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Abstract: Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of
monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancre-
atic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as
the clinical symptoms largely overlap. Even though several biomarkers have been tested none of
which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY
is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific.
Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to
the high incidence of vascular complications observed in these patients. Finally, stratification of
MODY patients will enable better and newer treatment options for MODY patients, once the disease
pathology for each patient group is better understood. In the current review the clinical characteristics
and the known disease-related abnormalities of the most common MODY subtypes are discussed,
together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the
usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with
the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
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1. Diabetes—Current Classification and Place for Maturity-Onset Diabetes of the
Young (MODY)

Diabetes is a chronic, metabolic disease characterised by elevated levels of blood
glucose, which uncontrolled over time leads to serious damage of central organs such
as the heart, kidneys, eyes and blood vessels. According to World Health Organization
(WHO) about 422 million people worldwide have diabetes with 1.6 million deaths directly
attributed to diabetes each year. Both the number of cases and the prevalence of diabetes
have been steadily increasing over the past few decades. The first WHO classification
system for diabetes was published in 1965 and was simple mainly based on the age of the
patient: infantile, young, adult and elderly [1].

The next WHO system, published in 1980 and updated five years later, was globally
accepted and widely adopted. In these classifications, the two major classes of diabetes
were included as insulin dependent diabetes mellitus (IDDM) or type 1 diabetes mellitus
(T1DM), and non-insulin dependent diabetes mellitus (NIDDM) or type 2 diabetes mellitus
(T2DM). In addition to these, two other classes were added the so-called “other types” plus
gestational diabetes mellitus (GDM). In 1999, WHO recommended that the classification of
diabetes should encompass not only different aetiological types of diabetes, but also the
clinical stages of the disease and reintroduced the terms T1DM and T2DM, as they were
omitted in the report from 1985 [2].

Since the last classification, advances in the knowledge of pathophysiological path-
ways related to the disease have been made. It became clear that diabetes is a much more
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heterogeneous disease than the simple classification of T1DM and T2DM. Moreover, many
patients have genetic predispositions to both forms of diabetes, which in combination to
rapid changes in the environment leads to an increased incidence of the disease world-
wide [3]. It was shown that molecular genetics can be used to help in the identification of
specific subtypes of monogenic diabetes. Importantly, genetic diagnosis can not only reveal
clinical subgroups, but can result in improved treatment outcomes for these patients [4]. All
this led to updating the classification system in 2019 [5], that is centred on the β-cell. This
enables that appropriate clinical care is delivered according to the international standards
set out in the classification system. The β-cell-centric model recognises dysfunctional
β-cells as the common denominator of diabetes, which may be caused by either monogenic
or polygenic defects in combination to lifestyle factors and environmental changes [6]. In
the new classification system, the two major groups (T1DM and T2DM) are included along
with so-called “hybrid forms”, “other specific types”, hyperglycaemia during pregnancy
and unclassified diabetes. In “other specific types” several subclasses were defined, among
them “monogenic diabetes” (Figure 1).

Figure 1. Classification system of diabetes cases (based on WHO, 2019 [5]).

The monogenic diabetes subclass was additionally divided into monogenic defects of
β-cell function, monogenic defects in insulin action and other genetic syndromes associated
with diabetes (Figure 2). Clinical manifestation of monogenic defects in β-cell function
include maturity-onset diabetes of the young (MODY) and other genetic syndromes where
insulin-deficient diabetes is associated with additional clinical features [7,8].
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Figure 2. Subclassification of the monogenic diabetes (based on WHO, 2019 [5]).

2. MODY Types

MODY is a rare condition, accounting for 1–5% of all diabetes cases [9,10] and 1–6%
of paediatric cases of diabetes [11], which means that 1:10,000 adults can be affected [12].
Usually, the definitions of the monogenic subtype come from the gene symbol of the
mutated gene followed by the clinical syndrome. The most common forms of MODY are
caused by mutations in the glucokinase gene (GCK-MODY) and hepatocyte nuclear factor
genes (HNF1A-, HNF1B- and HNF4A-MODY) which together are responsible for around
99% of all MODY cases [13]. HNF1A-MODY is the most frequently found (Figure 3) [14]
but the incidence rates vary among different populations. For example, in Japan, around
51.9% cases are caused by unidentified mutations, and among the identified ones GCK
mutations (22.8%) are the most prevalent [15]. In European countries (UK, Germany, The
Netherlands, Norway, Poland), the most common subtype is HNF1A-MODY, followed by
GCK-, HNF4A- and HNF1B-MODY [16–20]. Recently, the first MODY cases were reported
in patients from Africa, where the predominant subtype was HNF1A-MODY representing
5.9% of the study population [21]. Additionally, mutations in MODY-associated genes were
shown to be a significant risk factor for T2DM [22–25]. However, these big population
studies also highlight the high rate of misdiagnosed individuals, which subsequently leads
to inappropriate treatment strategies [23,25].

