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Abstract

Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged
DNA and ability to catalyze translesion synthesis over the damaged DNA. Their
translocation along the DNA template is an important event during processive DNA
synthesis. In this work we present a Brownian ratchet model for this translocation,
where the directed translocation is rectified by the nucleotide binding to the
polymerase. Using the model, different features of the available structures for Dpo4,
Dbh and polymerase ι in binary and ternary forms can be easily explained. Other
dynamic properties of the Y-family polymerases such as the fast translocation event
upon dNTP binding for Dpo4 and the considerable variations of the processivity
among the polymerases can also be well explained by using the model. In addition,
some predicted results of the DNA synthesis rate versus the external force acting on
Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the
external force on the DNA synthesis rate of the Y-family polymerase with that of the
replicative DNA polymerase.

Introduction
DNA polymerases (Pols) are enzymes to add free nucleotide to the 3’ end of the newly-

forming DNA strand. They play an essential role in the maintenance of genome integ-

rity. On the basis of sequence similarity, DNA Pols can be broadly classified into A-,

B-, C-, D-, X- and Y-families [1-3]. In general, most Pols in A-, B-, C-, and D-families

are high-fidelity enzymes primarily involved in faithful DNA replication and in repair

of replication mistake. The X-family Pols are involved in a number of DNA repair pro-

cesses such as base excision repair (BER) and repair of double-strand breaks (DSBs)

[4,5]. The Y-family Pols represent a number of recently identified Pols characterized by

low-fidelity synthesis on undamaged DNA and the ability to bypass DNA lesions which

normally block replication by members of the A-, B-, C-, D-, or X-family Pols [6-12].

The Y-family Pols are ubiquitous and are distributed among the three kingdoms of

life. They include E. coli Pol IV (also known as DinB) [13] and Pol V (also known as

UmuC) [14,15], yeast Pol h [16] and Rev1 [17], human Pols h [18], ι [19,20], � [21]

and Rev1 [22], and archaeal Dbh [23] and Dpo4 [24], etc. Although there is no detect-

able sequence identity with other family Pols, available crystal structures of some Y-

family Pols such as Dbh [25-27], Dpo4 [28], Pol h [29,30], Pol ι [31,32], Pol � [33,34]
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and Rev1 [35] reveal that they retain a catalytic core consisting of fingers, palm and

thumb subdomains found in other family Pols. However, the fingers and thumb subdo-

mains of the Y-family Pols are significantly smaller than the corresponding subdomains

of the other DNA Pols. In addition to the conserved polymerase core, the Y-family

Pols possess also a unique C-terminal domain termed the little finger (LF), wrist or

polymerase-associated domain (PAD). In this paper we will use the acronym, LF, to

denote this domain. The LF domain is the least conserved of the four domains in the

Y-family Pols.

Besides the intensive structural studies of the Y-family Pols, which include the struc-

tures in apo, binary and ternary forms as well as the structures complexed with DNA

substrates containing different lesions [11,25-42], a variety of biochemical assays have

provided insight into the catalytic mechanism, lesion-bypassing property, processivity

and fidelity of the Pols [12,43-55]. Both the biochemical and single-molecule assays for

Dpo4 indicated that the binding of a nucleotide induces a fast DNA translocation

event [55,56], which is consistent with the structural studies showing that, in both of

the binary complexes (pre- and post-insertion), the primer terminus occupies the site

where the next incoming nucleotide will bind [28,41,42]. However, the structural stu-

dies for Dbh showed that, in the pre-insertion binary complex, the templating base

and the primer terminus are already positioned so that space is available for the

incoming nucleotide to bind and form the ternary complex, while in the post-insertion

binary complex, the DNA is located in nearly the same position on the Pol [27]. Simi-

lar to Dbh, two pre-insertion binary complexes of Pol ι showed that space is available

for the incoming nucleotide to bind [32].

Recently, a Brownian ratchet model has been proposed for the translocation of the

high-fidelity replicative DNA Pols, where the translocation depends on the change of

the interaction of the fingers subdomain with the single-stranded DNA (ssDNA) tem-

plate upon a correct incorporation [57,58]. In this work, based on the available struc-

tural, biochemical and single-molecule studies for the Y-family Pol, we modify the

previous Brownian ratchet model for the replicative Pol to be applicable to the Y-

family Pol, where the directed translocation is rectified by the nucleotide binding.

Thus, the model can be called nucleotide binding rectification (NBR) Brownian ratchet

model, which is abbreviated as the NBR model. Using the model, the observed differ-

ent features of the structures for Dpo4, Dbh and Pol ι in binary and ternary forms

[27,28,32,41,42] can be easily explained. Other dynamic properties for the Y-family

Pols such as the considerable variations of the processivity among the Pols and the fast

translocation event upon dNTP binding for Dpo4 can also be explained by using the

model. In addition, some predicted results of the DNA synthesis rate versus the exter-

nal force acting on Dpo4 and Dbh Pols are presented. Moreover, we compare the

effect of the external force on the DNA synthesis rate of the Y-family Pol with that of

the replicative Pol.

Methods
Brownian ratchet translocation model for replicative DNA Pols

Since the NBR model for the Y-family Pol is modified from the previous model for the

replicative Pol [57-59], for convenience of reading, in this section we re-present the

latter model. Briefly, the model was based on the Brownian ratchet mechanism
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(e.g., see [60,61]) and the directed translocation of the Pol along the template resulted

from the potential change induced by dNTP incorporation. The model was built up

based on two arguments.

The first argument is on the interaction between the Pol and DNA substrate. The

interaction can be characterized by two DNA-binding sites on the Pol. (i) The binding

site S1, which is located in the fingers subdomain (see Figure 1a), shows a high affinity

for the unpaired base and/or the sugar-phosphate backbone of the ssDNA template.

The presence of binding site S1 is supported by the experimental data on bacterioph-

age T4 DNA Pol and Klenow fragment, showing that the fingers subdomain has a high

binding affinity for the ssDNA template [62-64]. (ii) The binding site S2, which is

located in the palm and thumb subdomains (see Figure 1a), shows a high affinity for

the double-stranded DNA (dsDNA).

The second argument is on the rotation of the fingers subdomain from open (closed)

to closed (open) conformation upon the binding (release) of dNTP (pyrophosphate,

PPi), which is consistent with the structural studies on bacteriophage T7 DNA Pol

[65], Taq DNA Pol [66] and HIV-1 reverse transcriptase [67]. The closed conformation

of the fingers activates the phosphodiester bond formation (or nucleotide incorpora-

tion), while the open conformation of the fingers opens the polymerase active site for

nucleotide binding. Moreover, the closed fingers could potentially enhance the interac-

tions of binding sites S1 and S2 with the DNA substrate.

