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A role for oxytocin in the etiology and 
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Schizophrenia is a chronic debilitating neuropsychiatric disorder estimated to affect 
51 million people worldwide. Several symptom domains characterize schizophrenia, 
including negative symptoms, such as social withdrawal and anhedonia, cognitive impair-
ments, such as disorganized thinking and impaired memory, and positive symptoms, 
such as hallucinations and delusions. While schizophrenia is a complex neuropsychiatric 
disorder with no single “cause,” there is evidence that the oxytocin (Oxt) system may be 
dysregulated in some individuals. Further, treatment with intranasal Oxt reduces some 
of the heterogeneous symptoms associated with schizophrenia. Since Oxt is known for 
its modulatory effects on a variety of social and non-social behaviors, it is perhaps not 
surprising that it may contribute to some aspects of schizophrenia and could also be a 
useful therapeutic agent. In this review, we highlight what is known about Oxt’s contri-
butions to schizophrenia and schizophrenia-related behaviors and discuss its potential 
as a therapeutic agent.
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introduction

Schizophrenia, a chronic and debilitating neuropsychiatric disorder, affects 1% of the population 
worldwide (1). According to the fifth edition of the Diagnostic and Statistical Manual of Mental 
Disorders, schizophrenia is characterized by a combination of negative symptoms, cognitive dys-
function, and positive symptoms (2). Negative symptoms of schizophrenia include deficits in social 
behaviors such as social withdrawal, anhedonia, and flattened affect. Cognitive impairments include 
disorganized thinking and impaired executive function, working memory, and attention (3, 4). Lastly, 
the positive symptoms of schizophrenia include hallucinations, paranoid delusions, and disorgan-
ized speech. Unfortunately, while current antipsychotic medications are effective at ameliorating 
the positive symptoms, they are not very effective at treating the negative symptoms and cognitive 
dysfunction associated with schizophrenia, which tend to be more pervasive and persistent (5–7).

Current antipsychotic therapies are based on the dopamine hypothesis of schizophrenia, which 
proposes that increases in dopamine transmission in the mesolimbic dopamine pathway, and decreases 
in its activity in the prefrontal cortex contribute to many of the observed symptoms (8–10). As such, 
typical antipsychotics are dopamine 2 (D2) receptor antagonists, which only reduce positive symptom 
severity. Atypical antipsychotics on the other hand are reported to alleviate the positive symptoms 
as well as some of the negative symptoms associated with schizophrenia. These medications inhibit 
the serotonin 2A receptor (5-HT2A), and to a lesser extent D2 receptors and other neurotransmitter 
systems associated with schizophrenia, such as the adrenergic and cholinergic systems (11). However, 
two large clinical studies, the Clinical Antipsychotic Trials of Intervention and Effectiveness (CATIE) 
and the Cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study (CUtLASS) found no 
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significant difference between the ability of typical and atypical 
antipsychotics to reduce the negative symptoms and cognitive 
dysfunction of schizophrenic patients (12–15). Thus, it is impor-
tant to better understand the neurochemistry of the negative 
symptoms and cognitive dysfunction as they often precede the 
onset of the positive symptoms and act as better predictors of 
therapeutic outcome (16, 17). Due to the various combinations 
of symptoms and the wide range of symptom severity, diagnosis 
and treatment of schizophrenia are difficult; making it extremely 
important to elucidate which neurological factors may contribute 
to schizophrenia as well as identify treatments that can effectively 
lessen symptom severity.

Schizophrenia

Schizophrenia is a heterogeneous group of disorders, and as such no 
single gene can explain its pathophysiology. Hence, it is not surpris-
ing that several neurotransmitter and neuropeptide systems, beyond 
dopamine, have been implicated in its symptomology (Figure 1) [for 
review, see Ref. (8, 18–20)]. In addition to the dopamine hypothesis, 
there is the glutamate hypothesis, which supposes that it is the 
hypofunctioning of N-methyl-D-aspartate (NMDA) receptors that 
contribute to the negative symptoms and cognitive impairments 
associated with schizophrenia (19). Researchers studying the 
cholinergic and gamma aminobutyric acid (GABA) systems have 
found that these neurotransmitter systems may also play a role in 

both the psychotic and cognitive deficits found in schizophrenia 
patients (20, 21); while serotonin (5-HT) is mainly implicated in only 
the cognitive dysfunction associated with schizophrenia (22–24). 
Cannabinoids and monoamine oxidase, which modulate some of 
these neurotransmitter systems, also appear to also play a role in 
the negative symptoms and cognitive deficits (25, 26). Since many 
neuropeptides are often co-released with these neurotransmitters, 
they likely have a role to play as well. Some of these neuropeptides are 
neurotensin, cholecystokinin, corticotropin-releasing factor, neu-
ropeptide y, and orexin (18). One neuropeptide that interacts with 
several of the aforementioned neurotransmitter and neuropeptide 
systems is the nonapeptide oxytocin (Oxt). Further, there is evidence 
that Oxt may be important to the etiology, symptom severity, and 
potential treatment of schizophrenia. First, in schizophrenic patients, 
there are reports of disruptions in the Oxt system that are affected 
by treatment with antipsychotics (27, 28). Second, treatment with 
Oxt as an adjunctive therapy is known to lessen symptom severity 
in some (29, 30). Third, animal models of schizophrenia suggest 
that Oxt may be involved in all three symptom domains (31–35).

