persistence indices are overestimated (Figure 8c).
In some instances, the temporal scale selected is technically constrained, for instance, as
a result of microscopy limitations. A compromise is often required between the desired
image volume, the slice thickness, and the time needed to obtain the image stack. This effect
is less prominent in 2D where the required imaging time is significantly reduced. Here, we
highlight the variability in temporal scales reported within the literature for different in
vivo, ex vivo, and in vitro kinetic assays within the LN and surrounding periphery and
demonstrate the effect of these differing imaging intervals on the estimated parameters of
interest, including the cell velocity and the chemotactic index.
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Figure 8. An explanatory figure demonstrating the effect of scale; (a) a magnified single–cell track
at a temporal scale at which the mechanisms of cell migration (cell reorganising, extension, and
subsequent contraction) are observable (persistence time); (b) the apparent path as a function of
time scale for the actual cell path shown in (a). As the observation scale decreases, the length of
the apparent path increases and its fidelity to the actual cell path is improved; (c) The power–law
scaling of the apparent velocity and the chemotactic index as a function of time scale for the different
apparent–path lengths shown in (b). There exists a time scale at which the cell velocity and the
chemotactic index are independent of the imaging interval, defined as the persistence time.
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The imaging interval, or the temporal scale, implemented in in vivo and ex vivo
assays varies depending on the cell type and the imaging location (Table 1). For intravital
imaging of LNs, an imaging interval between 15–60 s is typically utilised. More specifically,
for DCs, a temporal scale of 15–30 s is selected [23,37,41–43,67,99–101], though as high as
50 s has been reported [32]. In contrast, an imaging interval of 20–60 s is implemented
for T cells [22,52,68,102–108], though observations have been conducted at scales as low
as 10 s [21]. Lastly, for B cells, a temporal scale of 15–30 s has been used in previous
studies [20,51,53,103,107,109–111], with as low as 0.5 s reported [112]. In ex vivo assays, an
imaging interval between 10–30 s is commonly implemented within literature for imaging
of an excised LN or spleen [54,69–71,83,85,87,89,113,114]. In split-ear assays, DCs are
typically imaged at an interval between 15–30 s [37,65], though scales as high as 150 s have
been implemented [43].

In contrast, the imaging intervals selected for 2D and 3D in vitro assays vary between
10–120 s (Table 1). In 2D assays, such as under-agarose and Dunn-chamber assays, a
temporal scale of 15–60 s is typically used for DCs [23,37,46,64,75,76,101,115–118], though
imaging intervals as high as 180 s [119], 300 s [34], and 600 s [45,120] have been reported.
In contrast, for 3D assays, including those conducted in microfluidic chips, the typical
temporal scale varies between 10–120 s for DCs [32,37,40,43,46,47,61–63,121–127], with
intervals as low as 5 s [128]. Intervals above 120 s and as high as 300 s are also common
for DC tracking [26,34,129–132]. In general, T cells and B cells are studied less routinely
in in vitro assays than DCs, and, as a result, only limited information on imaging in-
tervals for these cells exists. Temporal scales between 10–60 s have been reported for T
cells [52,71,116–118,126] and between 3–120 s for B cells [20,37,115].

