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Exposure to UV radiance predicts repeated
evolution of concealed black skin in birds

Michaél P. J. Nicolai® 2% Matthew D. Shawkey® ', Sara Porchetta®?, Ruben Claus' & Liliana D'Alba® '

Plumage is among the most well-studied components of integumentary colouration. How-
ever, plumage conceals most skin in birds, and as a result the presence, evolution and
function of skin colour remains unexplored. Here we show, using a database of 2259 species
encompassing >99% of bird genera, that melanin-rich, black skin is found in a small but
sizeable percentage (-5%) of birds, and that it evolved over 100 times. The spatial dis-
tribution of black skin follows Gloger's rule, which states that pigmentation of endothermic
animals increases towards the equator. Furthermore, most black-skinned birds inhabit high
irradiation regions, and tend to be bald and/or have white feathers. Thus, taken together, our
results suggest that melanin-rich, black skin helps to protect birds against ultraviolet irra-
diation. More generally, our results illustrate that feathered skin colour varies taxonomically,
ontogenetically and temporally, providing an additional dimension for avian colour research.
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ARTICLE

he immense variety of colours in birds has fascinated sci-

entists since Darwin! and NewtonZ, and in the past twenty

years has received considerable attention in fields as
diverse as ecology and optics>#. This research has focused pri-
marily on plumage colouration, with the exceptions of a few
studies on some of the structurally-coloured blue, orange or
yellow colours of ramphotheca, podotheca and other exposed
(unfeathered) parts of the skin>°. Colouration and associated
evolutionary mechanisms of black, unexposed (feathered) skin
are practically unexplored’. The presence of black bird skin
(Fig. 1 and Supplementary Figs. 1-4) has previously been docu-
mented, but mostly anecdotally and out of an evolutionary con-
text, in a handful of bird species®13.

Black skin in vertebrates is, as far as we are aware, always
produced by the deposition of (eu)melanin, the most ubiquitous
pigment among animals'4. Light and transmission electron
microscopy confirmed that black skin in birds also has more
melanin (deposited in oblate dark organelles called melanosomes)
than non-black skin (Fig. 1 and Supplementary Fig. 2). Melanin
pigments have a unique combination of properties such as a high
refractive index (~1.8-2.0) and broad light absorption that is
particularly strong in the UV range!4, which has led to a range of
adaptive functions!>-17,

First, melanin may protect skin against DNA-damaging UV
irradiation (300-400 nm) by reducing UV transmission to the
skin, as suggested for melanin in amphibian skin!$, lizard skin!®,
bird feathers?), and human skin!%21. However, the effectiveness
of melanin-based UV protection has been questioned?2-24, and its
relevance depends on the transmission of light by the overlying
plumage. Indeed, darker (brown, black, and yellow-green)
feathers transmit up to 40% less UV light than lighter (white,
orange, and yellow) feathers?>2%, most likely due to higher light
absorption by melanin. Additionally, UV exposure varies between
different habitats, with open habitats receiving more UV light. As
such, protection from UV irradiation is achieved through the
interplay between physiological and ecological parameters that
contribute to differences in UV exposure.

In addition to protecting against UV, skin pigmentation is also
involved in modulating body temperature by reflecting or
absorbing solar radiation, or by enhancing water evaporation!>27.
Both theoretical and experimental evidence suggests that dark
feathers gain more heat than white feathers, and thus dark and
light skin colour may follow the same pattern!>2326, One pre-
vious study showed that the black dorsal skin patch of the
roadrunner (Geococcyx californianus), when exposed during
sunbathing, passively rewarmed the bird after cold nights!'?.
Faster heat gain would be most beneficial to species inhabiting
cold and/or dry regions, and in particular for small species with
high surface to volume ratios?8.

Melanin-rich, black skin may also confer antimicrobial pro-
tection. Previous studies have shown that melanocytes, the cells
that contain melanin have antimicrobial properties, and prevent
microbial feather degradation!729-32, As in feathers, black skin
might thus reduce bacterial and fungal growth on dermis and
epidermis. This would be particularly advantageous in environ-
ments with increased infection rate (e.g., hot and moist climates)
as well as in species with frequent social interactions.

Although unlikely, given its obscured position below feathers,
skin colour might also be used in communication, to signal
various aspects of physiological condition or social status in bird,
and as a result may be under sexual selection®. Previous studies
have suggested that melanized feathers might indicate male
quality, and even small mutations produce different colour
morphs3334, Should sexual selection drive the evolution of black
skin, we predict that sexual preference would result in discernible
sexual dichromatism.