Figure 1 Schematic illustrations of the translocation model for replicative DNA Pols (see text for
detailed description). The green circles in (a), (c) and (b’) denote open fingers while the green ellipses in
(b) and (a’) denote closed fingers.
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Based on the two arguments, the translocation model for the replicative DNA Pol is

schematically shown in Figure 1[57-59]. We begin with the binding site S1 of the Pol

binding strongly to the ssDNA at the replication fork, with the binding site S2 binding to

the dsDNA and no nucleotide being in the polymerase active site (Figure 1a). In this

nucleotide-free state, either a matched or a mismatched dNTP can bind to the active

site, although the matched dNTP has a much larger probability to bind. Thus, we con-

sider the two cases separately. (i) First, consider a correct incorporation. The binding of

a matched dNTP induces the fingers to rotate from open to closed conformations (Fig-

ure 1b). The closed conformation activates nucleotide incorporation. After the incor-

poration, the release of PPi induces the fingers to return to the open conformation. At

the same time, the binding site S1 would bind to new nearest unpaired base (i.e., the

next unpaired base) of the ssDNA template, because the previous unpaired base where

the binding site S1 has just bound has disappeared due to base pairing (Figure 1c). Then,

the next nucleotide-incorporation cycle will proceed. (ii) Second, consider an incorrect

incorporation. We still begin with Figure 1a. The binding of a mismatched dNTP also

induces the fingers to rotate from open to closed conformations, activating nucleotide

incorporation (Figure 1a’). After the incorporation, the release of PPi induces the fingers

to return to the open conformation. Now, although the sugar-phosphate backbone of

the mismatched dNTP has been connected to the backbone of the already formed

dsDNA, the mismatched base is not paired with the sterically corresponding base on the

ssDNA template. Thus, the binding site S1 is still binding strongly to the same unpaired

base of the ssDNA template (Figure 1b’). Thus, the polymerization cannot proceed. In

other words, the polymerization becomes stalled. In Figure 1b’, after the mismatched

base is excised, the polymerization will proceed again (Figure 1a).

Using potentials of the two binding sites interacting with the DNA substrate, we

describe the model as follows. First, consider potential, V1(x), of the binding site S1
interacting with ssDNA, where position, x, of the Pol along the template is represented

by that of its active site. Considering that the binding site S1 covers N1 bases on the

ssDNA template, before the incorporation of nucleotide paired with the (n+1)th base

(top of Figure 2a), the form of V1(x) is shown in Figure 2a, where E1 is the binding

affinity for N1 bases of the ssDNA template while E’1 is the binding affinity for (N1-1)

bases. Note that the binding affinity E’1 that corresponds to binding (N1-1) bases is

smaller than E1 that corresponds to binding N1 bases. Moreover, it is implicated in the

potential that the primer 3’ terminus, due to the structural restriction, is not allowed

to move forwards relative to the Pol when its active site is located at the primer 3’ ter-

minus. Similarly, considering that the binding site S2 covers N2 base pairs of dsDNA,

before the incorporation of nucleotide paired with the (n+1)th base (top of Figure 2a),

the potential, V2(x), of binding site S2 interacting with dsDNA is shown in Figure 2a.

From Figure 2a, it is seen that the deepest well of the total potential, V(x) = V1(x) +

V2(x), of the Pol interacting with the DNA substrate is located at position of the (n+1)

th base before the incorporation of the nucleotide paired with the (n+1)th base. Thus,

the Pol is now located at position of the (n+1)th base. After the incorporation (top of

Figure 2b), the forms of V1(x) and V2(x) are shown in Figure 2b. Now, the deepest well

of the total potential, V(x) = V1(x) + V2(x), is located at position of the (n+2)th base.

Thus, the Pol would move from a shallower potential well located at position of the (n

+1)th base to the deepest well located at position of the (n+2)th base.
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However, after an incorrect incorporation of the nucleotide opposite to the (n+1)th

base (see top of Figure 2b’), the forms of V1(x) and V2(x) are shown in Figure 2b’,

which are the same as those before the incorporation. This is because, after the incor-

rect incorporation, the (n+1)th base has not formed a base pair with the newly incor-

porated primer base and, thus, the Pol is still located at the position of the (n+1)th

base, i.e., the position of the deepest well.

In this model, the translocation step occurs following the incorporation of a correct

nucleotide. This is supported by the comparison of the binary (Pol-DNA) with ternary

(Pol-DNA-dNTP) structures for the replicative Pol (see, e.g., [66]). Upon an incorrect

incorporation, the Pol becomes stalled, which is also consistent with the experimental

data [68]. For a lesion such as an abasic lesion having a weak effect on distortion of

the DNA structure so that the damaged base still has a high affinity for the binding

site S1, an incorporated base opposite to the lesion, which is equivalent to a mis-

matched base, also induces the stall of the polymerization. This is consistent with the

structural observation [69]. During the stalled period, the mismatched base would be

excised. Then another base opposite to the lesion site would be incorporated. Thus,

the Pol cannot perform the translesion synthesis. For lesions that severely distort the

DNA structure causing damaged DNA substrate not to be tolerated by the replicative

Pol, e.g., with the template base being flipped out of the active site, this would preclude

closing of the fingers subdomain upon nucleotide binding, as observed by Li et al. [70]

for bacteriophage T7 DNA Pol complexed with a DNA template containing a cis-syn

Figure 2 Illustrations of the translocation model for replicative DNA Pols by using interaction
potentials of binding sites S1 and S2 with ssDNA and dsDNA segments, respectively, of a DNA
substrate. (a) Top diagram shows the DNA substrate before the incorporation of the nucleotide paired
with the (n+1)th base on the template. Potential V1(x) describes the interaction of the binding sites S1 with
the ssDNA segment, while potential V2(x) describes the interaction of the binding sites S2 with the dsDNA
segment. (b) The DNA substrate and potentials V1(x) and V2(x) after the incorporation of the nucleotide
paired with the (n+1)th base on the template. (a’) The DNA substrate and the potentials V1(x) and V2(x)
before the incorporation of an incorrect nucleotide opposite to the (n+1)th base on the template, which is
the same as (a). (b’) The DNA substrate and potentials V1(x) and V2(x) after the incorporation of an incorrect
nucleotide opposite to the (n+1)th base on the template.
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cyclobutane pyrimidine dimer. Without the activation by the closed conformation, the

nucleotide incorporation cannot proceed and, thus, the Pol cannot also perform the

translesion synthesis.

Nucleotide binding rectification Brownian ratchet model for Y-family DNA Pols

The NBR model for the Y-family DNA Pol is modified from the above model for the

replicative Pol. The model is also constructed based on two arguments, which are pre-

sented in the following two sections.

Interaction of Pol with DNA substrate

As in the replicative Pol (see above), the interaction of the Y-family Pol with the DNA

substrate can also be characterized by two DNA-binding sites on the Pol. The binding

site S1 is composed of residues located in the fingers subdomain (see Figure 3a or 4a).