MODY is a monogenic, autosomal dominant form of diabetes with onset before
the age of 25, absence of β-cell autoimmunity and impaired β-cell function [10,13].
Currently, 14 MODY subtypes caused by mutations in 14 different genes (Table 1) were
described [10,26,27], although mutations in other genes were also described in relation to
MODY [28].
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Figure 3. Prevalence of MODY types in some European countries.

Table 1. Current MODY subtypes—gene function, clinical manifestation and complications.

Gene Symbol Full Name Gene Function Clinical Manifestation Diabetic
Complications

HNF1A Hepatocyte nuclear factor
1 alpha transcription factor

progressive insulin secretory
defect; diminished renal
threshold for glycosuria;

common

GCK Glucokinase enzyme in the first step of
glucose metabolism

stable, mild fasting
hyperglycemia; rare

HNF4A Hepatocyte nuclear factor
4 alpha transcription factor

transient neonatal diabetes;
progressive insulin

secretory defect
common

HNF1B Hepatocyte nuclear factor
1 beta transcription factor

renal abnormalities and
insufficiency at young age; liver

test abnormalities; exocrine
pancreatic dysfunction;

hyperuricemia

common

PDX1 Pancreatic and duodenal
homebox-1 transcription factor permanent neonatal diabetes in

homozygote; pancreas agenesis unknown

NEUROD1 Neurogenic differentiation 1 transcription factor

neonatal diabetes; pancreatic
abnormalities; child or

adult-onset diabetes
neurological abnormalities

unknown

KLF11 Krupell-like factor 11 transcription factor pancreatic malignancy; similar
to T2DM unknown

CEL Carboxyl ester lipase
controls exocrine and
endocrine functions of

pancreas

exocrine pancreatic dysfunction;
lipomatosis and fibrosis with

posterior diabetes development
unknown

PAX4 Paired box 4 transcription factor possible ketoacidosis unknown

INS Insulin encode the insulin
precursor permanent neonatal diabetes unknown

BLK B-lymphoid tyrosine kinase tyrosine kinase functions
in signal transduction overweight unknown
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Table 1. Cont.

Gene Symbol Full Name Gene Function Clinical Manifestation Diabetic
Complications

ABCC8 ATP-binding cassette C8 regulating insulin release permanent or transient
neonatal diabetes unknown

KCNJ11
Inwardly rectifying

potassium channel subfamily
J member 11

regulating insulin release neonatal diabetes in homozygote unknown

APPL1

Adaptor protein,
phosphotyrosine interacting
with PH domain and leucine

zipper 1

insulin signaling pathway insulin secretion defect; child or
adult-onset diabetes unknown

3. Molecular Pathophysiology of the Most Common MODY Subtypes

All types of MODY are caused by a heterozygous mutation in a specific gene and
many of them are considered as haploinsufficiency disorders [29], meaning that one defec-
tive allele results in insufficient dose of the gene product leading to failure of the normal
cell phenotype. Haploinsufficiency genes are usually expressed during early develop-
ment and are involved in developmental processes, transcription, cell cycle and nucleic
acid metabolism [30,31]. Recently, a homozygous mutation causing MODY has been
described [32].

3.1. HNF1A MODY

The most common form of MODY is caused by mutations in hepatocyte nuclear
factor 1A gene (HNF1A). HNF1A is a transcription factor comprised of short N-terminal
dimerisation domain, a DNA-binding domain and a C-terminal transactivation domain [33].
It is expressed in liver, kidney, intestine and pancreatic islets [34]. Three functional isoforms
of HNF1A are described, which are regulated by the same promoter, however they present a
different pattern of polyadenylation and are formed by alternative splicing [35]. The longest
isoform—HNF1A(A)—consists of 10 exons; the shorter is HNF1A(B) and the shortest is
HNF1A(C). These have lengths of 7 and 6 exons, respectively. The expression of these
isoforms varies between tissues. In the pancreas, isoform B is the predominant form, while
in the liver isoform A is the most abundantly expressed. Isoform C is detected at very low
levels in diabetes-associated organs [36].