To illustrate the effect of the imaging interval on the migration parameters of interest,
we produced similar log-log plots to that of Figure 8c, utilising experimental data of the
cell velocity and the chemotactic index extracted from the references reported in Table 1. To
maintain a relevant comparison, data extraction was restricted to wild-type mice, and,
for in vitro assays, velocity measurements were restricted to chemotactic cell motion. We
further isolated by assay type (in vivo/ex vivo and in vitro), as well as cell type. Despite
the inherent variability of the extracted data amongst the different assay techniques, it is
evident that a correlation exists between the cell velocity and the imaging interval, regard-
less of the assay or the cell type (Figure 9). As predicted, a general trend was observed
where the cell velocity was underestimated with increasing ∆t. For instance, in a study
conducted by Clatworthy et al. [32], DCs were tracked every 50 s with intravital imaging
of the popliteal LN. The corresponding DC velocity was approximately 1.8 µm/min. In
contrast, in another study of intravital imaging of the popliteal LN conducted by Mempel
et al. [99], the corresponding DC velocity was 6.6 µm/min, with DCs tracked every 15 s.
Similar variations in velocities were observed with different temporal scales for all cell
types. When assessing the effect of the temporal scale amongst in vitro chemotaxis assays,
a similar behaviour is observed with the DC velocity and the chemotactic index to that
depicted in Figure 8c. Chemotaxis is overestimated with increasing ∆t, while cell velocity
is underestimated (Figure 10). For example, for DCs encapsulated in 3D matrix exposed
to CCL19, a chemotactic index of approximately 0.2 was determined when cells were
tracked every 60 s by Brown et al. [62], whereas a chemotactic index of 0.81 was estimated
by Lammermann et al. [37] with an imaging interval of 120 s.
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Table 1. A representative summary of varying temporal scales implemented for different in vivo, ex vivo, and in vitro kinetic assays that utilise DCs, T cells, and B cells. A wide range of
imaging intervals are observed within the literature, which differs depending on the cell of interest and the selected assay type.

Type Assay Dimensionality Imaging Interval References

In vivo/ex
vivo

Intravital microscopy of PLN 3D
DCs: 15–20 s, as high as 50 s [32,37,41–43,99,100]
T cells: 20 s, as low as 15 s, and as high as 60 s [22,52,102–105]
B cells: 20 s [51,103]

Intravital microscopy of ILN 3D
DCs: 30 s [67]
T cells: 30 s, as low as 10 s, and as high as 60 s [21,106–108]
B cells: 15–30 s, as low as 0.5 s [20,53,109–112,133]

Intravital microscopy of ear pinnae 3D DCs: 30 s [23,101]
T cells: 60 s [68]

Ex vivo split-ear assay 3D DCs: 15–30 s, as high as 150 s [37,43,65]

Excision of LN/spleen 3D
DCs: 30 s, as high as 90 s [54,61,70]
T cells: 10–30 s [54,70,71,83,85,87,89,113,114]
B cells: 10, 20 s [69,85]

In vitro

Migration assay on coated plate 2D
DCs: 30 s [37]
T cells: 15 s [52,71]
B cells: 3 s [115]

Under agarose migration assay 2D DCs: 60 s, as high as 300 s [34,46,117]
T cells: 60 s [117]

Migration assay in Dunn chambers 2D DCs: 60, 600 s [45,118]
T cells: 60 s [118]

Migration assay in 3D matrices 3D DCs: 60–120 s, as high as 300 s [34,37,40,43,46,47,61–63,121,122,129,130]
B cells: 60, 120 s [20,37]

Migration assay in microfluidic
chips

2D
DCs: 15–30 s, as high as 180 s [23,64,75,76,101,119]
T cells: 10 s [116]
B cells: 10 s [115]

3D DCs: 20–60 s, as low as 5 s, and as high as 300 s [26,32,123–125,127,128,131,132]
T cells: 30 s [126]
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Figure 9. The power–law scaling of cell velocity, in µmm/min, and imaging interval, ∆t, in s. For
all cell types, a decreasing trend of cell velocity was observed with longer imaging intervals. Data
were extracted from the references of Table 1 from both in vivo/ex vivo and in vitro assays. Velocity
data of DCs, T cells, and B cells were restricted to those from wild–type mice. R–squared values are
provided for each regression fit as well as the corresponding slope.
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Figure 10. The power–law scaling of DC velocity and chemotactic index and imaging interval, ∆t.
An overestimation of DC chemotactic index occurs with increasing ∆t, which is contrasted by an
underestimation of DC velocity. Data were extracted from in vitro 3D chemotaxis assays found
in the references of Table 1. The velocity and chemotactic–index data of DCs were restricted to
those from wild–type mice. R–squared values are provided for each regression fit as well as the
corresponding slope.

