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Abstract: The Sustained Attention to Response Task (SART) is a computer-based go/no-go task
to measure neurocognitive function in older adults. However, simplified average features of this
complex dataset lead to loss of primary information and fail to express associations between test
performance and clinically meaningful outcomes. Here, we combine a novel method to visualise
individual trial (raw) information obtained from the SART test in a large population-based study of
ageing in Ireland and an automatic clustering technique. We employed a thresholding method, based
on the individual trial number of mistakes, to identify poorer SART performances and a fuzzy clusters
algorithm to partition the dataset into 3 subgroups, based on the evolution of SART performance after
4 years. Raw SART data were available for 3468 participants aged 50 years and over at baseline. The
previously reported SART visualisation-derived feature ‘bad performance’, indicating the number of
SART trials with at least 4 mistakes, and its evolution over time, combined with the fuzzy c-mean
(FCM) algorithm, individuated 3 clusters corresponding to 3 degrees of physiological dysregulation.
The biggest cluster (94% of the cohort) was constituted by healthy participants, a smaller cluster
(5% of the cohort) by participants who showed improvement in cognitive and psychological status,
and the smallest cluster (1% of the cohort) by participants whose mobility and cognitive functions
dramatically declined after 4 years. We were able to identify in a cohort of relatively high-functioning
community-dwelling adults a very small group of participants who showed clinically significant
decline. The selected smallest subset manifested not only mobility deterioration, but also cognitive
decline, the latter being usually hard to detect in population-based studies. The employed techniques
could identify at-risk participants with more specificity than current methods, and help clinicians
better identify and manage the small proportion of community-dwelling older adults who are at
significant risk of functional decline and loss of independence.

Keywords: sustained attention to response task; SART; multimodal visualization; threshold; fuzzy
clusters; cognition; repeated measures; mobility decline; specificity

1. Introduction

An increasing number of neurocognitive tests are computer-based. They are used
in clinical practice and research to detect neurocognitive dysfunction and/or disorders
in adults [1,2]. Very often, the first step in the analysis of such data is the pre-processing
and simplification of the raw outputs from computer-based tests, which can lead to loss
of relevant information and/or misinterpretation of the results [3,4]. These challenges
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are even more pronounced in the case of repeated-measures neurocognitive data in large-
scale studies.

Commonly employed techniques tend to simplify the raw computer outputs into
average features, offering surrogates of overall performance and variability that are easier
to process in analyses [5]. However, the loss of primary information could lead to a
failure in identifying associations between test performance and clinically meaningful
outcomes. Recent works [6] have demonstrated how, especially in Go/NoGo tasks, intra-
individual variability (IIV) with its time-dependent feature is an important biomarker
in cognitive aging. High IIV has been shown to be strongly correlated with inefficient
sustained cognitive processes. Moreover, recent studies [4,7] have demonstrated that the
use of the entire raw dataset could help clinicians find important features and peculiar
associations that are otherwise hidden in derived measures.

The Sustained Attention to Response Task (SART) is a standard computer-based cog-
nitive test to measure sustained attention, a fundamental executive function for completing
tasks that require supervision over time [8]. Sustained attention is a result of the interac-
tion between two different subsystems: vigilance and arousal (alertness) [9,10]. Vigilance
allows detection of subtle changes in the environment occurring over long periods of
time [9,11], and is related to the activation of a network of cortical areas including the
cingulate gyrus, prefrontal cortex and inferior parietal lobule [12,13]. A consistent adequate
level of arousal is necessary to detect target stimuli [9]. Electrophysiology and functional
neuroimaging studies have demonstrated that arousal is activated through a subcortical
network including the thalamus and noradrenergic brainstem structures [14,15]. The SART
is a continuous performance reaction-time (RT) task designed to measure attention lapses;
participants are required to monitor visual displays acknowledging responses to frequent
neutral signals (GO trials), but withholding response when detecting rare targets (NO–GO
trials) [5,16]. Commission errors (responding to NO–GO trials) or omission errors (failure to
respond to GO trials) reflect lack of vigilance, while the RT is a measure of alertness. Recent
findings on analysis of inter-trials SART performances have demonstrated that increased
IIV in RT significantly predicted decreased executive control and resistance to distractor
in inhibition processes, implying a failure in inhibition performance and an increase in
commission errors [6]. Moreover, coherent response patterns of RT from one trial to the
next, which seemed to emerge in participants whose RTs varied more widely around the
mean, were found to significantly predict a better inhibition performance [6]. Further, a GO-
NoGO functional MRI (fMRI) paradigm has been used to study the relationship between
metacognitive-executive functions and action-monitoring and response-inhibition [17,18].
During response inhibition, response selection, and target detection tasks the activity of
the anterior cingulate cortex (ACC) was heightened. This is particularly important in
movement disorders, in which the functioning of the orbito-frontal cortex, responsible for
impulse control and decision making, and of the ACC is gravely impacted [17,18]. Besides,
recent works have employed SART for the evaluation of loss of insight in frontotemporal
dementia (FTD), cortico-basal degeneration (CBG) and progressive supra-nuclear palsy
(PSP) patients [19]. Specifically, FTD patients, having more severe damage to the prefrontal
structures required for emergent awareness, were particularly impaired in online monitor-
ing of errors compared to the other two patient groups [19]. In older adults, SART has been
shown to be correlated with frailty [20], a dysregulation in multiple systems, an emerging
geriatric syndrome which results in a state of vulnerability after a stressor event and is
manifested as a decline in several organ systems [21,22], and falls efficacy [23]. However,
due to its complex granular intrinsic structure, the optimal way to approach the analysis of
SART data remains the subject of debate.