In the liver, HNF1A is responsible for gluconeogenesis and apolipoprotein synthesis, in
the pancreas for the synthesis of the insulin receptor (INSR) and glucose transporter 1 and 2
(GLUT1, GLUT2), whereas in the gut it is supposed to play an important role in controlling
terminal functions of the epithelium [37–39]. In humans, biallelic deletions of HNF1A are
not observed because of its impact on development and homeostasis [40,41]. Recently,
however, a biallelic mutation of this gene was found to be related to MODY [32] and to
cause primary hepatocellular adenoma co-occurring with HNF1A-MODY [41]. Studies
with murine HNF1A-/- model show that knock-out of this gene causes Fanconi syndrome,
phenylketonuria, hepatic dysfunction, muscular atrophy, and eventually leads to death
in the first weeks after the birth [42,43]. Despite its crucial role in homeostasis, there are
studies suggesting a relationship of some HNF1A derivatives (especially long noncoding
RNA—lncRNA) in progression of cancers such as pancreatic or gastric cancer [44,45].

The mutations in HNF1A, linked to MODY, are heterozygous, scattered throughout
the protein coding region, promoter and 5′-UTR and consist of missense, nonsense and
frameshift mutations [46,47]. Even though about 375 mutations in the HNF1A gene have
been reported to date, 198 of these are associated with HNF1A-MODY or diabetes in general
(Supplementary Table S1, based on ClinVar data [48]). It was confirmed that the type of
mutation may affect the functionality and stability of the HNF1A protein, and eventually
the age of HNF1A-MODY diagnosis [35,49–51]. The most common mutations found in
the HNF1A gene are missense mutations, which are concentrated in the dimerisation and
DNA-binding domains (Figure 4). These truncations are caused by nonsense mutations or,
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more frequently, by indels resulting in frameshifts and consequently leading to premature
stop codons. Depending on the mutations found within HNF1A, their effects can be
benign, cause MODY, or act as a risk factor for T2DM [52]. Recently, an evaluation of
different HNF1A mutations and their effects on clinical parameters were made. The results
showed that the best and superior readout that correlated to clinical phenotype was for the
transcriptional activity of the gene, therefore it was suggested that new high-throughput
functional screens should be developed [53]. Interestingly, a homozygous missense HNF1A
(pA251T) variant related to MODY was described recently [32]. The new variant was found
to be located in the highly conserved DNA binding domain and the in vitro functional
assays demonstrated a modest reduction in transactivation activity and DNA binding of
the mutated variant. The homozygous patients presented a similar clinical phenotype
to the heterozygous HNF1A-MODY individuals, such as low levels of high sensitivity
C-reactive protein (hsCRP) and good responses to sulfonylureas [32].

Figure 4. Schematic representation of the HNF1A (isoform A) structure with highlighted functional elements: dimerisation
(blue), DNA-binding (green and yellow) and transactivation (red) domains together with the respective amino acids
region shown in brackets. The mutations depicted in the figure show 196 of the 198 HNF1A-MODY-related mutations
found in ClinVar database and located in the coding sequence of the gene. Two mutations from the database were not
included, as they are located in the HNF1A promoter region (Supplementary Table S1). The mutations are additionally
stratified by clinical significance and the total number of variations in the particular functional domain is presented. Grey
boxes—disordered regions; NLS—nuclear localisation signal (range 197–205 amino acids); POUS—POU specific domain;
POUH—POU homeodomain. Figure created with BioRender.com.

Recently it was shown that HNF1A may upregulate the transactivation of the anti-
apoptotic gene, BCL2 Like 1 (BCL2L1). This upregulation was reduced in HNF1A-mutated
variants, through inhibiting the transition of G1 to S phase of the cell cycle, thus affecting
the cell growth [54]. Additionally, it was suggested that HNF1A-MODY patients can
have alterations in their steroid metabolism pathways, which may also explain some
of the phenotypic differences, such as normal body weight, in comparison to T2DM
individuals [55].