However, in contrast to the replicative Pol where the binding site S1 has a high affinity

for the unpaired bases and/or the sugar-phosphate backbone of the ssDNA template,

Figure 3 Interaction potentials between a Y-family DNA Pol such as Dpo4, in which the active site
is very close along the x direction to the nearest residue of the binding site S2 located in the LF
domain, and a DNA substrate shown in top of (b). (a) Schematic diagram of the Pol complexed with
the DNA substrate. (b) V1(x) represents the potential of the binding site S1 interacting with the ssDNA
segment, while V2(x) represents the potential of the binding site S2 interacting with the dsDNA segment.
(c) Schematic diagrams of the position of the Pol along the DNA substrate, with blue dots representing the
active site.
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the binding site S1 in the Y-family Pol has a very low or even no affinity, which is con-

sistent with the available structural studies [27,28,32,41,42]. The binding site S2, which

is composed of residues located in the thumb domain and mainly in the LF domain

(see Figure 3a or 4a), has a high affinity for dsDNA, which is also consistent with the

available structural studies [27,28,32,41,42].

As in Figure 2, the potential V1(x) of the binding site S1 interacting with the ssDNA

is shown in Figures 3b and 4b, with E1 denoting the binding affinity for N1 bases of

the ssDNA template while E’1 the binding affinity for (N1-1) bases. However, E’1 and

E1 have very small or nearly zero values.

Then, consider the potential V2(x) of the binding site S2 interacting with the dsDNA.

Since the binding site S2 in the Y-family Pols is composed of residues located in the

thumb domain and mainly in the LF domain, the form of potential V2(x) depends on

the distance, L, from the active site to the nearest residue (red dots in Figures 3a and

4a) of the binding site S2 located in the LF domain along the x direction.

Figure 4 Interaction potentials between a Y-family DNA Pol such as Dbh, in which the active site
is, along the x direction, distanced away from (or not close to) the nearest residue of the binding
site S2 located in the LF domain, and a DNA substrate shown in top of (b). (a) Schematic diagram of
the Pol complexed with the DNA substrate. (b) V1(x) represents the potential of the binding site S1
interacting with the ssDNA segment, while V2(x) represents the potential of the binding site S2 interacting
with the dsDNA segment. (c) Schematic diagrams of the position of the Pol along the DNA substrate, with
blue dots representing the active site.
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(i) For the case that the active site is very close along the x direction to the nearest

residue of the binding site S2 located in the LF domain (see Figure 3a), as seen from

the structure of Dpo4 [28,41,42], the interaction potential V2(x) can be simply shown

in Figure 3b, where L = 0. If binding site S2 is considered to cover N2 base pairs of the

dsDNA, E2 is the binding affinity for the sugar-phosphate backbones connecting N2

base pairs on the dsDNA while E’2 is the binding affinity for the backbones connecting

only (N2-1) base pairs. Moreover, in the potential it is implicated that the primer 3’

terminus, due to the structural restriction (see, e.g., [27,28,32,41,42]), is not allowed to

move forwards relative to the Pol when its active site is located at the primer 3’ termi-

nus. In addition, from the Pol structures complexed with the DNA substrate, it is

inferred that that the interaction between the binding site S2 and the dsDNA is via the

hydrogen-bonding, van der Waals and mainly electrostatic forces. On the other hand,

the interaction distance of the electrostatic force that is approximately equal to the

Debye length (~ 1 nm) in solution is larger than the distance p = 0.34 nm between

two successive base pairs. Thus, the value at maxima of V2(x) increases as the binding

site S2 deviates away from the dsDNA segment along the x direction.

(ii) For the case that the active site is, along the x direction, distanced away from (or

not close to) the nearest residue of the binding site S2 located in the LF domain

(Figure 4a), as evidently seen from the structure of Dbh [27], the interaction potential

V2(x) can be simply shown in Figure 4b, where we take L = 1 bp. From available struc-

tures of the binary and ternary complex for Pol ι [31,32], it is also noted that, if the

active site is positioned opposite to the first unpaired base on the template, the first

unpaired base is distanced by L = 1 bp away from the nearest residue of the binding

site S2 located in the LF domain. Thus, the interaction potential V2(x) for Pol ι also

has the form of Figure 4b rather than that of Figure 3b. Similarly, from the available

structure of the ternary complex for Pol h [30], we infer that the interaction potential

V2(x) for Pol h also has the form of Figure 4b.

From Figure 3b it is seen that, when the active site is positioned at the nth base pair

(top of Figure 3c), the affinity of the Pol for the DNA substrate is En = E’1 + E2; while

when the active site is positioned at the (n+1)th base (bottom of Figure 3c), the affinity

is En+1 = E1 + E’2. Since E’1 and E1 are much smaller than E’2 and E2 and E2 >E’2, it is

expected that En >En+1. Similarly, from Figure 4b it is seen that, when the active site is

positioned at the nth base pair (top of Figure 4c), the affinity of the Pol for the DNA

substrate is En = E’1 + E2; while when the active site is positioned at the (n+1)th base

(bottom of Figure 4c), the affinity is En+1 = E1 + E2. Since E’1 and E1 are much smaller

than E2, it is expected that En+1 is slightly larger than (or nearly equal to) En. More-

over, from both Figure 3 and 4 it is noted that, when the active site is positioned at

the (n+1)th base, the jumping of the Pol from the (n+1)th site to the (n+2)th site is

required to overcome a larger energy barrier than the backward jumping to the nth

site. For approximation, we do not consider the jumping to the (n+2)th site in this

work.

The binding of dNTP induces a slight conformational change, enhancing the interaction of

the Pol with DNA substrate

As evidenced from the FRET experimental data [56], it is argued that the dNTP bind-

ing involves (at least) two substeps, E · DNA + dNTP ® E · DNA · dNTP ® E* ·

DNA · dNTP, where E represents the DNA Pol. The transition from the unactivated E
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· DNA · dNTP ternary complex to activated E* · DNA · dNTP ternary complex induces

a slight conformational change of the Pol, enhancing its interactions with both the

DNA substrate and dNTP. Similarly, the PPi releasing also involves (at least) two sub-

steps, E* · DNA · PPi ® E · DNA · PPi ® E · DNA + PPi, where the transition from

the activated E* · DNA · PPi ternary complex to unactivated E · DNA · PPi ternary

complex results in a reverse slight conformational change of the Pol, reducing its inter-

actions with both the DNA substrate and PPi.

Since in the activated E* · DNA · dNTP (or E* · DNA · PPi) complex the Pol has a

stronger interaction with DNA substrate and nucleotide than in the unactivated E ·

DNA · dNTP (E · DNA · PPi) complex, for simplicity of analysis, it is considered that

in the activated state the Pol is unable to move relative to the DNA substrate and the

dNTP or PPi bound to the active site has a negligible probability to release.