At least three of these hypotheses (thermoregulation, anti-
microbial-protection, or photo-protection) are implicated as
mechanisms behind Gloger’s rule, an ecogeographic rule that
states that melanin in mammals and birds increases towards the
equator and has been supported for feathers, fur, and human
skin16-3-38 ‘Whether this rule holds true for concealed skin,
whether mammalian or avian, is unknown.

To understand how the distribution of black skin across birds
relates to biogeographical, ecological and social conditions we use
a phylogenetic comparative framework, together with distribution
modelling. We find that black skin is more common towards the
equator, following Gloger’s rule, and that black skin evolved
convergently over 100 times, in different bird clades. While
multiple mechanisms have been proposed for this rule, the
combination of the association of black skin with white or no
plumage, as well as high UV irradiance, suggest that it is best
explained in birds by a photoprotective function. In line with this
function are the preliminary observations that skin colour
changes both seasonally and ontogenetically, being darker in
times when plumage coverage, and thus feather photoprotection,
is low.

Results and discussion

Evolution of black skin in birds. Our analysis of museum spe-
cimens of 2247 species from all families and >99% of bird genera
indicates that black skin is a taxonomically widespread trait
(Fig. 2). Black skin on the head is present in at least 138 genera
(6%) from 59 families (23%), while black skin of the venter is
present in 11 genera (0.5%) from 6 families (2%). Furthermore,
ancestral state estimation showed that black skin on the head
evolved independently at least 148 times (118 times in the gene-
only phylogeny, Supplementary Fig. 5), but was lost more often
than it evolved (Fig. 2). This widespread independent evolution is
reflected in the absence of phylogenetic signal (Fritz and Purvis’
D >0.98, P(Brownian motion) = 0, P(random) = 0, where D=0
indicates the trait is as conserved as expected under BM, where a
value of D=1 indicates randomness) in head skin colour. Black
head skin was lost 15 times more often than it was gained
(rateg,in = 0.005, ratej,s, = 0.071; p-value = 0; chi-squared; inde-
pendent from phylogenetic tree used). Low evolutionary rates,
and highly localised presence on the body suggest that black skin
might be evolutionary costly and might only evolve when it serves
a particular function.

Black skin is best explained by exposure to UV radiance. To test
whether black skin could function as protection against harmful
UV, we investigated the association between black skin and
exposure to UV radiance, ie., bald or lightly coloured birds in
high UV zones. Feather colour and UV radiance were best at
predicting black skin colour except for non-passerines (Supple-
mentary Table 1). Species that were bald (coefficient estimate >
1.37; p-values between <0.001 and 0.38, except for non-passerine
analyses where pattern present but not significant), or had white
plumage (coefficient estimate > 0.59; p-values between <0.001 and
0.38, except for passerine analyses where the pattern was present
but not significant) had a high probability of having black skin, as
did species that occured in high UV radiance zones regardless of
feather colour (coefficient estimate always positive except for
male passerine analyses where negative; p-values between <0.001
and 0.30) (Supplementary Tables 2-4) (Figs. 2, 3). All other (non-
white) feather colours were strictly negatively associated with
black skin to different degrees of significance (Supplementary
Tables 2-4). Unexpectedly, an analysis that incorporated habitat
type as an exposure proxy, i.e., being either open or closed, did
not perform better, perhaps because micro-habitat might be more
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Fig. 1 Differences in skin colour of (a) Morus bassanus (black) and (b) Garrulus glandarius (red) are due to differences in melanin concentration as
seen under light microscopy for (c, €) M. bassanus and (d, f) for G. glandarius. Scale bars represent 50 pm (¢, d), 30 um (e, f) and Tum (g). e stands for
epidermis, m for melanin. While melanin is present in both tissues, concentrations appear much higher in black skin. g Detail of a melanophore containing
individual melanosomes (few examples indicated by an m) from M. bassanus (scale bar 1um).

relevant for UV radiance exposure in highly mobile birds. Feather
density also likely influences UV protection, and our finding that
black skin is mostly absent ventrally, while present on the head
(where exposure to UV is high and plumage density is low>?),
further supports the UV protection hypothesis. This might
explain why the effect of UV and feather colour is less apparent in
more densely feathered non-passerines. Thus, three factors (thin
or no plumage, light plumage and high UV irradiation) predicted
under a UV protection hypothesis are linked with black skin in
birds. Interestingly, this pattern holds true for extinct birds: black
skin was present in the hoopoe starling (Fregilupus varius) and
reconstructed for the dodo (Raphus cucullatus), both species of
light (or no) plumage living in high irradiation zones (Supple-
mentary Table 9).