Importantly, HNF1A-MODY patients often develop micro- and macrovascular compli-
cations, with retinopathy being one of the most prevalent [56,57]. The incidence of vascular
complications is similar to patients with T1DM and T2DM [58]. Moreover, Steele et al.
showed that 66% of deaths in HNF1A-MODY carriers may be caused by cardiovascular
disease or cerebral vascular events, which is a severe threat to this group of patients. Hy-
perglycaemia has a negative impact on the cardiovascular system, although the glycaemic
index of HNF1A-MODY patients may not be the main reason for this high mortality [57].
The mechanism of cardiovascular impairment in HNF1A-MODY is unclear, but there
are suggestions that reduced levels of apolipoprotein M (apoM) in patients with HNF1A
mutation may be key since the protective role of apoM/S1P axis on the endothelium has
been thoroughly described [59–61]. Even though the high prevalence of vascular com-
plications in HNF1A-MODY patients was shown in many studies, there are limited data
on the underlying mechanisms for such an increased risk for vascular complications. An
indirect assessment of the endothelial function in HNF1A-MODY patients showed that
these individuals have an increase in intima-media thickness, suggesting abnormalities
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in endothelial function and presence of early atherosclerotic phenotype [62]. In a more
direct approach, an increase in endothelial permeability in response to a proinflammatory
cytokine was found in endothelial cells with heterozygous mutation in the HNF1A gene,
which were cultured under normal glycaemic conditions, suggesting that endothelial dys-
function was not a due to hyperglycaemia [63]. Other endothelial functions of these cells,
such as an increase of intracellular adhesion molecule 1 (ICAM-1) after TNFα stimulation
and angiogenic response, were not affected by the HNF1A mutation [63].

3.2. HNF4A-MODY

Hepatocyte nuclear factor (HNF) 4A is a transcription factor that belongs to the
steroid/thyroid hormone receptor superfamily and controls the expression of many genes
associated with critical metabolic pathways [64–66]. It contains two zing finger domains,
one DNA binding region and requires homodimerisation to bind its recognition DNA
site in the nucleus. HNF4A is expressed mainly in the liver, but it can be also found in
kidneys, pancreatic islets, and intestine [67,68]. It is engaged in many processes such as
glucose entry, lipid and drug metabolism pathways and it may be involved in amino acid
metabolism [64,67,69].

HNF4A-MODY was identified back in 1978 in a family known as the RW family and
at that time was the first well-identified MODY type [70,71]. Heterozygous mutations
in HNF4A are relatively rare and constitute 5–10% of all MODY cases. Till 2013, 103 dif-
ferent mutations were reported in 173 families [72], whereas currently there are around
180 mutations in HNF4A associated with MODY (ClinVar [48]). Mutations in HNF4A were
shown to cause increased insulin production in the human foetus, causing faster growth,
higher body weight and even macrosomia. The hyperinsulinaemic hypoglycaemia can
be detected in the early life of HNF4A-MODY carriers, leading to MODY manifestation
later on [73–75]. This is thought to reflect a switch later in life to defective insulin secretion,
although a prolonged hyperinsulinaemic phase in adulthood was described as well [74].
Therefore, HNF4A-MODY induced transient neonatal hyperglycaemia may precede the
later diabetes onset [76]. However, the precise mechanism and timing of this transition
remains unclear.

Several types of mutations (missense and nonsense) in HNF4A have been linked to
altered insulin secretion [77], where the KATP channel in murine β-cells may play a role
in the dysfunction [78]. In β-cells, HNF4A mutations cause dysfunction or lipid profile
disruption, which is probably mediated through genes involved in glucose metabolism
and biosynthesis [64]. These include GLUT2, aldolase B, liver pyruvate kinase, insulin, mi-
tochondrial uncoupling protein-2 and glyceraldehyde-3-phosphate dehydrogenase [79,80].
However, most of the HNF4A mutations do not demonstrate a dominant-negative effect
on the gene expression profiles, and it is still not clear how moderate decreases in HNF4A
activity cause disease in MODY patients [81].

In addition, some studies suggest that single nucleotide polymorphism in the HNF4A
gene may predispose to T2DM, at least in some populations [82–85].

3.3. GCK-MODY

The glucokinase (GCK) gene has a crucial role as a glucose sensor and integrates
glucose metabolism with insulin secretion in pancreatic β-cells [86]. It codes for an en-
zyme responsible for catalysis of the first glycolysis reaction. GCK is highly expressed
in hepatocytes, pancreatic β-cells and in the brain. Mutations in this gene are responsi-
ble for various glucose regulation disorders, with GCK-MODY cases among them. The
most frequent mutations are heterozygous inactivating mutations leading to alterations
in the kinetic parameters of this enzyme [87]. Patients with GCK-MODY show a defect
in glucose sensing, therefore the glucose homeostasis is maintained at a higher set point.
This results in mild and asymptomatic fasting hyperglycaemia, which is present from
birth [88]. The median age of hyperglycaemia diagnosis is around 24 years of age [87].
GCK-MODY patients are characterised by increased fasting glucose levels, but the majority
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do not require any pharmacotherapy. The exception are pregnant women, who should be
treated with insulin to reduce the risk for diabetic foetopathy in the child, which is not a
carrier of the mutation [89]. The foetal genotype is not usually known, but an assumption
can be made based on serial ultrasound measurements. In case there is no evidence for
accelerated growth, the foetus is assumed to have inherited the GCK mutation, and in such
circumstance the maternal hyperglycaemia is not treated [90].