Model for Pol translocation

Using potentials V1(x) and V2(x) (Figures 3 and 4), the NBR model for the Y-family Pol

translocating along DNA substrate is schematically shown in Figure 5.

We begin with the Pol positioned at the nth site (Figure 5a), just after the incorpora-

tion of a nucleotide. In Figure 5a, the active site is occupied by the primer 3’-terminus,

which sterically prevents a dNTP from binding to the active site. Due to the thermal

noise, the Pol in this nucleotide-free state can jump from the nth site to the (n+1)th

site (from Figure 5a to 5b) and vice verse (from Figure 5b to 5a). For the case that the

active site is very close along the x direction to the nearest residue of the binding site

S2 located in the LF domain (Figure 3a), En >En+1 (see above). Thus, the Pol in the

Figure 5 Schematic illustrations of the nucleotide binding rectification Brownian ratchet model for
the Y-family DNA Pol translocating along DNA substrate (see text for detailed description).
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binary E · DNA state stays most of the time at the nth site (Figure 5a), as will be

shown in the Results, which is consistent with the availably resolved binary E · DNA

structure for Dpo4 [28,41,42]. For the case that the active site is, along the x direction,

distanced away from (or not close to) the nearest residue of the binding site S2 located

in the LF domain (Figure 4a), En+1 is slightly larger than (or nearly equal to) En (see

above). Thus, the Pol in the binary E · DNA state shows slightly larger (or nearly

equal) probability to stay at the (n+1)th site (Figure 5b) than (or to) that at the nth site

(Figure 5a), implying that the binary E · DNA structure for this case would be observed

to be either at the (n+1)th site or at the nth site. This is consistent with the observa-

tions that the pre-insertion binary E · DNA structures for Dbh [27] and Pol ι [32]

showed that their active sites are at the (n+1)th site, while the post-insertion binary E ·

DNA structure for Dbh [27] showed that the active site is at the nth site.

When the Pol jumps to the (n+1)th site, since the active site is nucleotide free, a

dNTP becomes able to bind to it, as shown in Figure 5b that is equivalent to the state

shown at bottom of Figure 3c or Figure 4c. Consider that the dNTP binds to the active

site during the period when the Pol stays at the (n+1)th site (Figure 5c). Due to the

structural restriction (see, e.g., [27,28,32,41,42]), the occupation of the active site by the

dNTP sterically prevents the Pol from moving backwards to the nth site unless the

dNTP is dissociated, which is consistent with the available structures showing that the

active site of the Pols such as Dbh, Dpo4, Pol ι, Pol h, Pol � and Rev1 in ternary forms

is at the (n+1)th site [11,27,28,30,32,34,35,41,42]. Then, the transition from the unacti-

vated ternary complex E · DNA dNTP to the activated E* · DNA dNTP complex

enhances the interactions of the Pol with the DNA substrate and with the dNTP, thus

preventing both the DNA substrate and the dNTP from dissociating from the Pol.

After the phosphodiester bond formation and then the release of PPi, except that the

dsDNA segment is elongated by one base pair and the Pol has moved forwards by one

base pair, the Pol-DNA complex returns to the state shown in Figure 5a. Correspond-

ingly, the potentials V1(x) and V2(x) in Figure 3b and in Figure 4b are shifted by one

base pair along the x direction. Then, the next round of the nucleotide incorporation

would proceed continuously.

Equations for Pol motion

Consider the movement of Pol relative to the DNA substrate in two dimensions. One

is along the DNA, which is represented by the x axis, as shown in Figures 3, 4, and 5.

The other one is along the r axis that is perpendicular to the x axis. Then, the move-

ment equations can be written in the following Langevin forms

�
dx

dt
= −∂U(x, r)

∂x
+ ξx(t), (1a)

�
dr

dt
= −∂U(x, r)

∂r
+ ξr(t). (1b)

Here the potential U(x,r) can be written as U(x,r) = V(x)[2exp (-r/rd) - exp (-2r/rd)],

with V(x) = V1(x) + V2(x) + V0, where V1(x) and V2(x) have the forms shown in

Figures 3b and 4b, and V0 ≡-E0 < 0 results from the fact that the electrostatic interac-

tion distance of the Pol with the DNA in solution is larger than the distance between

two successive base pairs. The magnitude of V(x) is defined as follows: its minimum
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value at the nth site is - (En + E0), while at the (n+1)th site the value is - (En+1 + E0).

The term [2 exp (-r/rd) - exp (-2r/rd)], which has the Morse form, denotes the poten-

tial change along the r direction, with 2rd = 1 nm (the Debye length) characterizing

the interaction distance. The parameter Γ is the frictional drag coefficient on the Pol

and ξi (t) (i = x, r) is the fluctuating Langevin force with 〈ξi (t)〉 = 0 and 〈ξi (t)ξj (t’)〉 =

2kB TΓδij δ(t - t’). The drag coefficient is calculated by Γ = 6πhR, where h is the visc-

osity of the aqueous medium and the Pol is approximated as a sphere with radius R =

5 nm. As the previous experiment showed that the viscosity of the aqueous cytoplasm

does not differ from water [71], we take the viscosity of aqueous to be the same as

that of water in the calculation, i.e., h = 0.01 g cm-1 s-1, which gives Γ = 9.4 × 10-11 kg

s-1. Moreover, the effect of the viscosity variation on the results will be discussed.

Results
Processivity of the Y-family Pol

To study the processivity of the Y-family Pol, we determine the dissociation probability

of the Pol from the DNA substrate during one cycle of nucleotide incorporation. To

this end, we calculate the mean dissociation time, Td, of the Pol from the DNA

substrate.

First, we consider the motion with the Pol fixed at one potential well (e.g., the poten-

tial well at the nth site) along the x direction. Then, the potential U(x,r) in Eq. (1b)

becomes: W(r) = -Er [2 exp (-r/rd) - exp (-2r/rd)], where the depth of the potential well

is Er = En + E0. If it is considered that the Pol is dissociated from its DNA substrate

when it moves away from the DNA substrate by a distance of r = L, the mean dissocia-

tion time Td, i.e., the mean time for the Pol to move from r = 0 to r = L, can be

obtained by [72]

Td =
1
D

L∫
0

exp
{

W(y)
�D

}
dy

y∫
0

exp
{
−W(z)

�D

}
dz, (2)

where D = KBT/Γ. From Eq. (2) we have

Td =
�

kBT

L∫
0

exp
{

Er

kBT

[
exp

(
−2y

rd

)
− 2 exp

(
− y

rd

)]}
dy

×
y∫

0

exp
{
− Er

kBT

[
exp

(
−2z

rd

)
− 2 exp

(
− z

rd

)]}
dz,

(3)

where it is seen that Td is proportional to the viscosity h.
The dissociation probability per unit time, Pd, of the Pol from the DNA substrate is

calculated by

Pd =
1
Td

. (4)