Oxytocin

Oxt is a nine amino acid peptide hormone, synthesized primarily in 
neurons of the hypothalamic supraoptic (SON) and paraventricu-
lar (PVN) nuclei. To date, a single seven-transmembrane G-protein 
coupled receptor, known as the Oxt receptor (Oxtr), is thought 

FiguRe 1 | The symptom domains of schizophrenia and the 
neurotransmitter and neuropeptide systems known to play a role. 
Research suggests that Oxt may play a role in all three symptom domains 

associated with schizophrenia. 5-HT, serotonin; CRF, corticotropin-releasing 
factor; GABA, gamma aminobutyric acid; NPY, neuropeptide y; Oxt, 
oxytocin.
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to mediate the actions of Oxt; although Oxt can also bind to the 
vasopressin (Avp) 1a and 1b receptors [for review, see Ref. (36)]. 
The Oxt system is involved in regulating a variety of behaviors 
[for review, see Ref. (37)] and implicated in aspects of learning 
and memory, such as spatial and non-spatial memory (38–41). 
However, more commonly, Oxt is known for its importance to the 
neuromodulation of social behaviors such as social memory and 
social recognition, affiliative behaviors, and aggression [for review, 
see Ref. (37, 42)]. Social behaviors are evolutionarily important 
because they reduce stress and anxiety (43, 44) and in humans, Oxt 
facilitates prosocial behaviors and increases feelings of trust and 
empathy (45–47). Given the effects of Oxt on social behaviors, it is 
perhaps not surprising that research has focused on the role of Oxt 
in neuropsychiatric disorders that are characterized by disruptions 
in social functioning.

Abnormalities in the Oxytocin System

Due to the negative symptoms associated with schizophrenia, and 
the effects of Oxt on prosocial behaviors, researchers hypothesize 
that Oxt dysregulation may contribute to the etiology and symptom 
severity of schizophrenia (29, 30). This hypothesis is supported by 
studies indicating that disruptions in the Oxt system are linked to 
the pathophysiology of schizophrenia (28, 48, 49). Altered levels of 
Oxt are reported in patients with schizophrenia (50, 51). However, 
the data are conflicting with some studies reporting an increase in 
Oxt and the Oxt carrier protein neurophysin I (50, 51) and another 
reporting no change in Oxt levels in cerebral spinal fluid (CSF) 
(52). However, patients with higher plasma levels of Oxt have less 
severe positive symptoms and exhibit fewer social deficits (53, 54).

Recently it has been reported that single nucleotide polymor-
phisms (SNPs) of the OXT and OXTR genes may contribute to 
symptom severity and treatment efficacy in schizophrenic patients 
(55–57). SNPs of the OXTR gene are associated with the severity 
of symptoms and the improvement of the positive symptoms of 
schizophrenia following treatment with antipsychotics (27, 28). 
Additionally, post-mortem analysis of brain tissue from unmedi-
cated schizophrenia patients found altered neurophysin immuno-
reactivity (ir) in the PVN, internal palladium, and substantia nigra 
(58). Most recently, in patients with schizophrenia and polydipsia, 
decreases in plasma Oxt were found to correlate with the ability 
to correctly identify facial emotions (48) as well as malforma-
tions in brain areas that mediate neuroendocrine responses such 
as the anterior lateral hippocampus and amygdala (Amg) (59). 
Together, these data suggest that alterations in the function of the 
Oxt system may underlie all three symptom domains associated 
with schizophrenia. Given the dysregulation of the Oxt system in 
patients with schizophrenia, Oxt has been studied as a candidate 
for use as a therapeutic.

Human studies suggest that Oxt may have antipsychotic 
properties [for review, see Ref. (60, 61)]. Previous work found 
that injections of Oxt reduce the symptoms of psychosis and 
anhedonia in patients with schizophrenia (62, 63). Due to the ease 
of delivery, researchers are now utilizing intranasal administration 
of Oxt. It should be noted that there is an ongoing debate in the 
field on whether or not intranasal administration of Oxt is able to 
cross the blood–brain barrier, but there is evidence that intranasal 

administration increases Oxt concentrations in CSF in humans 
and animal models (64–66). In healthy patients, intranasal Oxt 
increases holistic processing, divergent thinking, and creative cog-
nition (67), and studies in patients diagnosed with schizophrenia 
report that intranasal Oxt can be beneficial. Specifically, intranasal 
Oxt can facilitate social cognition (30, 68–70) and alleviate some 
of the cognitive deficits and positive symptoms in patients with 
schizophrenia (69). Yet, intranasal Oxt may be most effective as 
an adjunctive therapy to already prescribed antipsychotics, where 
chronic treatment is able to ameliorate some of the negative symp-
toms and the cognitive deficits, as well as the positive symptoms 
(30, 71, 72). While this research suggests that Oxt treatment has 
the potential to improve symptoms in all three domains, where in 
the brain and how these effects are mediated remains unknown. 
Animal models for schizophrenia are being used to determine 
where and how Oxt treatment may improve symptoms associated 
with schizophrenia.