Even though patients with GCK-MODY have long-lasting hyperglycaemia, these
individuals show low prevalence of micro- and macrovascular complications [91].

3.4. HNF1B-MODY

Hepatocyte nuclear factor 1B (HNF1B) is a transcription factor expressed in many
organs, predominantly in the liver, intestine, pancreas and kidney. Importantly, the ex-
pression of HNF1B also occurs in the pre-pancreatic foregut endoderm and in pancreatic
multipotent progenitor cells (MPCs), therefore it has an important role in pancreatic differ-
entiation. Lineage tracing studies have revealed that embryonic cells expressing HNF1B
are precursors of acinar, duct and endocrine lineages in the pancreas [92]. Using murine
models, the important role of HNF1B in the proliferation and survival of the MPCs was
confirmed [93]. Heterozygous mutations in the human HNF1B are associated with MODY,
which is characterised by early onset diabetes, pancreas hypoplasia and multicystic kidney
dysplasia, but also with kidney diseases and multi-organ disorders [94–96]. Based on
murine studies, it was suggested that MODY might occur not only as a consequence of
β-cell dysfunction, but also as a consequence of developmental defects, leading to diabetes
later in life [93].

Recently, several novel mutations in HNF1B and their relation to MODY were re-
ported [97–99]. In a human-related study, it was shown that a heterozygous mutation in
HNF1B caused decreased transcriptional activity, reduced DNA binding and decreased
expression of the GLUT2 gene. Based on these results, the authors conclude that the
impaired insulin secretion in this family is related to the reduced GLUT-2 expression in
β-cells rather than decreased insulin expression [100]. In patients with HNF1B-MODY
presence of cystic kidneys, pancreatic abnormalities and elevated liver enzymes are com-
mon and were used as predictors of HNF1B mutations [101]. Similarly, the presence of
renal/pancreatic abnormalities in young patients with diabetes are suggestive for genetic
testing for HNF1B-MODY [102,103].

Diabetes complications and cardiovascular risk factors are highly prevalent in indi-
viduals with HNF1B-MODY. In these patients, both diabetic retinopathy and neuropathy
were found; however, the major complications were related to kidneys, as chronic kidney
disease was reported for about 44% of the studied HNF1B-MODY patients [104].

3.5. Other MODY Types

The MODY subtypes described above account for more than 99% of all MODY cases.
With the increase in next-generation sequencing (NGS) capabilities, other rarer MODY
cases have been reported [105,106]. The current knowledge for possible molecular patho-
physiology in rarer forms of MODY were extensively summarised elsewhere [107–109].

4. Diagnosis and Current Treatment Options
4.1. Diagnosis of MODY Patients

The diagnosis of MODY is relatively difficult, as many of the symptoms are highly
similar to T1DM and T2DM, which usually leads to misdiagnosis. On the other hand, there
is a big clinical variability between the different MODY subtypes, which makes proper
diagnosis extremely hard without genetic testing. It should be noted that mutations in some
MODY-associated genes (HNF1A, ABCC8, HNF4A, GCK, KCNJ11) can cause congenital
hyperinsulinism and hypoglycaemia in infants and children preceding the later diabetes
onset [110–112]. Moreover, even though a family history of diabetes is highly suggestive
for MODY, some mutations in MODY-associated genes can occur in high frequencies also
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de novo, showing the importance of genetic testing in individuals without a family history
of diabetes [113].

Even though patients with MODY were found to differ from T1DM patients in several
clinical predictors, such as C-peptide concentration [114], hsCRP [115–117], lipid levels,
polyuria or age at diagnosis, still around 38% of the MODY patients are misdiagnosed with
T1DM or T2DM [27,87,118–120]. In 2013 Steele et al. reported that age-related glycated
haemoglobin (HbA1c) reference ranges can be used as diagnostic criteria for GCK-MODY
discriminator [121]. Later on, a combination of markers were tested for a discrimination
of individuals with common types of diabetes and MODY [58]. It was shown that hsCRP
and 1,5-anhydroglucitol (1,5-AG) could only be used to distinguish HNF1A-MODY from
other MODY subtypes, but not from T1DM or T2DM [58]. In two recent population
studies, it was suggested that screening for monogenic biomarkers (endogenous insulin
secretion, the ratio of urinary C-peptide and creatinine (UCPCR), islet autoantibodies), is
an effective, cheap and easily implemented approach for systematic screening of young
patients [122,123]. The diagnostic process included three stages, where positive UCPCR
patients were further tested for islet autoantibodies, and if negative were then selected for
genetic testing [123]. However, the clinical reliability of UCPCR for distinguishing MODY
patients from T2DM, was not confirmed [124]. Therefore, the improved diagnosis will
require the application of several biomarkers together, but ultimately the genetic test is the
best form of diagnosis of MODY patients.