It is noted from Eqs. (3) and (4) that Pd is inversely proportional to the viscosity h.
Based on the model, only during the time period, Tp1, after transition to the unacti-

vated E · DNA PPi ternary complex but before the dNTP binding and during the time

period, Tp2, after the dNTP binding but before transition to the activated E* · DNA

Xie Theoretical Biology and Medical Modelling 2011, 8:22
http://www.tbiomed.com/content/8/1/22

Page 11 of 24



dNTP ternary complex, can the Pol be dissociated from the DNA substrate. During the

time period Tp1, the Pol can jump between the well at the nth site and the well at the

(n+1)th site along the x direction. As our results show (see additional file 1), the disso-

ciation probability Pd1 during this time period Tp1 is approximately only dependent on

the value of P(m)
d

(m = n or n + 1), with Pd1 ≈ C · Tp1P(m)
d

, where C = 1 ~ 2 and P(m)
d

represents Pd given by Eqs. (3) and (4) but with Er = E(m)
r = Em + E0 (m = n if En >En+1,

m = n + 1 if En <En+1). During the time period Tp2, the Pol is positioned at the (n+1)

th site and the dissociation probability Pd2 is calculated by Pd2 = Tp2P(n+1)
d

, where P(n+1)
d

represents Pd given by Eqs. (3) and (4) but with E(n+1)
r = En+1 + E0.

For the Pol such as Dpo4, in which the active site is very close along the x direction

to the nearest residue of the binding site S2 located in the LF domain, since En >En+1,

it is noted from Eqs. (3) and (4) that P(n)
d << P(n+1)

d
. Moreover, it is known that Tp1

<Tp2 at saturating concentrations of dNTP for Dpo4 [56]. Thus, we have

Pd1 ≈ C · Tp1P(n)
d << Pd2 = Tp2P(n+1)

d
. The mean number of incorporated nucleotides

for one binding event of the Pol with the DNA substrate, which characterizes the poly-

merization processivity, is calculated by

Np =
1

Pd1 + Pd2
≈ 1

Pd2
=

1

Tp2P(n+1)
d

. (5)

For the Pol such as Dbh, Pol ι and Pol h, in which the active site is, along the x

direction, distanced away from (or not close to) the nearest residue of the binding site

S2 located in the LF domain, since En+1 ≥ En, we have Pd1 ≈ C · Tp1P(n+1)
d

. Thus, the

mean number of incorporated nucleotides for one binding event is calculated by

Np =
1

Pd1 + Pd2
≈ 1(

CTp1 + Tp2
)

P(n+1)
d

. (6)

From Eqs. (5) and (6), it is seen that, whether En >En+1 or En ≤ En+1, the polymeriza-

tion processivity is mainly determined by the binding affinity, En+1, of the Pol at the (n

+1)th site along the DNA substrate. Moreover, it is noted that Np is proportional to

the viscosity h.
Using Eq. (3), the calculated results of the mean dissociation time Td versus Er are

shown in Figure 6a, where we take L = 5 nm that is larger than the interaction dis-

tance 2rd = 1 nm. It is seen that Td increases significantly with the increase of Er.

With results of Figure 6a and using Eqs. (4) and (5), the calculated results of Np versus

Er are shown in Figure 6b, where we take Tp2 = 0.065 s that is consistent with the

experimental data of transition rate of 15.3 s-1 for Dpo4 [56]. It is seen that, when Np

= 10 ~ 100 that is consistent with the experimental data [48], Er ≈ 18.5kBT ~ 20.8kBT.

Now, from this value of Er = E(n+1)
r = En+1 + E0, we estimate values of En+1 and En. Tak-

ing a conservative value of E0 = Er/5 = 3.9kBT, we estimate that the value of En+1 is at

most about 17kBT. For reasonable value of En-En+1 = 3kBT ~ 5kBT, we estimate that

the value of En is at most about 20kBT ~ 22kBT.

In addition, from Figure 6b it is interesting to see that, if Er is decreased from

20.8kBT to a value below 16kBT, Np is decreased from about 100 to a value smaller

than 1. This implies that only an about 5kBT decrease in the binding affinity can
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induce the processive polymerization of a hundred nucleotides to a distributive poly-

merization. From this result, it is also concluded that the considerable variations of the

processivity among Y-family Pols result mainly from slight changes in their binding

affinities for the DNA substrate. Moreover, since the LF domain is the least conserved

of the four domains in the Y-family Pols, the slight differences in the binding affinity

of different Pols are mainly due to different interaction strengths of the LF domain

with the DNA. For example, comparison of the LF structure of Dpo4 with that of Dbh

showed that the DNA-contacting surface in LF domain of Dpo4 is slightly more posi-

tively charged than Dbh, and, correspondingly, Dpo4 is much more processive than

Dbh [48]. Since the LF domain has a large binding affinity for the DNA, it is expected

from Figure 6a that the deletion of the LF domain will significantly reduce the associa-

tion time of the Pol with the DNA, thus resulting in much less active than the full-

length Pol. This is also consistent with the experimental data [28].

Moving time of the Y-family Pol

Now, we study the moving time from the nth site to the (n+1)th site and vice verse

during the time period after the incorporation of the nth base but before the dNTP

binding. To this end, we can consider the motion only along the x direction and the

potential U(x,r) in Eq. (1a) becomes V(x). Thus, the mean moving time, Tn®(n+1), i.e.,

the mean first-passage time for the Pol to move from the nth site at position x = 0 to

Figure 6 Results for processivity of the Y-family Pol. (a) Mean dissociation time Td of the Pol from the
DNA substrate versus the binding affinity Er between them. (b) Mean number of processive incorporation
cycles Np versus Er.
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the next (n+1)th site at position x = p = 2l = 0.34 nm can be approximately calculated

by Tn→(n+1) =
(
1/D

) 2l∫
0

exp
[
V(y)

/
(�D)

]
dy ×

y∫
0

exp
[−V(z)

/
(�D)

]
dz, which is similar to Eq. (2).

From the integral, we have

Tn→(n+1) =
(l�)2D

En

[
exp

(
En

kBT

)
− 1

]
− l2�

En
+

l2�

En+1

+
(l�)

2D
EnEn+1

[
exp

(
En

kBT

)
− exp

(
En − En+1

kBT

)]

×
[

1 − exp
(

− En

kBT

)(
1 +

En

En+1

)]
.