Oxytocin in Humans and Animal Models

There are inherent challenges when studying a multifaceted disorder 
such as schizophrenia. Therefore, reliable animal models are neces-
sary to understand and develop viable treatments. A good animal 
model must have phenotypic overlaps with either a behavior or a 
molecular characteristic of the disease. In humans, schizophrenia 
is characterized by several endophenotypes, including impairments 
in social behaviors such as emotion processing, social perception, 
attributional bias, and theory of mind [for review, see Ref. (73)]. 
Schizophrenic patients also have deficits in sensorimotor gating, 
as measured by prepulse inhibition (PPI) of the acoustic startle 
reflex [for review, see Ref. (74)], and cognitive deficits in verbal 
and visual memory, and impaired cognitive flexibility [for review, 
see Ref. (75)]. There are also neuromotor abnormalities such as 
dysmetria, eye tracking dysfunctions, and saccadic eye move-
ments, which are typically associated with the positive symptoms 
of schizophrenia [for review, see Ref. (76–78)], as well as structural 
abnormalities in total brain volume and the volume of specific brain 
regions including, but not limited to, the hippocampus, the lateral 
ventricles, and the prefrontal cortex [for review, see Ref. (77, 79)] 
Co-morbid anxiety disorders are found in 38% of schizophrenia 
patients, and studies have reported increases in violent behaviors 
in schizophrenic patients (80–82). While changes in anxiety-like 
behavior and aggression have not been proposed as animal models 
for schizophrenia, several existing animal models of schizophrenia 
result in altered anxiety-like and aggressive behavior (83–91). 
Further, atypical antipsychotics have been found to reduce anxiety 
and reverse psychosis-induced aggression in patients with schizo-
phrenia (92–96). Therefore, the examination of anxiety-like and 
aggressive behaviors seems warranted.

Currently, over 20 animal models are being used to assess the 
heterogeneous symptoms associated with schizophrenia (97). 
To study the specific contributions of the Oxt system, several 
models have been developed. The first utilizes perinatal stress, 
since research in humans suggests that exposure to adverse envi-
ronmental conditions during perinatal development increases 
the risk for schizophrenia (98). Stress during the perinatal period 
is known to induce the behavioral and molecular characteristics 
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of schizophrenia and is commonly used to model the negative 
symptoms of schizophrenia (85, 86, 99). The second employs the 
pharmacological disruption of the dopaminergic and glutamater-
gic systems, since the pathophysiology of schizophrenia suggests 
that there is dysfunction in both of these systems. Treatment 
with amphetamine (AMP), an indirect dopamine agonist, or 
phencyclidine (PCP), an NMDA receptor antagonist, induces 
hyperlocomotor activity, which corresponds with the positive 
symptoms of schizophrenia (100–103). Further, PCP treatment 
induces both negative symptoms and cognitive dysfunction, such 
as social withdrawal (104–106), impaired PPI (107), and cognitive 
deficits (108). The third uses gene knockout, since schizophrenia 
is a genetic disorder with high levels of heritability. Recently, it 
has been reported that genetic mutations in Oxt genes are associ-
ated with schizophrenia (55). It is for this reason that mice with 
genetic disruptions of their Oxt systems, such as Oxt and Oxtr 
knockout mice (Oxt−/− and Oxtr−/−, respectively) have been 
used to determine their potential contributions to the symptoms 
associated with schizophrenia. While no single model is sufficient 
to encompass all of the heterogeneous symptoms of schizophrenia, 
together these models can help us to better understand the role 
that Oxt may play in schizophrenia. It should be noted that several 
of these models are not specific to schizophrenia, and the data are 
relevent for other neuropsychiatric disorders (109). Currently, all 
of the aforementioned models are being used to study the relation-
ship of Oxt to the negative symptoms of schizophrenia, and while 
some have been used to study the cognitive deficits and positive 
symptoms, more research is needed.

Deficits in Social Behaviors
Oxt has a well-characterized role in the neural regulation of social 
behaviors [for reviews, see Ref. (37, 42, 63, 110, 111)]. It is therefore 
not surprising that Oxt is studied for its potential contributions 
to the modulation of the negative symptoms of schizophrenia 
(Table 1). This section is broken up according to the approaches 
described in the previous section, as there is far more data on the 
contributions of Oxt to deficits in social behaviors than there are 
for the other symptoms associated with schizophrenia.

Perinatal Stress
Research in humans has demonstrated that there is a positive 
correlation between perinatal exposure to a stressful environment 
and increased risk of schizophrenia (98). In rodents, maternal 
separation modifies aggressive behavior, and decreases social 
recognition, anxiety-like, and depression-like behaviors (85, 86, 
99); with the effects of early life stress on aggression and Oxtr 
distribution being sex specific in both mice and rats. Following 
maternal separation, male mice exhibit decreases in aggression 
(83, 84) and increases in Oxt-ir in the PVN (84). However, in 
female mice, maternal separation results in increases in maternal 
aggression and decreases in Oxt-ir cells in the PVN (83). Similar to 
mice, in male Long Evans rats, early life stress results in decreases 
in intermale aggression, and in male Wistar rats, prolonged mater-
nal separation results in increases in Oxt-ir in the Amg (122), 
increases in Oxtr binding in the medial pre-optic area (MPOA) 
and ventromedial hypothalamus (VMH), and decreases in Oxtr 
binding in the lateral septum (LS), agranular cortex, and caudate 

putamen (CP) in adulthood (123). Early life stress in female Wistar 
rats results in increases in aggression (134, 135). Data from another 
rodent species, mandarin voles, have shown that neonatal social 
isolation results in increases in Oxt-ir in the PVN until post 
natal day (PND) 8 and the SON until PND4 in both sexes (124). 
Further, in vole pups that have been isolated from their fathers 
there is a downregulation of Oxt-ir neurons until PND14, but 
these decreases do not persist (124).