To complicate matters further, some MODY types have similar pathology, which
can also lead to misdiagnosis. Some symptoms of HNF4A-MODY, such as transient
neonatal hyperinsulinemic hypoglycaemia, progressive insulin secretory defect or mi-
crovascular complications, are very similar to symptoms observed in patients with HNF1A-
MODY [119,125,126]. Due to these very similar phenotypes, and because HNF1A-MODY
is more prevalent, some HNF4A-MODY cases may be incorrectly recognised as HNF1A-
MODY. One study suggests that up to 29% of HNF4A-MODY cases may be incorrectly
credited to HNF1A-MODY and sequencing of HNF4A is proposed when there is no muta-
tion in HNF1A [127]. Recently, it was shown that single nucleotide polymorphism located
in the HNF1A gene promoter can affect the binding of HNF4A and subsequently regulate
HNF1A gene expression [128].

Additionally, HNF4A-MODY can have mild and atypical clinical presentation, again
hampering correct diagnosis [129]. There are also individual features of HNF4A-MODY.
One of the most described phenotypes is a lower concentration of HDL-cholesterol corre-
sponding to reduced levels of apoA2, B and C3 [64,127,130]. However, the reduced level of
triglycerides and apoC3 is questionable [127]. On the other hand, in a study which screened
diabetic patients under the age of 20, it was showed that 10% of all HNF4A-MODY cases
present dyslipidaemia [118]. The clinical presentation of HNF1A- and HNF4A-MODY
could be similar, because these two genes can regulate each other [131].

Currently it is suggested that genetic tests for MODY should be performed when
paediatric diabetes is diagnosed, together with modest hyperglycaemia and absence of all
four islet autoantibodies (antibodies against GAD, insulinoma antigen-2, zinc transporter
8 and insulin), but there is no standardised diagnostic algorithm [12,132,133]. At present,
genetic tests for MODY are conducted with NGS methodology due to lower costs and
increased diagnostic accuracy [134].

4.2. Current Treatment Options

As mentioned above, the majority of MODY patients are initially misdiagnosed with
T1DM or T2DM and because of that are inappropriately treated [16,135,136]. The diagnosis
of MODY has significant implications for diabetes management. For example, in patients
with GCK-MODY, due to a higher basal glucose level the glucose-lowering therapies are
ineffective, therefore the treatment of these patients is not recommended [88]. On the other
hand, patients with HNF1A- or HNF4A-MODY are responsive to low-dose sulfonylureas,
due to the increased pancreatic insulin secretion [126,137–139].
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The importance of the correct diagnosis was highlighted in a UK population study [16].
Following genetic diagnosis for MODY, patients with GCK-MODY, who were inappropri-
ately treated at the time of diagnosis, were able to stop this treatment without any effect
on HbA1c levels. However, only 58% of HNF1A/HNF4A-MODY patients, who were
also treated inappropriately in the past, could change the treatment to sulfonylurea/diet
alone. In those individuals with longer duration of diabetes, it was recommended that
sulfonylurea should be used together with the previous treatment started at the time of
misdiagnosis [16]. The lack of response to sulfonylurea treatment in HNF1A-MODY, when
diabetes duration is long-standing and mistreated, was recently confirmed in a pair of
siblings with a novel HNF1A variant [140].

Even though HNF1A- and HNF4A-MODY patients are responsive to sulfonylurea,
this therapy has a significant risk of hypoglycaemia. Therefore, a combination with other
glucose-lowering agents such as dipeptidyl peptidase-4 inhibitor [141,142] or monotherapy
with glucagon-like peptide (GLP-1) receptor agonists were also tested [143,144]. Recently,
the usage of incretin hormone glucose-dependent insulinotropic peptide (GIP) and GLP-1
were tested in patients with HNF1A-MODY. These therapeutics were used together with
sulfonylurea, and the results suggest that such combinations could be beneficial for HNF1A-
MODY patients due to the increase of the glucose-stimulated insulin secretion [139].