In contrast, we found little evidence for the thermal regulation
hypothesis when using temperature and rainfall as proxies of
thermal regulation (Supplementary Table 1). For example, heat
loss is disproportionally larger in smaller birds, but our data does
not show the expected negative correlation between black skin
and mass, as predicted if black skin contributes to heat gain
(Supplementary Tables 2-4). Nonetheless, the effect of precipita-
tion is more complex with total precipitation generally being
negatively correlated, as expected, to black skin (coefficient
estimate between —1.84 and 0.23; p-values between 0.01 and 0.75;
Supplementary Tables 2-4), although this could be the result of a
similar effect on biodiversity in general.

We also found little support for a bacterial protection
hypothesis. Colonial birds have a weakly (coefficient estimate
between 0.04-0.42; p-values between 0.04-0.76; Supplementary
Tables 2-4) increased probability of having black skin. Other
abiotic factors linked to higher infection rates (Supplementary
Tables 2-4) had variable responses on black skin (Precipitation:
coefficient estimates between —1.17 and —0.41; p-values between
0.01 and 0.26; Maximum temperature: coefficient estimates
between —0.04 and 1.17; p-values between 0.01 and 0.35).

Surprisingly, we found a lower probability of black skin in
sexually dimorphic species with varying degrees of significance

(coefficient estimates between —1.14 and —0.31, p-values between
0.01 and 0.67; Supplementary Tables 5-7), except for male non-
passerines where the effect was positive but insignificant
(coefficient estimates between 0.10 and 0.23  p-values between
0.42 and 0.75; Supplementary Tables 5-7). Nonetheless, sexual
selection cannot be completely ruled out. Other non-studied
factors (e.g., mutual sexual selection) might be important, as
supported by the association of black skin with baldness, which
suggests a possible use of black head colour as an ornament.

Black skin follows Gloger’s rule. Skin melanization in birds
increases towards lower latitudes, particularly when considering
their breeding range only (p-values < 0.03 in all birds and passer-
ines, but not significant and reversed in non-passerine analyses)
(Supplementary Tables 2—4). This is consistent with the predictions
of Gloger’s rule, at least for passerines. When using occurrence
localities, instead of average breeding range, Gloger’s rule is sup-
ported for both passerines and non-passerines (Fig. 4a, b).
Although black skin density is highest in the tropics, where species
diversity in general is higher, black skin occurred more often than
predicted by bird diversity alone (Fig. 4i). As such, bird diversity is
not a particularly good predictor of black skin. The results from our
niche prediction model, which incorporates total distribution ran-
ges, do, however, suggest that for passerines UV radiation is the
best predictor of black skin (Supplementary Figure 6). For non-
passerine birds, maximum temperature explains the data best.
Nonetheless, even for non-passerines, there are regions of low or
high UV radiance that correspond, respectively, to low or high
black skin density, even in zones where bird diversity follows an
opposite pattern (e.g., in South America) (Fig. 4c, d). The disparity
between the niche model and UV radiance in passerines might
thus be the result of autocorrelation between (UV) radiance and
temperature. Furthermore, humans have a similar distribution of
black skin as birds and analyses show a strong effect of radiance,
providing further support for a protective function against UV
(Fig. 4j)40.
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Fig. 2 Ancestral state estimation for black skin of the heads of male birds. Branches of the phylogenetic tree are black when the reconstructed skin

colour was black, and red when this was non-black. Black bars in the first circle represent species that are bald, while black bars in second circle represent
species that have white feathers. All photographs were edited such that the background was removed. Photographs were taken by U.S. Fish & Wildlife
Service (Telespiza cantans), Kenvanportbc (Amblyramphus holosericeus) and Adrian Pingstone (Coscoroba coscoroba) in the public domain, by Hector Bottai
(Hylexetastes perrotii, Hapalocrex flaviventer) and Charles J Sharp (Ardea alba) under CC BY-SA 4.0 (https://creativecommons.org/licences/by-sa/4.0/),