In addition to maternal separation, prenatal stress can also 
cause behavioral effects in rodents that are reflective of symp-
toms of schizophrenia. Adult male rats subjected to prenatal 
stress and reared by stressed mothers display lower levels of 
aggression and social behaviors, and increases in anxiety-like 
behaviors (125, 126, 136). However, when non-stressed mothers 
rear pups that are exposed to stress during the prenatal period, 
the deficits in aggressive behaviors and increases in anxiety do 
not persist (125). Further, these effects appear to be due to Oxt, 
as an injection of Oxt into the central amygdala (CeA) is able 
to restore the social deficits exhibited by male rats subjected to 
prenatal stress (126). Male offspring raised by their prenatally 
stressed mothers also have reductions in Oxtr mRNA, fewer 
Oxt positive magnocellular neurons in the PVN, and increases 
in Oxtr binding in the CeA (125, 126). These morphological 
changes in Oxt system are not found when non-stressed dams 
raise the pups.

The behavioral differences observed between species, 
strain, and sex that result from stress during the perinatal 
period appear to be a result of alterations in the Oxt system. 
Many of the changes in the Oxt system are found within the 
neuronal network that mediates aggression: the MPOA, LS, 
anterior hypothalamus, VMH, medial amygdala (MeA), and 
bed nucleus of the stria terminalis (BNST) (137). There are 
also changes found in the Oxt system in the PVN, and it is 
known that stress can modulate aggression via the PVN (137). 
In males, perinatal stress results in decreases in aggression 
and increases in Oxt-ir and Oxtr binding (83, 84, 122, 134). 
However, in females, increases in aggression coincided with 
decreases in Oxt signaling (83, 134, 135). These sex differences 
in aggression and Oxt may be a result of estrogen-mediated sex 
differences in Oxtr regulation (138, 139).

Low levels of licking/grooming (LG) maternal behavior are 
associated with decreases in estrogen receptor-alpha (ERα) and 
Oxtr levels in the MPOA in female offspring (138, 139). Further, 
the interactions of estrogens and the Oxt system may result in 
changes to the dopamine system, as females reared by low LG dams 
have fewer dopamine neurons in the VTA (140). Research using 
dopamine agonists to model schizophrenia suggest that there are 
important interactions between the Oxt and dopaminergic systems 
to social cognition. Taken together, the data from perinatal stress 
models suggest that there can be long-lasting disruptions of Oxt 
neurochemistry, which may lead to impairments in behaviors that 
are similar to the negative symptoms of schizophrenia.

Pharmacological Disruption
Pathophysiological studies utilizing dopamine agonists and 
NMDA receptor antagonists have reaffirmed the importance of 
Oxt to social cognition in patients with schizophrenia. A study 
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TABle 1 | Oxt and social deficits associated with schizophrenia.

Animal 
model

Species Main findings Author Relevant findings in 
humans

Author

Early life 
stress

Mouse ↓ Intermale aggression Tsuda et al. (84)
Veenema et al. (83)

↓ Oxt in CSF in adult females 
with history of childhood abuse

↓ Plasma Oxt in adult males 
exposed to early life stress

↑ Plasma Oxt in adult 
females exposed to trauma 
in childhood following 
psychosocial challenge

↓ Plasma Oxt in children 
exposed to early neglect 
following interactions with their 
mother compared to controls

APO treatment
↓ Plasma neurophysin in 
patients with schizophrenia 
compared to controls

Higher plasma Oxt levels in 
patients with schizophrenia 
results increased social 
cognition and fewer negative 
symptoms

↓ Plasma Oxt in male patients 
with schizophrenia and 
increased negative symptoms

Lower CSF Oxt in male 
schizophrenic patients 
corresponds with increased 
negative symptoms

↓ Plasma Oxt in patients 
with schizophrenia after trust 
exercise compared to controls

Heim et al. (112)

Opacka-Juffry and 
Mohiyeddini (113)

Pierrehumbert  
et al. (114)

Fries et al. (115)

Legros et al. (116)

Goldman et al. (48)
Rubin et al. (53)
Rubin et al. (54)
Strauss et al. (117)
Strauss et al. (118)

Jobst et al. (119)

Sasayama (120)

Keri et al. (121)

↑ Maternal aggression
↑ Oxt-ir in PVN in males
↓ Oxt-ir in PVN in females 

Rat ↑ Oxt-ir with prolonged separation in males Oreland et al. (122)

↑ Oxtr binding in MPOA and VMH Lukas et al. (123)
↓ Oxtr binding LS, AG, and CP

Mandarin 
Vole

↑ Oxt-ir until PND8 in PVN and PND4 in SON 
after social isolation

Wang et al. (124)

↓ Oxt-ir until PND 14 in PVN after paternal 
deprivation

Prenatal 
stress

Rat ↑ Aggression and Anxiety de Souza et al. (125)
↓ Social recognition and social interaction
↓ Oxt-ir in PVN