To summarise, the proper recognition and MODY diagnosis is of utmost importance
for the proper treatment of diabetes. The patients should be followed to determine the
efficacy of the treatment and to monitor the possible vascular complications in HNF1A-and
HNF4A-MODY subtypes. The most recent therapeutic approaches for MODY patients
were summarised recently by Broome et al. [145].

5. Pluripotent Stem Cells for MODY Disease Modelling and Drug Research

In most MODY subtypes, the exact pathological mechanisms of disease progression
are still unknown. This is due to the inaccessibility of human pancreatic tissue and the fact
that rodent models do not recapitulate the MODY disease phenotype [146–148], with the
exception of HNF1B-MODY [149]. Therefore, currently human-induced pluripotent stem
cells (hiPSCs)-based disease modelling tools are being developed aiming to resolve some
of the pathological mechanisms of MODY, and possibly reveal new therapeutic strategies
for the patients. However, for the development of disease models, which may be used
as drug-target platforms, hiPSCs must effectively differentiate and fully recapitulate the
hallmarks of diseased cells and tissues. Moreover, the differentiated cells should represent
homogeneous and if possible mature cell population, thus reducing the inter- and intra-
experimental variation [150,151]. Additionally, to ensure valid disease modelling, the
proper control lines should be selected. For monogenic diseases, as MODY, the most
stringent controls are the so-called isogenic cell lines (Figure 5). These can be obtained
through CRISPR/Cas9 gene editing in two ways: (1) using hiPSCs from healthy individual
and introducing the mutation in the gene of interest [63], or (2) through repair of the
gene-specific mutation in iPSCs derived from the diseased individual [152]. These two
approaches have advantages and drawbacks. The advantages of the first approach are the
relatively fast delivery of such mutated hiPSCs lines and that the observed effects will be
mutation-specific, excluding the contribution of the genetic background. In the second
approach, more patient-specific effects could be identified; however, such repaired hiPSCs
line are hard to obtain and are dependent on the patient-specific genetic background.
However, both approaches give the opportunity to identify disease-relevant phenotypes
through mechanistic studies.
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Figure 5. Approaches for generation of human disease-relevant isogenic lines: (1) starting from healthy or (2) diseased
individual. Figure created with BioRender.com.

Up to date several hiPSC lines from different MODY types were developed [153–156].
Even though MODY is a monogenic disease, meaning that this disease is easy to model,
there are limited studies using MODY patient-derived cells as disease modelling tools.
One such study used patient-derived hiPSCs with a mutation in the HNF1B gene and,
as a control, the authors used a non-family control hiPSCs line, and also hiPSCs from a
non-diseased family member [157]. The authors were able to show that the mutant HNF1B
gene expression was responsible for the compensatory increase in PDX1 gene expression
in differentiated pancreatic progenitors [157]. In a different study, patient-derived iPSCs
with HNF4A mutation upon differentiation toward insulin producing β-cells showed that
mutation in this gene is not affecting the expression of insulin genes, nor the development
of insulin-producing cells in vitro [158]. The results were obtained with patient-derived
hiPSCs from several family members, and one of them, without mutation in HNF4A gene,
was used as a non-diseased control [158]. A similar approach was used in a more recent
study; however, the iPSCs were differentiated toward hepatopancreatic progenitors (HPPs),
and alterations in hepatic and pancreatic β-cell gene signatures were found [156]. Moreover,
immunofluorescent analysis showed that HNF4A protein is predominantly localised in
the cytoplasm, and this mislocalisation could further account for the loss of function of
HNF4A as a transcription factor [156].

There are only a few studies that used isogenic pluripotent stem cell lines to model
MODY [63,152,159,160]. In all studies, CRISPR/Cas9 was used to introduce or repair the
mutation in the gene of interest; however, the pluripotent stem cell source was different. In
two of the studies, embryonic stem cells (ESCs) were used to introduce the mutation in
the gene of interest and subsequently they were differentiated toward pancreatic β-like
cells [159,160]. Cardenas-Diaz et al. found that loss of HNF1A led to an increase in alpha
cell gene expression markers such as glucagon, and decreased PAX4 expression, which is
crucial in regulating the development of β-cells. Moreover, these cells had impaired insulin
secretion together with defects in glycolysis and mitochondrial respiration [159]. In the
other study with ESCs, Zeng et al. introduced biallelic mutation in KCNJ11 gene and found
that there was impaired insulin secretion together with defective glucose homeostasis.
However, these cells did not show increased sensitivity to gluco- or lipotoxicity, checked
with 35 mM D-glucose or 1 mM palmitate treatment [160].