3.2. Phenomena of Scale in Endpoint Assays

While in this section we have focused on the effects of scale on live-cell tracking data,
temporal and spatial resolutions can also influence the results of endpoint assays. Unlike
in live-cell tracking, endpoint assays involve measuring the cumulative motion of a large
number of cells over a longer period. While this limits the amount of information that
can be discerned and only allows for statistics at the population scale, it removes a large
number of the opportunities for the observation scale to have a distorting effect. However,
the spatial scale still needs to be considered with relation to any studied phenomena, and
temporal effects can still appear as a result of assay design. A good example of this is found
in in vitro migration assays with unsteady chemotactic gradients, such as the Boyden,
under-agarose, and Dunn-chamber assays (Figure 4). In these assays, the gradient is not
constant, and so the time period over which an assay is conducted changes the mean
gradient to which the cells are exposed. The scale of this effect is closely related to the
diffusivity of the chemoattractant; a more motile chemoattractant will reach a uniform
gradient more quickly than a less diffusive chemoattractant. This restricts the ability to
compare assay results using chemoattractants with very different diffusivities as even two
assays of the same dose and time may not be fairly compared.

There exists a wide variety of length scales within endpoint assays, from in vivo studies
covering migration distances of centimetres to the millimetre distances in Dunn-chamber
and under-agarose assays, all the way down to Boyden assays with a filter thickness of tens
of microns. In all of these assays, the diameter of the cells themselves remains the same,
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and the cell migration observed over great distances is likely to be affected by phenomena
inconsequential over a few cell diameters.

4. Discussion
4.1. Contextualising the Effects of Scales: Establishing a Scale-Cognisant Framework

In 2005, Halin et al. [66] summarised the recent developments of in vivo microscopy
of lymphocyte trafficking and concluded that common procedures were needed across
research teams to better understand the impact of different measurement parameters in
three-dimensional intravital imaging. Since then, researchers have exploited the power of
two-photon microscopy and pushed both intravital and other assay techniques to their
physical limits in an attempt to better understand the mechanisms governing immune
cell migration. While procedures have expanded in both magnitude and complexity over
the past decade, a consensus has yet to be reached regarding the critical measurement
parameters of 3D live cell tracking. Substantial variability of measurement parameters
remains within the literature, with a lack of consistency in the temporal and spatial scales
selected for in vivo, ex vivo, and in vitro alike.

This is problematic for multiple reasons. It suggests a lack of appreciation of the
deleterious effects of under-sampling. Insufficient temporal and spatial resolutions dur-
ing cell tracking can have significant implications on the characterisation of leukocyte
migration, which can result in misrepresentation of important physiologic processes and
behaviours, such as an overestimation of the chemotactic index, the obfuscation of directed
motion, or misconstruing cell-arresting behaviour. This can have significant implications
when elucidating the underlying biology of immune cell behaviour or the effect of genetic
knockouts. Such studies often rely on small changes in leukocyte migration to establish
causal links, such as contextualising behaviour between different lymphocyte subsets [68]
or understanding the role of adhesive integrins on lymphocyte migration [71]. Correlation
between the temporal and spatial scales and the measured parameters limits comparisons
between studies and increases the complexity of a potential meta-analysis of the field. It
is therefore critical that widespread adoption of studies cognisant in the effects of scale is
pursued. However, only a few examples of scale-cognisant studies currently exist within
the literature [86,87]. Harris et al. is an excellent example of a scale-cognisant study [86],
which limited cell tracking to only 10 min to avoid biasing their data set to less-motile
cells and which grouped data by imaging intervals to avoid making comparisons between
different temporal scales.