↓ Social recognition and social interaction Lee et al. (126)
↑ Oxtr binding CeA
↓ Oxt mRNA in PVN
Oxt administered to CeA reversed social deficits

Dopamine 
agonist

Prairie 
Vole

Subchronic AMP treatment Young et al. (127)
↓ Pair bond formation
↓ Oxtr-ir in mPFC/PLC
Oxt administered to PLC restores pair bond 
formation

NMDA 
antagonist

Rat Chronic PCP treatment Lee et al. (105)
↓ Social interaction
↓ Oxt mRNA in PVN
↑ Oxtr binding CeA
Oxt administered to CeA restores social deficits

Dysregulation 
of the Oxt 
system – Oxt 
and Oxtr 
knockout 
mice

Mouse ↓  Social memory and Social recognition in Oxt 
and Oxtr−/− mice

Ferguson et al. (128) 
Nishimori et al. (31)
Takayanagi et al. (32)

Oxt administration to Amg restores deficits in 
social recognition in Oxt−/− mice

Winslow and Insel 
(33)

↑ Social withdrawal in Oxtr−/− mice in visible 
burrow paradigm

Pobble et al. (129, 
130)

↑ Social withdrawal in Oxtr−/− mice in three-
chamber test

↑ Intermale Aggression Oxt and Oxtr−/− mice Winslow et al. (131) 
Dhakar et al. (90)

↓ Maternal aggression Oxt−/− mice Young et al. (91)

↓ Initiation Maternal Behavior Oxtr−/− mice and 
Oxtr FB/FB

Macbeth et al. (132) 
Rich et al. (133)

↓ Ultrasonic vocalization in Oxt−/− mice pups Winslow et al. (131)
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on drug addiction and social behaviors provides insight into the 
role of Oxt, dopamine, and social behaviors (127). Specifically, 
in prairie voles, repeated subchronic AMP exposure inhibits pair 
bond formation (127), decreases Oxtr-ir in the mPFC, and reduces 
Oxtr activation in the PLC; which is important for partner prefer-
ence formation (127, 141). Additionally, Oxt direct infusion into 
the PLC is able to restore AMP-induced impairment in partner 
preference and alter dopamine levels in the nucleus accumbens 
(NAcc) (127). Administration of PCP induces social dysfunctions 

in animals that mimics the negative symptoms associated with 
schizophrenia [for review, Ref. see (142, 143)]. Oxt mRNA 
expression is reduced in the PVN of rats and Oxtr binding is 
increased in the CeA following chronic PCP treatment (105). 
Further, PCP-induced deficits in social interactions are increased 
by bilateral infusions of Oxt to the CeA (105). While these data 
suggest that the interaction of Oxt with both dopamine and glu-
tamate is important for social behavior, the specific mechanisms 
that mediate these effects remain unclear.
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FiguRe 2 | Oxtr−/− mice have impaired social recognition. In a 
two-trial discrimination task performed over 2 weeks, Oxtr+/+ (n = 8) and 
Oxtr−/− males (n = 8) were exposed to overiectomized BALB/C female mice 
during trial 1, and then 30 min later during trial 2 they were exposed to a familiar 
female on week 1. During week 2 of testing after trial 1, mice were exposed to a 
novel female during trial 2. Oxtr−/− mice fail to discriminate between the familiar 
and novel female spending approximately equal amounts of time sniffing both; 
compared to Oxtr+/+ mice that spend more time sniffing the novel female. 
Reprinted with permission from Endocrinology, Lee et al. (153).
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Research on sex behavior in rats suggests that the dopaminergic 
and Oxt systems can modulate each other (144–146), and the Oxtr is 
located throughout the mesolimbic dopamine pathway (147, 148). 
Thus, researchers have hypothesized that Oxt and dopamine may 
work together to affect on how an individual perceives the salience 
of social cues [for review, see Ref. (149)]. However, the connection 
between these two systems and their role in schizophrenia remains 
murky. Likewise, the link between the Oxt and glutamate systems 
is also poorly understood. In rat SON preparations, application 
of both Oxt and Avp inhibits glutamate release (150). However, 
in cultured rat olfactory bulb neurons glutamate transmission 
is facilitated (151). More recently, it has been found that in the 
CeA, Oxt and glutamate are co-released from Oxt neurons (152). 
More research is still needed to determine how and where Oxt 
may interact with these neurotransmitter systems to affect social 
cognition in patients with schizophrenia.

genetic Disruptions
The use of genetic tools, including Oxt−/− and Oxtr−/− mice have 
significantly contributed to our understanding of the role of Oxt 
in the social deficits observed in patients with schizophrenia. Male 
Oxt−/− and Oxtr−/− mice fail to develop social recognition mem-
ory, in essence having social amnesia (31, 32, 128, 153) (Figure 2). 
Further, an injection of Oxt into the MeA of Oxt−/− mice is able to 
restore social recognition (33, 154). These deficits in social memory 
are not specific to males, as female Oxt−/− mice do not show a 
normal Bruce effect (155, 156). Oxtr−/− mice also display behaviors 
similar to the negative symptoms of schizophrenia across multiple 
testing scenarios. In a visible burrow system, which provides a more 
natural habitat for rodents, Oxtr−/− mice have reductions in social 
interaction behaviors, spending more time alone and self-grooming 
than controls (129, 130). In a three-chamber test for sociability 

Oxtr−/− mice display increases in social withdrawal (129, 130) and 
in a social proximity test they display reductions in the frequency 
of nose-to-nose and nose-to-anogenital behaviors (129, 130). These 
data suggest that a functional Oxt system is necessary for normal 
social interactions, and that dysregulation of Oxt in schizophrenia 
could contribute to some of the negative symptoms.