In our study, hiPSCs derived from healthy donors were used to introduce a mutation
in the HNF1A gene [63]. As HNF1A-MODY patients frequently develop vascular com-
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plications, the study aimed to check whether a mutation in the HNF1A gene could affect
endothelial cell function. The differentiation of hiPSCs toward endothelial cells (hiPSC-
ECs) was not affected by introducing HNF1A mutations. As shown in Figure 6, hiPSC-ECs
derived from healthy or HNF1A-MODY individuals have similar expression of endothelial
markers that are crucial for their functioning. Moreover, the majority of the endothelial
functional parameters, such aspro-angiogenic responses, were not changed; however, an
increase in the vascular permeability after stimulation with a pro-inflammatory cytokine
was observed in hiPSC-ECs with the HNF1A mutation. These results could suggest that
patients with HNF1A-MODY have increased susceptibility to the development of vascular
complications [63]. The only study in which repaired patient-specific lines were used was
performed by Balboa et al. [152]. They used hiPSCs from Finnish people with a mutation in
the INS gene and differentiated them together with the respective isogenic control lines to
β-like cells. The single-cell RNA sequencing showed increased expression of endoplasmic
reticulum (ER) stress-associated genes, together with reduced proliferation. In vivo, the
mutated cells had lower insulin secretion and increased levels of ER-stress markers [152].

Figure 6. hiPSC-derived endothelial cells differentiated as described in [63]. Cells were derived from
healthy (control) and two HNF1A-MODY individuals (HNF1A-MODYa and HNF1A-MODYb). No
difference in the expression of VE-cadherin (red) or phosphorylated form of endothelial nitric oxide
synthase (phospho-eNOS, green) could be observed.

All studies using pluripotent stem cells as disease modelling tools are summarised in
Table 2.
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Table 2. Summary of studies using pluripotent stem cells as disease modelling tool, hiPSCs—human induced pluripotent
stem cells, ESCs—embryonic stem cells, ER—endoplasmic reticulum.

MODY Subtype Pluripotent Cells Differentiated Cell
Type Control Lines Mechanism Revealed Reference

HNF1B-MODY Patient-derived
hiPSCs

Pancreatic
progenitors

Family non-diseased
and non-family

control individuals

Compensatory increase in
PDX1 in mutant pancreatic

progenitors.
[157]

HNF4A-MODY Patient-derived
hiPSCs

Insulin-producing
beta-cells

Family non-diseased
and non-family

control individuals

No effect on expression of
insulin genes, nor in the

development of
insulin-producing beta cells

[158]

HNF4A-MODY Patient-derived
hiPSCs

Hepatopancreatic
progenitors (HPPs)

Family non-diseased
and non-family

control individuals

Alterations in hepatic and
pancreatic beta-cell signatures

and abnormal cytoplasmic
localisation of HNF4A.

[156]

HNF1A-MODY ESCs Pancreatic beta-like
cells Isogenic control

Increase in alpha-cell gene
expression markers, impaired

insulin secretion, defect in
glycolysis and mitochondrial

respiration.

[159]

KCNJ11-MODY ESCs (biallelic
mutation introduced)

Pancreatic beta-like
cells Isogenic control Impaired insulin secretion,

defective glucose homeostasis [160]

INS-MODY Patient-derived
hiPSCs

Pancreatic beta-like
cells Isogenic control

Increased expression of
ER-stress associated genes,

reduced proliferation in vitro,
lower insulin secretion
in vivo together with

increased ER-stress markers.

[152]

HNF1A-MODY hiPSCs Endothelial cells Isogenic control

Increased vascular
permeability in response to
pro-inflammatory cytokine,

no difference in
pro-angiogenic response.

[63]

While in vitro analysis of single cell subtypes is an excellent resource to study linage-
specific disease mechanisms, currently more attention is given to developing more complex
disease modelling tools. Organoid cultures require 3D growth, and during this process
stem cells aggregate and differentiate in response to biophysical cues, resulting in complex
structures that mimic the mature organ [161–163]. The advances in this field were recently
reviewed by Sharma et al. [164]. In diabetes research, the current trend is moving toward
developing islet organoids, which can provide large amounts of functional islets and
therefore be used in underpinning disease mechanisms in vitro [165,166].

6. Final Remarks

Pathophysiological mechanisms of MODY are still not well understood. However, the
usage of genomic-based approaches gives an excellent opportunity for gaining knowledge
in the biology that results from the specific gene mutations in MODY, and can likely help
to refine the treatment options for these patients.
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