by Thai National Parks (Hemixos flavala), birdphotos.com (Bugeranus carunculatus) and Dubi Shapiro (Neodrepanis hypoxantha) under CC BY SA 3.0
(https://creativecommons.org/licences/by-sa/4.0/), by Flickr-users under CC BY 2.0 Bernard DUPONT (Lybius torquatus), Lip Kee (Camptostoma
obsoletum), Francesco Veronesi (Hedydipna platura), Ben Tavener (Procnias nudicollis), Michael Andersen (Picathartes gymnocephalus), Frank Vassen
(Falculea palliata), jquental (Anopetia gounellei), Alastair Rae (Malcorus pectoralis), Brian Jelonek (Tauraco leucolophus) and Alan D. Wilson (Auriparus
flaviceps) under CC BY SA 2.5 (https://creativecommons.org/licences/by-sa/2.5/), by wiki-users Ariefrahman (Macrocephalon maleo), Mdk572 (Sugomel
niger), Peripitus (Hylacola cautus), Prateik Kulkarni (lanthocincla albogularis), Dasari. Vijay (Hydrophasianus chirurgus) under CC BY SA 4.0 (https://
creativecommons.org/licences/by-sa/4.0/), Doug Janson (Urocolius macrourus), Helenabella (Cladorhynchus leucocephalus), Mdf (Coragyps atratus),
Tragopan (Phoenicopterus chilensis), DickDaniels (Argusianus argus), Serhanoksay (Cicinnurus respublica) under CC BY SA 3.0 (https://creativecommons.
org/licences/by-sa/3.0/) and scorpious18 (Pithecophaga jefferyi), jomilo75 (Pagophila eburnean), and Jcwf (Leucopsar rothschildi) under CC BY SA 2.0

(https://creativecommons.org/licences/by/2.0/).

Black skin is not the result of preservation differences. One
final mechanism explaining differences in colouration is
through differences in preservation. Melanization does indeed
occur as a consequence of trauma in skins of fruits and
humans#! and we did occasionally observe this in bird speci-
mens. However, this was distinct from naturally black skin, in
that it was highly localised to, and associated with damaged
tissue. Additionally, we found no indication that the mode of
preservation had a major impact on melanization: black
skin was present in live birds, skins and birds preserved in
alcohol (Supplementary Table 11 and 12), and was not rela-
ted to the age of the specimen (p-value > 0.61 in all models;
Supplementary Tables 5-7).

Black skin is labile both in time and species. Preliminary results
show that, as previously suggested, black skin is even more
widespread in bird chicks” and is lost ontogenetically (Supple-
mentary Fig. 1). This is consistent with black skin as a potential
UV protector, as naked or partially feathered chicks are even
more vulnerable to UV. Anecdotal evidence also suggests that
some birds, e.g., blue jay (Cyanocitta cristata), Eurasian magpie
(Pica pica) and red cardinal (Cardinalis cardinalis), have black
skin when they lose feathers during molt (Supplementary Fig. 4).
However, examination of museum specimens of these species and
live specimens of Cyanocitta cristata (observed in September

2018) showed no black skin, indicating that this might be a
seasonal trait associated with loss of feathers (consistent with our
results), or that individuals vary in skin colour. We cannot
exclude the latter as we found multiple species (+20%) that
showed some variation in skin colour (Supplementary Table 10;
Supplementary Fig. 3). This also indicates that the number of
species represented here form a lower boundary, and more spe-
cies are expected to have black skin.

Conclusions

Our results indicate that black skin evolved over 100 times, across
the bird phylogeny. While, as often is the case, unknown trade-
offs influence this evolution, a strong association with exposure to
UV radiance is present. As a result, black skin tends to be more
common towards the equator, an ecogeographic rule known as
Gloger’s rule.

Even though we have sampled an extensive part of bird
diversity, our results provide but a starting point for future
research. One such opportunity is the use of reflectance data (its
absence is a limitation of this study) for both feather and skin
colour, to identify any potential fine-scale patterns. On larger
scales, taking black skin into account could give further insight
into the ecological relevance of coloured integument in an
ontological, ecological, and evolutionary framework. There is
ample variation on a spatial level and a temporal scale, both
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Fig. 3 Black skin in function of UV radiance and feather colour. a Black skin probability in function of relative UV radiance (UV radiance/max UV
radiance) for all birds, non-passerines and passerines (data shown for female dataset only). Observed proportion of black skin relative to non-black skin in

function of feather colour for all birds (b), non-passerines (¢) and passerines

within species and perhaps even within individuals. As such, this
study investigates an extra dimension to bird colouration and
should stimulate considerable future research, both descriptive
and experimental.
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(d) (Supplementary Table 8).