The question remains of how best to design and implement a scale-cognisant study.
There are some general guidelines that can be followed when conducting live cell tracking.
These include reducing the imaging interval to increase the accuracy and fidelity of the cell
path, as well as limiting the total observation time and maximizing the field of view. A set of
pilot studies can be conducted varying sampling and spatial parameters to project scaling
behaviour on migration metrics of interest; these studies could assess the persistence time
to ensure it is not significantly less than the imaging interval. However, it is important
to realise that the required spatial and temporal resolutions are highly cell-specific and
assay-dependent. Cells migrate in different ways and speeds depending on their local
environment, and these effects are more prominent with some cell types than others.
Furthermore, potential cellular heterogeneity within a population must also be considered,
and it is critical to image at the speed of the fastest cell within the population of interest.

However, while these are good guiding principles, they will not always be practical
or feasible experimentally. Technological constraints linked to microscopy will often
limit the ability to fully implement such an approach. Even if technological advances
could overcome instrument limitations, there remain the issues of photobleaching and
phototoxicity. While these issues are well known in visible light confocal microscopy, the
preponderance of the field uses two-photon microscopy, and these issues do not seem as
significant when the incident light is infrared. However, quantitative studies of the effects
of phototoxicity on these cell types are limited and not well documented. Remarks on
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this subject in the literature likely represent a small fraction of the work done as most
preliminary studies involve optimising for laser power and dwell time. However, authors
rarely describe the steps they took to mitigate or allow for these effects, and, as a result,
their true impact remains unknown. Label-free tracking presents an opportunity to avoid
these potentially deleterious effects but is not always experimentally feasible.

As a result of these limitations, it may not be possible to completely mitigate the
effects of scale during experimental design, and, consequently, consideration of the effects
of scale should be included in the data interpretation and analysis of studies. Care should
be taken when defining exclusion criteria for cell tracks; there is a wide variety of exclusion
criteria within the literature, such as a minimum duration of cell movement and a critical
cell velocity or track length [23,37,104,108,134]. Setting cell-velocity and track-duration
limits too high can bias data to slower, less-motile cells. In addition, due to the power-law
scaling of cell velocity, exclusion criteria cannot be universal but must depend on the
specific imaging parameters. Power-scaling plots, such as that shown in Figure 10, can
be implemented to better understand the effect of scale on estimated parameters within
assays, while presenting data and conclusions within the context of this limitation. When
comparing studies, in particular, velocity magnitudes or the chemotactic index, the effects
of scale must be considered, and relationships need to be established across experimental
results using differing scales.

These practical limitations could be overcome through the use of mathematical mod-
elling. Computational biology has revolutionised many fields of medicine, biology, and
anatomy. The field of immunology has not been reticent to leverage mathematics to provide
significant insight [98]. However, these potential benefits have not been fully realised for
lymphocyte migration. Mathematical modelling is a tool that can help design and interpret
assays. To receive widespread use, these tools need to be reliable, practical, and efficient.
Frameworks that closely mesh with assays can place useful tools in the hands of experi-
mentalists that routinely conduct such techniques. In a similar manner, a mathematical
framework can be developed to correct for observations of scale within imaging sets and
to account for differing time scales across data sets. The benefits of wide-scale adoption
of scale-cognisant studies, coupled with mathematical frameworks to correct for scale
phenomena, would be significant. Most importantly, the increased robustness and fidelity
of cell-migration measurement would limit unintentional bias in conclusions.

In this work, we focused on the effects of scale on immune-cell migration, but scale-
based phenomena in cell migration extends beyond just immune cells, and the recommen-
dations made in this work can be applied to other migratory cell types, such as cancer cells
with an invasive phenotype. This would require separate analyses to understand how scale
influences the migration of the cells of interest, as well as the development of cell-specific
frameworks to account for scale.