Research also suggests that Oxt is important for other social 
behaviors, such as aggression and maternal behavior. Some stud-
ies have reported increases in violent behaviors in schizophrenic 
patients; however, it remains unclear whether this is a symptom of 
schizophrenia or rather co-morbid disorders (80, 81). Oxt−/− and 
Oxtr−/− mice have increases in aggressive behavior, and given the 
dysregulation of the Oxt system in schizophrenia, a functional Oxt 
system could be important for normal aggressive behavior (32, 90, 
131, 153, 157, 158). Specifically, male Oxt−/− mice have height-
ened aggression when born to null mutant dams, but not when 
they are born to heterozygous dams (131, 157). Oxtr−/− mice 
also have heightened intermale aggression, but Oxtr FB/FB do not 
(32, 90, 153, 158). These data suggest that Oxt exposure during 
development may have persistent effects on aggressive behavior. 
Therefore, it could be that developmental Oxt contributes to the 
etiology of schizophrenia; however, more research is needed before 
such a claim can be made.

While there are no reported deficits in maternal behavior in 
patients with schizophrenia, the cognitive impairments associ-
ated with schizophrenia may lead to reductions in the ability to 
acquire necessary parenting skills (159–161). In animal models 
of schizophrenia, evidence suggests that decreases in maternal 
behaviors result in the development of behaviors similar to those 
found in other animal models of schizophrenia (83, 125, 126, 136, 
162). Oxtr−/− and Oxtr FB/FB display deficits in the initiation of 
maternal behavior (32, 132, 133) and Oxt−/− mice pups emit fewer 
ultrasonic vocalizations when separated from nest; all of which 
suggest that Oxt contributes to social behavior in rodents (33, 131).

impaired Cognition
The Oxt system may also be important to the cognitive dysfunc-
tions associated with schizophrenia. One endophenotype of 
schizophrenia is impaired sensorimotor gating, i.e., the inability to 
“filter or gate” information (163, 164). Across species, sensorimotor 
gating can be measured using PPI of the startle reflex. The startle 
reflex is a defensive response to an abrupt, relatively intense stimuli 
(165). The neural circuitry that underlies PPI is known as the 
cortico-striato-pallido-pontine (CSPP) circuit (166). In humans, 
PPI is measured using electromyographic recordings from eye 
blink responses (167). In rodents, it is measured using the whole 
body flinch reflex of an animal to the startle stimulus (168). Patients 
with schizophrenia not only have reduced PPI but also show less 
habituation of the startle reflex compared to controls (169). In 
Brown Norway rats, which have a naturally low PPI, Oxt but not 
its structural analog carbetocin, is able to significantly increase 
PPI (170).

Stress during the perinatal period may contribute to deficits 
in PPI, though there have been contradicting reports, with one 
group reporting deficits in PPI and another group finding no 
changes in PPI, some data suggests that early life stress reduces 
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FiguRe 3 | Oxt−/− mice have greater PCP-induced deficits in 
sensorimotor gating. The acoustic startle of male Oxt+/+ (n = 12) and 
Oxt−/− mice (n = 8) was measured using the whole body reflex flinch in 
reaction to a startle tone using startle chambers (SR-LAB; San Diego 
Instruments, San Diego, CA, USA). Mice were administered either an i.p. 
injection of 10 mg/kg AMP and APO, a subcutaneous injection 6 mg/kg PCP, 
or an equivalent volume of 0.9% saline as a control 15 min prior to testing. 
Testing session consisted of 60 trials, including no stimulus trials, pulse-alone 
trials, and prepulse + pulse trials. The testing sessions began and ended with 
the presentation of five 120 db pulse-alone tones. The middle 50 trials 
consisted of: 10 no pulse tones trials, 30 prepulse + pulse trials at 3, 6, and 
12 db above background, and 10 pulse-alone tones at 120 db. A repeated 
measures design was used with each animal receiving 0.9% saline, AMP, 
APO, and PCP, with a minimum of 3 days between each trial. Oxt−/− mice 
display greater reductions in the average percent PPI across three prepulse 
levels (3, 6, and 12 db above background) following an injection of PCP 
compared to Oxt+/+ mice. There were no genotypic differences in PPI 
following injection of AMP or APO. Adapted and reprinted with permission 
from Macmillan Publishers Ltd: Molecular Psychiatry, Caldwell et al. (173).
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PPI levels in adulthood (162, 171). Changes in the Oxt system 
have been reported following early life stress, and may have an 
impact on perinatal stress-induced reductions in PPI, though 
more research is necessary (83, 122, 123). Further, in models 
that pharmacologically disrupt PPI, exogenous Oxt is known to 
reverse these deficits (170). Specifically, in rats, subcutaneous Oxt 
injections are able to restore deficits in PPI induced by AMP, an 
indirect dopamine agonist, and dizocipline (MK-801), a specific 
NMDA receptor antagonist, but not apomorphine (APO), a 
direct dopamine agonist (172). Finally, genetic disruptions in the 
Oxt system suggest that a lack of endogenous Oxt appears to be 
important in the regulation of PPI, as Oxt−/− mice have increased 
PCP-induced deficits in PPI (173) (Figure 3). This further suggests 
that the effects of endogenous Oxt on PPI may be specific to the 
glutamatergic system.