(7)

The mean moving time, T(n+1)® n, from the (n+1)th site to the nth site also has the

form of Eq. (7) but with En and En+1 being exchanged with each other. From Eq. (7)

and D = KBT/Γ, it is noted that the mean moving time is proportional to the viscosity

h.
Using Eq. (7), the calculated results of the mean moving time Tn®(n+1) (T(n+1)® n)

versus En (En+1) for different values of En+1 (En) are shown in Figure 7. As expected,

Tn®(n+1) increases significantly with the increase of En but is insensitive to the variation

of En+1, while T(n+1)® n increases significantly with the increase of En+1 but is insensi-

tive to the variation of En. It is seen from Figure 7 that, even for the value of En =

20kBT ~ 22kBT for Dpo4 (see the above section), the mean moving time Tn®(n+1) is

only about 2 ~ 10 ms. For the value of En+1 = 17kBT for Dpo4 (see the above section),

T(n+1)® n is only about 0.1 ms. These results indicated that, after the incorporation of

the nth base and before the dNTP binding, Dpo4 would jump between the nth site

and the (n+1)th site with a high frequency. Thus, within the time resolution used in

the FRET experiment [56], this highly frequent jumping between the two positions

could not be detected. Moreover, as will be shown in the following section, Dpo4

would stay most probably at the nth site (Figure 5a). Thus, the resolved structure is

Figure 7 Results of the mean time Tn®(n+1) (T(n+1)®n) for the Y-family Pol to move from the nth ((n
+1)th) site to the (n+1)th (nth) site versus En (En+1) for different values of En+1 (En) (indicated in the
figure) before dNTP binding to the active site. Note that the four curves of Tn®(n+1) (T(n+1)®n) versus En
(En+1) for different values of En+1 (En) are nearly coincident.

Xie Theoretical Biology and Medical Modelling 2011, 8:22
http://www.tbiomed.com/content/8/1/22

Page 14 of 24



most probably in the state with Dpo4 active site being located at the nth site and the

FRET data shows a rapid translocation event for Dpo4 relative to the DNA substrate

upon the adding of dNTP, which is consistent with the experimental data [41,42,56].

Effect of external force on DNA-synthesis rate of the Y-family Pol

In the NBR model for the Y-family Pol, after the incorporation of the nth base and

before the dNTP binding, the active site jumps between the nth site and the (n+1)th

site. As noted from Eq. (7), for En > > 1 and En+1 > > 1, the ratio of the time, Tn, for

the active site to position at the nth site over the time, Tn+1, to position at the (n+1)th

site approximately has the form

Tn

Tn+1
=

Tn→(n+1)

T(n+1)→n
≈ exp

(
En − En+1

kBT

)
. (8)

For Dpo4, since En >En+1, it is thus noted from Eq. (8) that the active site has a

much larger probability to stay at the nth site than to stay at the (n+1)th site. For the

value of En-En+1 = 3kBT ~ 5kBT, Tn/Tn+1 ≈ 20 ~ 100. For Dbh, Pol ι and Pol h, En+1 is
slightly larger than (or nearly equal to) En. From Eq. (8) it is noted that the Pols show

slightly larger (or nearly equal) probability to stay at the (n+1)th site than (or to) that

at the nth site.

Consider an external force, F, acting on the Pol bound to a fixed DNA substrate,

where F is defined as positive when it points towards the -x direction. The experiment

can be realized by using the optical trapping method, with a micro-bead linked to the

residues on the palm subdomain or LF domain of the Pol. The linked residues on the

Pol should be far away from the active site, thus the external force having no effect on

the polymerase activity of the active site. Under the external force F, the depth of

potential well at the nth site changes from En to En + Fp/2, while the depth at the (n

+1)th site changes from En+1 to En+1-Fp/2. Thus, Eq. (8) becomes

Tn

Tn+1
≈ exp

(
En − En+1

kBT

)
exp

(
Fp

kBT

)
. (9)

Based on the model, only when the active site is positioned at the (n+1)th site can

the dNTP bind to the active site, i.e., only during the time period Tn+1 can the dNTP

bind to the active site. Thus, based on Eq. (9), the dNTP-binding rate, kb(F), versus the

external force F has the form

kb(F) = k(0)
b

exp
(

En − En+1

kBT

)
+ 1

exp
(

En − En+1

kBT

)
exp

(
Fp

kBT

)
+ 1

. (10)

where k(0)
b

denotes the dNTP-binding rate under no external force. From Eq. (10),

the DNA-synthesis rate, k, is calculated by

k = kc
[dNTP]

[dNTP] + K(0)
m

[
exp

(
En − En+1

kBT

)
exp

(
Fp

kBT

)
+ 1

]
[

exp
(

En − En+1

kBT

)
+ 1

]
.

(11)
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where kc is the dNTP-incorporation rate at saturating dNTP concentration and

K(0)
m = kc

/
k(0)

b . It is noted from Eqs. (8) - (11) that the DNA-synthesis rate k is inde-

pendent of the viscosity h.
Now, we use Eq. (11) to make some predicted results. From the experimental data,

we have kc = 2.3 × 10-2 s-1 and K(0)
m = 0.4 mM for Dbh [54]. As discussed before, we

take En+1 ≈ En for Dbh. Using Eq. (11), we calculate the DNA-synthesis rate k versus F

for different values of [dNTP], with the results shown in Figure 8a, and 8k versus

[dNTP] for different values of F, with the results shown in Figure 8b. For Dpo4, kc = 9

s-1 and K(0)
m = 230 μM [44]. Moreover, we take En-En+1 = 3kBT for Dpo4. The results

of k versus F for different values of [dNTP] and k versus [dNTP] for different values of

F are shown in Figures 9a and 9b, respectively. By comparing Figure 8a with Figure 9a,

it is seen that, in the range of F = -20 ~ 20 pN and [dNTP] ≤ 1 mM, the external

force F has more significant effect on the DNA-synthesis rate k of Dpo4 than on that

of Dbh.

Comparison of the effect of external force on dNTP-binding rate of the Y-family Pol with

that of the replicative Pol

Based on the model for the replicative Pol (Figure 2) and the modified model for the

Y-family Pol (Figures 3, 4, and 5), the dNTP-binding rate kb(F) versus the external

Figure 8 Predicted results of DNA-synthesis rate k(F) under the effect of the external force F for
Dbh. (a) DNA-synthesis rate k(F) versus F for different values of [dNTP]. (b) DNA-synthesis rate k(F) versus
[dNTP] for different values of F, with curves from upper to lower corresponding to F = 1 pN, 10 pN, 20 pN
and 30 pN, respectively.

Xie Theoretical Biology and Medical Modelling 2011, 8:22
http://www.tbiomed.com/content/8/1/22

Page 16 of 24



force F satisfies Eq. (10), where En-En+1 = E’1-E1 < 0 for the replicative Pol (see Figure

2) while En-En+1 ≥ 0 for the Y-family Pol. For the replicative Pol, E’1-E1 represents the

binding affinity of binding site S1 for one base of the ssDNA template (or the binding

affinity of the binding site S1 residue that is closest to the palm subdomain for

ssDNA), and it is estimated that E’1-E1 = -5kBT ~ -3kBT. As mentioned before, for

Dbh, Pol ι and Pol h, En-En+1 ≈ 0, while for Dpo4, En-En+1 = 3kBT ~5kBT.