4.2. “Bridging the Scale Gap”: From Single-Cell to Organ-Scale Behaviour

In 2021, Fowell and Kim summarised the state of the art of effector T cell migration
in the context of spatio-temporal control [6]. They commended the considerable advance-
ments made in understanding the mechanisms of effector T cell migration but highlighted
the need to bridge the divisions of scale between single-cell, high-resolution imaging
and the biological complexity of whole-tissue behaviour in order to fully understand T
cell localisation and positioning. This observation can be extended to investigating the
whole immune system. The intricate relationship between single-cell behaviour and the
behaviour of the ensemble system that drives immune response at the organ-scale is a
black box. The cascades and processes that drive allergy, inflammation, and immunity
emerge from a multitude of interactions between cells. These interactions affect processes,
which propagate and integrate information toward responses on the organ or system scale.
As a result, much of the behaviour that motivates the study of migrating immune cells is
emergent in nature. Limitations with current experimental techniques restrict the ability
to observe cell behaviour in spatial scales beyond several hundreds of microns. While in
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vitro techniques that allow the study of the migration of individual cells under closely
controlled conditions exist, these emergent behaviours are traditionally only observed in
vivo. The practical limits currently placed on modern microscopy make observing the
scales spanned between single-cell and organ-scale behaviour experimentally unfeasible.
It is apparent that novel approaches to study design are needed to push the boundaries of
our understanding of complex organ-scale behaviour that drive immunological cascades
and processes.

An emerging field seeks to bridge this gap and elucidate the effect of changes in
individual cell migratory behaviour on homeostasis and pathology through the use a
hybrid approach of experimental assays and mathematical modelling. The success of this
emerging field is dependent on a collaborative effort between both experimentalists and
mathematicians. Mathematical models that theoretically describe the motion of cells, with
limited thought to the experimental data that can be collected, or the hypotheses that
can be tested, may be of little use. Similarly, interpreting experimental data with limited
consideration of the underlying models that govern cell migratory behaviour can cause
critical behaviour to be missed.

As a result, an intertwined, hybrid approach of mathematical models and experiments
is necessary, where one is used to inform the other to generate novel findings. As suggested
by Castro et al., this requires an iterative approach of experimental observation, modelling,
prediction, and experimental observation [98]. Experimental assays can suggest hypotheses
that can be tested at the organ scale with mathematical models, where such models are
informed by experimental data. Mathematical models can then predict the specific result
of combining assays that can further elucidate specific cell dynamics and interdependent
relationships with the surrounding tissue environment. An overview of three different
methods of designing modelling approaches to directly integrate with existing assays are
described in Figure 11, using step-based experimental data (distributions of velocity or
turning angle), track-based experimental data, or continuum models (cell-density data).

Step-based data contains a list of movements from one position to the next for a
collection of cells (Figure 11a). From this data, one can calculate other quantities that
are useful for characterising the collective motion of cells, such as velocity, step size, and
turning angle. It can be hypothesised, and those hypotheses tested, that these quantities
follow probability distributions that are associated with a particular kind of motion, such
as Brownian motion, Lévy walks, or correlated random walks. For example, Fricke et al.
analysed the motion of T cells as they searched for DCs in the lymph node, concluding that
neither Brownian motion nor Lévy walks appropriately capture the cell motion [87]. These
methods have limitations, however. By lumping all observed cell motions together, it is not
possible to distinguish between the heterogeneity of motion and cellular heterogeneity. For
example, cells drawing from a bimodal set of velocities each step will have the same step-
based velocity distribution as a bimodal distribution of cells each with fixed velocities. An
assumption of cellular homogeneity is inherent in step-based methods, and this assumption
should be assessed before an inference is drawn from their distributions.

Track-based data consists of time series describing the paths of cells individually
(Figure 11b). A discrete, agent-based model can be used to generate an ensemble of cell
tracks in silico from distributions of key parameters (informed by an underlying chemoat-
tractant gradient), such as the waiting time between movements, step sizes, and turning
angles, thereby generating a biased random walk. A prediction of mean-squared displace-
ment versus time can be formed from the simulated cell tracks, allowing a comparison
with experimental data. How biased the cell tracks are to the chemoattractant gradient
can be characterised by the distribution of the aspect ratios, as in Harris et al. [86]. In the
absence of chemotaxis, the distribution is expected to be symmetric about zero, whereas
the presence of chemotaxis causes the distribution to shift, as illustrated in Figure 11b.