Oxt is likely to also contribute to the cognitive deficits associ-
ated with schizophrenia, such as impaired spatial memory and 
cognitive flexibility (3, 174). Similar to the cognitive deficits 
found in schizophrenia, Oxtr−/− mice display reduced cogni-
tive flexibility, as measured by an inability to alter their behavior 
during the reversal phase of a t-maze task (175). Since the Oxtr 
is abundant in the hippocampus of mice, it may be important 
for memory (176). However, there are divergent reports of Oxt’s 
effects on spatial memory, suggesting that Oxt may have brain 
region-specific effects (38, 177). In vitro, hippocampal slices treated 
with Oxt are able to maintain long-term potentiation longer than 

untreated slices (38). In mouse dams, a central injection of Oxt is 
able to improve reference memory on a radial arm maze, but does 
not affect their short-term memory during acquisition, suggesting 
that Oxt only improves long-term spatial memory (38). As Oxt can 
improve anxiety in virgin mice when administered to the Amg or 
VMH, the effects of Oxt on reference memory may be due to its 
actions in these brain regions. However, there was no effect on their 
open-field activity, which suggests direct action on hippocampal 
neurons (38). Further, dams that receive an intracerebroventricular 
(i.c.v.) injection of an Oxt antagonist have reductions in reference 
memory compared to controls (38). But, in rats, Oxt injections 
into the nucleus basalis of Meynert (NBM) impair spatial memory, 
as measured by a Morris water maze, while an Oxtr antagonist 
injected into the NBM facilitates spatial memory (177). Given 
that disruptions in Oxt signaling appear to contribute to multiple 
aspects of cognition, and that Oxt may affect memory formation, 
it is plausible that Oxt may play a role in the cognitive deficits 
associated with schizophrenia.

The effects of Oxt dysregulation and Oxt treatment on the cog-
nitive dysfunction found in patients with schizophrenia are poorly 
understood. Studies in both humans and animal models suggest 
that a functional Oxt system is required for normal sensorimotor 
gating and cognitive flexibility. The effects Oxt on sensorimotor 
gating may be specific to the glutamatergic system (172, 173), with 
mice lacking the obligatory NMDA receptor 1 subunit having 
impaired PPI (178). Unfortunately, as previously discussed, how 
these two systems interact remains unclear. The Oxt system is 
coupled to phospholipase c-β1 (PLC-β1) and glutamate is known 
to regulate PLC-β1 (36, 179–182). Abnormal expression patterns 
of PLC-β1 are found in patients with schizophrenia (183, 184). 
Further, studies using PLC-β1 knockout (PLCβ1−/−) mice find 
impaired PPI and deficits in working memory (185, 186). Therefore, 
the PLC-β1 may reflect a point of convergence for the Oxt and 
glutamate systems in the regulation of sensorimotor gating.

The effects of Oxt treatment on spatial learning are also 
ambiguous. While research suggests that Oxt in the hippocampus 
facilitates learning, it impairs memory when injected to the NBM 
(38, 177). However, while neuronal deficits in the hippocampus 
have been found, no reductions in neuronal density have been 
observed in the NBM in patients with schizophrenia (187). So, 
it is not clear whether or not this brain region is important to 
the pathophysiology of schizophrenia. In addition to Oxt’s effects 
on the cognitive deficits, it may also play a role in the positive 
symptoms associated with schizophrenia.

Neuromotor Abnormalities
In animal models, psychotic symptoms similar to the positive symp-
toms of schizophrenia can be manifested in rodents by treatment with 
dopamine agonists and NMDA receptor antagonists, which cause 
hyperlocomotor activity. While hyperlocomotor activity does not 
have direct face validity for the positive symptoms of schizophrenia, 
it does have construct validity as  psychotomimetics cause similar 
neurotransmitter activity in animal models as is found in human 
 schizophrenic patients. However, the behavioral effects are not neces-
sarily similar; though some suggest that hyperlocomotor activity is 
comparable to some positive symptoms such as grossly disorganized 
behavior and psychomotor agitation (188, 189). Further, established  
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FiguRe 4 | Oxt dose-dependently decreases locomotor activity in 
self-administering methamphetamine rats. Oxt (n = 5) was administered 
IP in ascending doses (0.001, 0.01, 0.1, 03, 1 mg/kg) over five consecutive 
days and equivalent amounts of vehicle (n = 5) were administered. Only the 
animals treated with Oxt or vehicle self-administered methamphetamine, and 
the control (n = 8) was used to determine baseline levels of locomotor 
activity. B = baseline day before oxytocin testing began. **p < 0.01 and 
***p < 0.001. There was no difference between rats treated with Oxt 
compared to the control group at 0.3 and 1 mg/kg Oxt dose. All other 
comparisons between Oxt treatment and the control group and the vehicle 
treatment and control groups were significant. Data are shown as 
mean ± SEM. Adapted and reprinted with permission from Elsevier: 
Carson et al. (34).
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antipsychotics, which reduce positive symptoms of  schizophrenia, con-
sistently reduce the hyperactivity associated with pharmacological 
agents such as AMP, cocaine, ketamine, and PCP. The antipsychotic 
efficacy of Oxt is supported by pharmacological manipulations that 
induce aspects of schizophrenia. During studies on addiction, Oxt 
decreases drug-induced hyperlocomotor activity (34, 35) while 
 pretreatment with Oxt is able to attenuate the  hyperlocomotor activ-
ity caused by cocaine, an indirect dopamine agonist (35) (Figure 4). 
In another study, which examined the effects of Oxt on addiction, 
i.c.v. injections of Oxt reduce  methamphetamine-induced increases 
in locomotor activity (34). Other research also suggests that Oxt 
and the  glutamatergic system may interact to affect the positive 
symptoms associated with schizophrenia. In addition to its behavioral 
effects, PCP induces the excessive release of glutamate within the 
medial prefrontal cortex (mPFC), which when blocked, suppresses 
hyperlocomotion (190, 191). Oxt has been found to reduce the 
PCP-induced symptoms associated with psychosis (173), as well as 
suppress glutamate release within the mPFC (192). Therefore, Oxt 
could suppress the hypofunction of glutamate specifically within 
the mPFC to protect against PCP-induced symptoms of psychosis. 
Genetic disruptions of the Oxt system also provide evidence that 
endogenous Oxt may affect locomotor activity, as there is hyperlo-
comotor activity in infant Oxtr−/− mice; however, this effect is not  
persistent (32).