Using Eq. (10), the calculated results of ratio R = kb(F)
/

k(0)
b versus the external

backward force F acting on the Pol for different values of En-En+1 are shown in

Figure 10. It is seen that, in the range of F < 20 pN, with the increase of F the ratio R

only decreases slightly for the replicative Pol whereas the ratio R decreases greatly for

the Y-family Pol. In other words, the external backward force has much more effect on

the the dNTP-binding rate for the Y-family Pol than for the replicative Pol.

The biological implication of these different characteristics between the Y-family and

replicative Pols might be imagined as follows. At the replication fork, the replicative

Pol generally feels a backward force by the front DNA helicase [73]. Thus, the slight

effect of the backward force on the DNA synthesis rate by the replicative Pols is pur-

posed to have little impact on the DNA replication. However, when the replicative Pol

becomes stall at the lesion site, since the front helicase is still unwinding the dsDNA,

the Pol would not feel a backward force now. Thus, when the relicative Pol is replaced

Figure 9 Predicted results of DNA-synthesis rate k(F) under the effect of the external force F for
Dpo4. (a) DNA-synthesis rate k(F) versus F for different values of [dNTP]. (b) DNA-synthesis rate k(F) versus
[dNTP] for different values of F, with curves from upper to lower corresponding to F = 1 pN, 10 pN, 20 pN
and 30 pN, respectively.
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by the Y-family Pol, the latter would also not feel a backward force at the lesion site.

After bypass the lesion site, the Y-family Pol would continue to make processive DNA

synthesis and, if the Y-family Pol catches up with the helicase, the backward force

induced by the front helicase would greatly reduce the DNA synthesis rate, thus

enhancing the probability of the Y-family Pol to dissociate from the DNA substrate or

the probability of the Y-family Pol to be replaced by the replicative Pol.

The Y-family Pol can easily bypass a mismatched base pair or a lesion site

In this section, we will show how the Pol that uses the NBR mechanism for transloca-

tion can easily bypass a mismatched base pair or a lesion site. As an example, we will

use Dpo4 to illustrate this bypass ability, in which the active site is very close along the

x direction to the nearest residue of the binding site S2 located in the LF domain.

As shown in Figure 11, consider that a mismatched base is incorporated at the nth

site. Then, the interaction potential V1(x) of the binding site S1 with the ssDNA tem-

plate and the potential V2(x) of the binding site S2 with the dsDNA segment are

shown in Figure 11a. Here, E1 is the binding affinity of the binding site S1 for N1 bases

of the ssDNA template that the binding site S1 can cover, E’2 is the binding affinity of

the binding site S2 for the backbones connecting (N1-1) base pairs on the dsDNA, and

E’’2 is the binding affinity of the binding site S2 for the backbones connecting (N1-2)

base pairs. Thus, when the active site is positioned at the nth site (top of Figure 11b),

the affinity of the Pol for the DNA substrate is En = E1 + E’2; while when the active

site is positioned at the (n+1)th site (bottom of Figure 11b), the affinity is En+1 = E1 +

E’’2. Note that the binding affinity E’’2 that corresponds to binding (N1-2) base pairs is

smaller than E’2 that corresponds to binding (N1-1) base pairs.

Now we compare the case of a matched incorporation at the nth site (Figure 3) with

the case of a mismatched incorporation (Figure 11). Since E’1 and E1 are much smaller

than E’2 and E2, we have E(match)
n > E(mismatch)

n , where E(match)
n and E(mismatch)

n represent En

Figure 10 Predicted results of ratio, R=kb(F)/k(0)
b

, versus the external backward force F acting on
the Pol for different values of En-En+1, where kb(F) is the dNTP-binding rate under effect of the
external force F and k(0)

b
is the dNTP-binding rate under no external force. Curves from upper to

lower are for En-En+1 = -5kBT, -4kBT, -3kBT, 0, 3kBT and 5kBT, where En-En+1 = -5kBT, -4kBT, -3kBT correspond to
replicative Pols, En-En+1 = 0 corresponds to Dbh, Pol ι and Pol h and En-En+1 = 3kBT and 5kBT correspond to
Dpo4.
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for cases of matched incorporation and mismatched incorporation, respectively. Thus,

from the results shown in Figure 7, it is seen that the mean moving time Tn®(n+1) for

the case of mismatched incorporation is shorter than the case of matched incorpora-

tion. Moreover, it is noted that the value of E(mismatch)
n − E(mismatch)

n+1 = E′
2 − E′′

2 is close to

that of E(match)
n − E(match)

n+1 ≈ E2 − E′
2
, since both value of E’2-E’’2 and that of E2-E’2 corre-

spond to the affinity of the binding site S2 for the backbones connecting one base pair

on the dsDNA. Thus, from Eq. (8), the ratio (Tn/Tn+1)
(mismatch) is close to (Tn/Tn+1)

(match). As a result, we conclude that the Pol that uses the NBR mechanism for translo-

cation has nearly the same rate to bypass a mismatched base pair as that to bypass a

matched base pair. Similarly, for the case of an abasic lesion located at the nth site, the

interaction potential V2(x) is the same as shown Figure 11a. Thus, as in the case of a

mismatched base, the Pol that uses the NBR mechanism for translocation can also

easily bypass the lesion site.

However, since E(mismatch)
n+1 ≈ E′′

2 < E(match)
n+1 ≈ E′

2, it is noted from Figure 6a that the

dissociation probability near the lesion site is larger than that in the absence of the

lesion or mismatched base, which is in agreement with the experimental data for Dpo4

[52]. On the hand, it is seen from Figure 6b that, when there is no lesion or no mis-

matched base, for Np = 10 that corresponds to the case of Dbh [48]Er = 18.5kBT, while

for Np = 100 that corresponds to the case of Dpo4 [48]Er = 20.8kBT. From the value of

E1-E’1 = 3kBT ~ 5kBT (see above), we infer that E’1-E’’1 ≈ 3kBT ~ 5kBT. Thus, at the

lesion site, for the case of Dbh with Er = 13.5kBT ~ 15.5kBT, we have Np ≈ 0.08 ~ 0.6

from Figure 6b; for the case of Dpo4 with Er = 15.8kBT ~ 17.8kBT, we have Np ≈ 0.8 ~

Figure 11 Interaction potentials between a Y-family DNA Pol and a DNA substrate with a
mismatched base pair at the nth site shown in top of (a). For clarity, the mismatched base is drawn in
pink. (a) V1(x) represents the potential of the binding site S1 interacting with the DNA substrate, while V2(x)
represents the potential of the binding site S2 interacting with the DNA substrate. (b) Schematic diagrams
of the position of the Pol along the DNA substrate, with blue dots representing the active site.
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5.2 from Figure 6b. This implies that, at the lesion site, Dbh is prone to dissociate from

the DNA substrate while Dpo4 is not easily to dissociate. In other words, Dpo4 can

bypass the lesion site, yet Dbh does so with a much lower efficiency. These are consis-

tent with the experimental data [24,48,50,52]. Moreover, as the different lesion-bypass-

ing abilities of the two Pols, Dpo4 and Dbh, are due to the different binding affinities,

which in turn result mainly from the different interaction strengths of the LF domain

with the DNA, it is inferred that, by interchanging the LF domains, the lesion-bypass-

ing abilities of the two Pols will be exchanged. This is also consistent with the experi-

mental data of Boudsocq et al. [48].