Rather than tracking individual cell positions, continuum data measure the spatial
density of cells (Figure 11c). This is a mathematically convenient method to represent the
locations of a collection of cells, allowing access to a range of modelling techniques such as
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partial differential equation models and, more specifically, to well-established continuum
models of cell migration. The best known example is the Keller-Segel model [135,136], a
version of which is shown in annotated form in Figure 11c. It models directed cell motion
in a manner that is analogous to advection of a solute by a moving fluid, although the
drift velocity of the cells is proportional to the strength of the chemoattractant gradient.
Provided with an initial cell density profile at, say, t = 0, a prediction of the cell density at
a future time can be obtained by numerically solving the underlying differential equations
repeatedly at successively later times. The final density profile can be compared with
that obtained from estimating the density of cell positions from experimental data. This
approach is vulnerable to the same homogeneity fallacy addressed in step-based methods.
However, if work could address this weakness, this approach would mitigate some scale
phenomena by reducing the required spatial resolution and allow an increase in the
temporal resolution.
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Figure 11. An overview of different integrated, hybrid approaches to combining experimental assays and mathematical
models. Different types of experimental data that describe the motion of cells can be used including (A) step–based methods,
(B) track–based methods, and (C) continuum methods. Mathematical models can then predict and evaluate properties of
cell motion for each type of data.

Recently, an example of a hybrid experimental-mathematical continuum approach
can be found in the work of Hywood et al. [137]. They derived density relationships
from a Fokker-Planck model, and, by estimating these relationships from microscopy
data, they were able to estimate motility and chemotaxis using cell densities instead of
cell tracking. They noted this approach was robust to the number of observations and
agents. Approaches like these reveal how the potentially discriminating power of careful
mixed-effects analysis can be directly integrated into assay design [98].
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There have been demonstrations of this observation, modelling, and prediction ap-
proach since the Castro et al. review [98]. Works like Vroomans et al. can improve assay
interpretation by revealing chemotaxis muting [90]. The work of Azarov et al. sought
to make quantitative predictions of cognate T cell out-flux from challenged LNs using
agent-based models of T cell and DC motion and interaction [138]. Other works have
used in vivo measurements of T cell motion within LNs to predict the outcome of HIV
infection [139]. A work recently published by this group predicted changes in T cell acti-
vation as a result of LN swelling during an antigen challenge [140]. These models bridge
the gap between the temporal and spatial scales that span the micro-anatomy of cellular
behaviour and the macro-scale response of organ systems, using data from one scale to
provide testable hypotheses for the other. These techniques can be expanded to bridge
larger gaps using in vitro cell motion to predict endpoint assays, mixing assays to maximise
their strengths. Such an approach is critical for continued advancements in a field as
dependent on emergent behaviour as that of immunology.

5. Concluding Statements

The temporal and spatial scales of an experimental assay can have a significant
effect on the predicted migratory behaviour of immune cells, the influence of which is
significantly underappreciated within the literature. While maximizing field of view and
minimizing image interval can help mitigate scale phenomena, this is often not feasible
experimentally. A scale-cognisant approach to migration assays is needed to consider the
effects of scale on cell behaviour. However, studies implementing such an approach are
limited and have poor agreement on how best to account for such effects. A consistent
framework derived from evidence-based models is needed that can account for scale
and correct observations of cell motion. This is critical to an emerging field of research
that implements a hybrid approach of experimental assays and mathematical modelling.
This field seeks to bridge the gap of scales between single-cell motion and organ-scale
behaviour in order to improve our understanding of the complex processes that drive
immune responses.
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