Oxytocin and the Pharmacology of 
Schizophrenia

Oxt is known to interact with several other neurotransmitter 
systems that are important in the etiology and treatment of 

schizophrenia, such as GABA and 5-HT (193). During parturi-
tion, Oxt has been found to modulate GABAergic inhibition in 
rodent models for autism spectrum disorder (ASD) (194). Given 
that ASDs and schizophrenia share similar endophenotypes, Oxt 
may also modulate GABA signaling in schizophrenic patients as 
well. However, further research is necessary to elucidate the role 
of the interactions of the Oxt system and GABAergic system to 
the symptomology of schizophrenia. Oxt and 5-HT are known to 
modulate one another, and both are important for numerous social 
behaviors and mood (195–197). Specifically, Oxt may exert anxio-
lytic effects via Oxtr activation in 5-HT neurons (195). Current 
atypical antipsychotics may provide further evidence for the 
interactions between the Oxt and 5-HT systems and schizophrenia.

Some of the currently used atypical antipsychotics are known 
to interact with the Oxt system. The atypical antipsychotics, 
amperozide and clozapine, increase plasma levels of Oxt, but the 
typical antipsychotic haloperidol does not (198). Amperozide 
and clozapine are both a 5-HT2A antagonists, and to lesser extent 
D2 antagonists, that are reported to decrease both the negative 
and positive symptoms associated with schizophrenia (199–202). 
Whereas, the D2 specific antagonist, haloperidol, only appears to 
alleviate positive symptoms of schizophrenia (203, 204). Further, 
some atypical antipsychotics cause activation of Oxt cells as 
measured by cFos ir. Clozapine increases cFos activation in Oxt 
cells in the PVN, but again, haloperidol treatment does not (205). 
Similar to the effects of Oxt, in rodents, clozapine attenuates the 
reduction of cognitive flexibility caused by the sub-chronic PCP 
treatment (206), and is able to restore normal levels of PPI to 
brown Norway rats (207). This evidence further supports a role of 
the Oxt in the cognitive deficits found in schizophrenic patients. 
In humans, clozapine attenuates both the negative symptoms 
and cognitive dysfunctions found in patients with schizophrenia 
(208–212). Therefore, the ability to reduce the social and cognitive 
deficits may be associated with the ability of clozapine to increase 
Oxt levels. Further, the specific interactions between the Oxt and 
serotonergic systems may be important to the social and cognitive 
deficits found in patients with schizophrenia. However, additional 
research is necessary to assess how Oxt may affect the symptom 
domains associated with schizophrenia through its interactions 
with other neurotransmitters systems.

Conclusion

Given the importance of the Oxt system to the modulation of 
social behaviors, it is not surprising that across animal models of 
schizophrenia, Oxt has been implicated in the negative symptoms 
and deficits in social cognition. Data suggests that developmental, 
drug induced, and genetic disruptions in the Oxt system lead to 
the symptoms associated with the negative symptoms observed 
in schizophrenic patients. However, further research is needed 
to elucidate the specific mechanisms whereby Oxt exerts these 
effects. Human and animal models also suggest that research 
is needed to determine if Oxt can work as a therapeutic agent 
to improve the social behavior deficits observed in patients 
with schizophrenia. Oxt also appears to be a contributor to 
the cognitive and positive symptom domains of schizophrenia; 
though much more work in this area is needed. While Oxt 
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does not “cause” schizophrenia, its putative impact to all three 
symptom domains suggests that it may be an important player 
to the etiology, and perhaps even an effective treatment, of 
schizophrenia. Using animal models, future research will need 

to focus on elucidating of the mechanisms of Oxt dysregulation 
and the interactions between Oxt and other neurotransmitter 
systems that may contribute to the symptoms associated with 
schizophrenia.
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