Similarly, we can easily show that the Pols such as Dbh and Pol ι, in which the active

site is, along the x direction, not close to the nearest residue of the binding site S2
located in the LF domain, can also easily bypass the lesion site. Thus, we conclude

that, although different values of distance L give different translocation features, all the

Y-family Pols that use the NBR mechanism for translocation can easily bypass the

lesion site, thus performing the translesion synthesis. By contrast, the replicative Pols

that use other Brownian ratchet mechanism for translocation cannot bypass the lesion

site and is thus unable to perform the translesion synthesis (see Figures 1 and 2).

Discussion
The explanation of the lesion-bypassing ability by a Y-family Pol in this work is

focused only on the translocation activity of the active site from the position opposite

to the lesion site to the next position. In fact, the lesion-bypassing ability is dictated by

two activities. One is the translocation activity while the other one is the catalytic

activity of the phosphodiester bond formation. The latter activity determines that rates

of nucleotide incorporation opposite to the lesion site and one position downstream

from the lesion site are slower than those at other sites [46]. Moreover, since the latter

activity is determined by the structure of the catalytic core, single amino acid substitu-

tions within the active site, palm or fingers subdomains can also have a profound effect

on the ability of the enzyme to perform translesion synthesis [74,75].

Distinct translocation features among the Y-family Pols in the NBR model depend on

the distance L from the active site to the nearest residue of the binding site S2 located

in the LF domain. It is important to note that this distance L in the model corresponds

to the structure of the Pol only after binding to its DNA substrate. Although available

structures showed a significant conformational change in the LF domain of the apo-

Dpo4 upon binding to the DNA substrate [42], only a little change has been observed

between the Pol complexed with the DNA substrate alone and that with both the

DNA substrate and the dNTP nucleotide. Thus, the large conformational change in

the LF domain of the Pol upon binding to the DNA substrate has no effect on the

conclusion of the current work which is involved only with the structures of the Pol

either complexed with the DNA substrate alone or complexed with both the DNA

substrate and the dNTP nucleotide.

Further comments on the NBR translocation model

In the NBR model (Figure 5), it has been implicitly considered that the Pol has a rigid

structure, i.e., different domains have been considered to be linked rigidly. In fact, the

residues linking different domains may behave elastically. For example, for Dpo4,

Xie Theoretical Biology and Medical Modelling 2011, 8:22
http://www.tbiomed.com/content/8/1/22

Page 20 of 24



considering an elastic link between the palm and thumb domains. Upon nucleotide

binding, after the active site, together with the fingers, palm and LF domains, move

from the nth site to the (n+1)th site, the thumb domain may not move simultaneously

due to the elastic link between the palm and thumb domains, i.e., the thumb contacts

with the DNA may fluctuate by the thermal noise between pre- and post-translocation

positions with nearly equal probability. This gives an explanation to the available struc-

tural data for Dpo4 showing that, upon nucleotide binding, the LF contacts with the

DNA shift by one base pair but the thumb contacts do not shift simultaneously [41].

Potential implication of binding site S1 in the induced-fit mechanism

The strong interaction of the binding site S1 with the unpaired base on the template

induces the conformational change in the residues of the binding site S1, which in turn

results in the conformational change in the active site that is adjacent to the residues

of the binding site S1. This unpaired-base-related conformational change thus results

in the active site having a much higher affinity for the structurally compatible nucleo-

tide than structurally incompatible nucleotides. This argument is consistent with the

experimental data for high-fidelity DNA Pols showing that the shape of the nascent

base pair is important regardless of whether the Watson-Crick hydrogen bonds can be

formed [76]. It is also consistent with the recent FRET-based assay on Klenow frag-

ment showing that base discrimination takes place within the open complex rather

than occurs during the transition from open to closed fingers conformations [77]. Con-

versely, the interaction of the structurally incompatible nucleotide may have a negative

effect on the conformational change in the active site, which in turn results in the

inverse conformational change in the binding site S1, potentially reducing its binding

affinity for the unpaired base on the template. This could account for the increased

dissociation caused by the binding of a mismatched nucleotide, as observed by Joyce

et al. [77].

Crystal structures of the Y-family DNA Pol complexed with DNA substrate showed

weak or no interaction of the Pol with the ssDNA template [27,28,32,41,42]. The weak

binding affinity would result in a minor or no conformational change in the active site

that is related to the structure of the unpaired base on the template, giving a smaller

difference in binding affinity between correct and incorrect nucleotides. This thus

results in that the Y-family Pol has a low-fidelity synthesis, which is consistent with

the available experimental data [43,45]. Since minor or no conformational change in

the active site occurs which is related to the shape of the template base, it is expected

that the base discrimination in Y-family Pols should rely mainly on the Watson-Crick

hydrogen bonding interaction, in sharp contrast to the high-fidelity replicative DNA

Pols where the effect of the Watson-Crick hydrogen bonding interaction can be negli-

gible compared to the dominant effect of the base shape. Indeed, steady state kinetic

studies with incoming dNTP and DNA substrates containing difluorotoluene, which

has the same shape as thymine but lacks the ability to form Watson-Crick hydrogen

bonds, are poor substrates for Y-family pol h [78].

Conclusion
In conclusion, a NBR model is proposed for the translocation of the Y-family DNA Pol

along the DNA substrate, which is modified from the translocation model proposed
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previously for the replicative DNA Pol. The observed different features of the struc-

tures for Dpo4, Dbh and pol ι in binary and ternary forms are consistent with the NBR

model. Moreover, since the interaction potential V2(x) for Pol h has the form of Figure

4b rather than that of Figure 3b, it is predicted that Pol h would show the transloca-

tion feature similar to Dbh and Pol ι rather than Dpo4. The obtained theoretical

results on dynamic properties of the Y-family Pols by using the NBR model are consis-

tent with the available experimental data. To further verify the model, it is hoped to

test the predicted results given in Figures 8, 9, 10.
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