Methods

Specimen collection and skin colour assessment. We examined 3610 skins of
2259 species of birds (almost 1 in 4 bird species) spanning all but 7 genera and all
families (taxonomy following Clements#2). We also looked at an additional 18
extinct genera. We looked at skin on two locations on the body: (1) ventrally and
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Fig. 4 Probability of black skin occurrence estimated by MAXENT>6 using solar radiation (kJm-2day-1), average precipitation (mm), and average
maximum temperature (°C) as predictor values in passerines (A) and non-passerines (B). Additional panes reflect the difference of the predicted black
skin probabilities in relation to UV radiation in passerines (¢) and non-passerines (d); The difference of predicted probabilities and relative maximum
temperature (maximum temperature/maximal maximum temperature value) in passerines (e) and non-passerines (f); The difference of predicted
probabilities and relative precipitation (precipitation/maximal precipitation value) in passerines (g) and non-passerines (h); The relative bird biodiversity
(bird biodiversity/maximal bird biodiversity) (i) and the distribution of black skin colour in humans (j) (Adapted from Chaplin“©). The darkness gradients in
a, b and j indicate the probability of black skin being present: high probability regions are dark, low probability regions are white. In b-d values near O
(white) indicate a good fit between predictor value and black skin probability while non-zero values indicate increasing tendencies to a mismatch between
predictor and predictor indicating that another variable contributes more to the black skin prediction model. All climatic variables were yearly averaged

over a span of 30 years.

(2) on the back of the head, near the neck region. To do so we lifted, or moved
away, feathers and registered whether the skin was black, yellow or red. Addi-
tionally, we looked at skin from the neck, dorsally and under the wings in a pilot
study of 75 species but did not find any black skin, even when black skin was
present on the head. We coded skin as either black or non-black. Non-black skin
was either yellow or red, but examination of recently deceased birds showed that
the yellow skin is probably the result of colour loss associated with pigments (e.g.,
carotenoids) and blood flow. We collected data from adult specimens when pos-
sible. For six species we only had juvenile specimens available. For nine species life
stage was unavailable. Neither juveniles nor specimens with unknown life stage had
black skin (Supplementary Data 1). When available, we looked at one male and one
female specimen. When specimens were scored as black we looked at all specimens
available, with a maximum of five specimens per sex. Specimens originated from
the natural history collection of the Royal Belgian Institute for Natural Sciences
(RBINS, permission granted by Olivier Pauwels), the Royal Museum for Central
Africa (RMCA, permission granted by Alain Reygel), the Museum of Comparative
Zoology (MCZ, permission granted by Jeremiah Trimble), the American Natural

History Museum (ANHM, permission granted by Bentley Bird) and the Natural
History Museum (NHM). Additionally, we examined 47 specimens in the alcohol
collections of the RMCA and 15 live or recently deceased specimens at Wellfleet
Bay Wildlife Sanctuary, Joppa Flats, Manomet, the TEREC collection at UGent
(Supplementary Table 12). All data was collected by one person (M.P.].N) with the
help of two other persons (S.P. and R.C). Colour data for Eutrichomyas rowleyi and
Xenoperdus obscuratus were by provided by Martin Pickert (Naturmuseum
Senckenberg) and Jon Fjeldsd (Natural History Museum of Denmark).

Choice of phylogenetic tree. All phylogenetic analyses were run on the complete
Bayesian maximum clade credibility species-level avian phylogeny from the Bird
Tree Project*3, built based on both genetic and taxonomic information and the
higher-order relationship backbone from Hackett et al.#4. If specific species were
not present in the tree due to recent taxonomical changes we coded it as a closely
related congeneric species. To test for phylogenetic robustness we also ran a second
set of analyses using a MCC genetic-only tree®3.
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Ancestral state estimation. We used the function “ace” of the ape package?” to
determine whether an all rates different (ARD) model was significantly better than
an all rates equal (ER) model. We then used the best model (ARD) model to
simulate 100 unique ancestral state estimations using an MCMC approach to
sample character histories from their posterior probability distribution in a process
known as stochastic mapping. The function “densityMap” in the package
phytools*®47 was used to map the posterior density of the trait by plotting each
possible character history in proportion to its probability. Traits were categorised
as either having black skin or not. This approach included specimens in which at
least one specimen was observed with black skin.

(Phylogenetic) comparative analyses. Phylogenetic signal strength of black skin
was measured using Fritz and Purvis’ D-test for binary variables#3, as implemented
in the function “phylo.d” in the CAPER package?’. Since phylogenetic comparative
analyses do not allow for repeated measures we divided the data in four subsets: the
neck with male priority in case of duplication, the neck with female priority in case
of duplication, ventral with male priority in case of duplication and ventral with

female priority in case of duplication. However, since black skin evolved ventrally
in only 11 genera, ventral analyses were excluded.

We used phylogenetic comparative methods to test whether black skin is
associated with a set of life history traits. We controlled for phylogenetic non-
independence using a phylogenetic logistic regression implemented in the R package
phylolm®’. R?* values were calculated using the rr2 package®!. Physical traits tested
were colour of feather overlying the observed skin, presence/absence of sexual
dichromatism and maximum known mass. The colours of feathers overlying the skin
were assessed on the actual specimen as either white, black, grey, brown, green,
yellow, blue, orange, purple, or pink. To exclude colour definition ambiguity we ran
an extra analysis with feather colour coded as defined by handbook of the birds of the
world alive (HBW)32 (see Supplementary Note 1 and Supplementary Table 13). Apart
from singular, dominant colour we added the category barred if a barred pattern
without dominant colour was present. The handbook of the birds of the world alive
(HBW)>2 was used to score sexual dichromatism as either present or absent based on
the description and the associated plates. Sexually dichromatism included were
differences in skin colour and plumage, while differences in eye-colour were excluded.
HBW was also used to quantify maximal known mass. If the mass was not known for
a particular species, we used the mass of a similarly sized congeneric species.
Climatological variables tested were latitude of mean breeding range (absolute, in
order to test for association with equatorial regions)°>, annual mean UV-B radiation
(jm~2/day) at coordinates of breeding range centroid (in M jm?/day)>*, average
precipitation at breeding range (mm/day) and the maximum temperature (°C) at
coordinates of mean breeding range, obtained from the NASA Langley Research
Centre (LaRC) POWER Project. For temperature the upper limit was used, as upper
critical thermal limits drive thermal adaptations?®. Finally, we also used the presence/
absence of high interaction species (defined as species that are both obligatory and
facultative colonial species, as well as species that form groups, share roosts or are
communal or social hole breeders) obtained from HBW, and whether birds occupied
a covered habitat, which we defined as being strictly confined to forest and/or shrub
habitat, as defined by the IUCN redlist website>>. Continuous data was standardised
and mass and UV radiance were log-transformed.

Niche modelling. Maxent>® a maximum entropy modelling tool commonly used to
model species distribution, was used to investigate the response of black skin in
function of four different climatic variables. In this analysis we clumped all species
with black skin into one hypothetical black skinned species. For each species with
black skin, occurrence data was downloaded from The Global Biodiversity Infor-
mation Facility (gbif)*’. To avoid sampling bias (i.e., widespread species that are
more commonly observed at locations with lots of birdwatchers, e.g., the UK) each
occurrence was assigned to a 2 x 2 degree grid. For each species we then sampled
50 (or less when not available) random occurrences out of these 2 x 2 degree grids.
This resulted in 5128 coordinates that were used in the distribution modelling.
Variables used were Annual mean UV-B radiation (jm~2 day~!), average mini-
mum temperature (°C), average maximum temperature (°C) and average pre-
cipitation (mm). UV radiance was collected from gIlUV>% All other variables were
yearly averaged over a span of 30 years and were downloaded from Worldclim 2°8.
The main output consists of a predicted distribution of a species (or a trait in this
case). This predicted distribution model was compared with a bird diversity map>’
that was normalised using the maximal diversity value to identify black skin
hotspots and coldspots. While the Maxent model is being trained it keeps track of
how much each environmental predictor contributes to the predicted trait dis-
tribution. This is converted to percentages at the end of the training process which
results in the variable contribution table (Supplementary Fig. 6)%0. Additionally,
Maxent produces response curves for each variable (Supplementary Fig. 6). These
graphs show the predicted probability of suitable conditions on the y-axis and the
values of the predictor variable on the x-axis®’. Maps were made using the R
package maps®!.

TEM and light microscopy. To verify that presence and/or greater abundance of
melanin explains black skin colour, we used optical and transmission electron
microscopy on skin samples of one individual each for Morus bassanus (black) and

Garrulus glandarius (red). Samples of black and yellow/pink skin were embedded
in Epon (Electron Microscopy Solutions, Hatfield, PA, USA) following standard
protocol. We stained thin (100 nm) sections in Uranyless/lead citrate and examined
them on a JEOL JEM 1010 (Jeol, Ltd, Tokyo, Japan) transmission electron
microscope.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are available in Supplementary Data 1.
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