Our previous companion study [7] proposed a novel method to visualise the full infor-
mation obtained from the SART tests performed by a large sample of older participants
in a large population-based study, and a new variable, ‘bad performances’, based on a
thresholding method, which could allow detection of a subset of participants considered to
have a poor SART performance, and important clinical implications such as future falls
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and mobility decline [7]. Moreover, recent studies have underscored the importance of the
longitudinal investigation of cognitive data in order to individuate possible neurodegener-
ative disorders as soon as possible [24], as well as functional decline in other physiological
systems [25]. However, the longitudinal evolution of SART performance is still poorly
understood, as well as the identification of the factors that may play a role in the prediction
of functional decline.

Furthermore, recent studies [26,27] have shown the presence of an integrated network
of interactions and feedback mechanisms among different physiological systems, partic-
ularly between the brain and the loco-motor system. Specifically, correlations have been
found between RT and mobility decline [7,25,28], and between poor mobility performance
and cognitive decline [25]. Evidence of the interconnections between the cognitive and the
loco-motor systems has generated great interest among researchers, and finding a clinical
and biological interpretation of the complex networked interactions remains a challenge in
medical research.

The most commonly used tests to assess mobility are gait speed measurements, taken
at normal pace and during a dual-task (where the participant is required to complete
a cognitive task while walking) [29,30], and the Timed Up-and-Go (TUG) test, a well-
established test to measure mobility and predict risk of falls in older adults [29,31]. Recent
findings have suggested that baseline quantitative gait parameters are significant predictors
of cognitive decline and dementia in older adults [25,32,33]. On the other hand, recent
studies have demonstrated that older participants with poorer SART performances [7] and
poorer choice reaction times [28] may present an accelerated mobility decline and have a
higher risk of incident falls [34].

In order to assess global cognitive status, frequently used tests are the Mini-Mental
State Examination (MMSE) score as a standard measure of overall cognitive status [35],
and the Montreal Cognitive Assessment (MoCA) [36], a more challenging cognitive test
compared to the MMSE, which includes executive function, higher-level language, and
complex visuospatial processing, and is designed to detect milder impairments. In our
previous investigation, we did not find a significant association between baseline SART
performance and cognitive decline at 4 years as assessed by MMSE score [7], although
SART performance and MMSE score offer two different measures of the same physiological
system. Therefore, it was necessary to employ a different technique, which could allow
to a higher specificity and detection of a small number of participants with signs of both
physical and cognitive decline.

Clustering is an unsupervised machine learning technique that partitions a set of ele-
ments into subsets, or clusters, based on similarities among the individual data items [37,38].
Clustering methods are becoming increasingly important in analysing heterogeneity of
treatment effects, health conditions and biological features, especially in longitudinal stud-
ies [39]. Clustering techniques are mainly divided in two subgroups: ‘hard clustering’
(e.g., K-means algorithm) and ‘soft clustering’ (e.g., Fuzzy C-mean (FCM) algorithm). In
hard clustering, each element belongs to one cluster only. Instead, in fuzzy clustering, the
clusters can be overlapping, since the probability belonging to each cluster is assigned
to each element (a belongingness parameter ranges from 0 to 1) [37,38]. Previous work
showed the utility of K-means clustering of cardiovascular data for the discovery of a
novel morphological classification of orthostatic hypotension [40,41]. However, hard algo-
rithms are not suitable in most situations for the analysis of biomedical data, since some
individuals may or may not be diagnosed with a certain disorder, depending on different
conditions [42]. Therefore, fuzzy clustering with its probabilistic approach, could help
clinicians to individuate subjects whose classification for certain disorders is not clearly
based on classic parameters, but whose trajectory of physiological dysregulation (stability,
worsening, improvement) could help to better understand the risk factors and evolution of
various medical conditions, including neurodegenerative disorders [42]. Indeed, the FCM
algorithm could facilitate ‘precision phenotyping’, which is one of the main challenges of
current biomedical research [43,44].
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In the present study, which we present as a companion to our previously published
paper [7], we aimed to identify relatively homogenous clusters of older adults who shared
similar patterns and/or degrees of physiological dysregulation according to the longitu-
dinal evolution of their SART ‘bad performances’, conducted at two separate time points
4 years apart. Specifically, our goals were (i) to detect a likely small specific group of sub-
jects who might have clinical significant decline on both physical and cognitive measures,
and (ii) to demonstrate that a soft, probabilistic unsupervised machine learning model of
‘physiologic clustering’ can facilitate this aim.

2. Materials and Methods
2.1. Dataset
2.1.1. Design and Setting

This study was conducted on data from The Irish Longitudinal Study on Ageing
(TILDA), an ongoing nationally representative prospective cohort study of community-
dwelling adults. The TILDA dataset contains information on the health, economic, and
social circumstances of people aged 50 years and over in Ireland. Participants were ran-
domly recruited based on their geographic location. The full design of the study and
cohort characteristics have been previously described [45,46]. Wave 1 of the study (base-
line) took place between October 2009 and February 2011 and was organised as follows:
(i) a comprehensive health assessment conducted at a dedicated health assessment centre
(HAC) and (ii) a computer-assisted personal interview (CAPI). Wave 3 of TILDA was
conducted between March 2014 and December 2015 (approximately 4 years after wave 1)
and comprised the same modes of data collection as described above. Ethical approvals for
each wave were granted from the Health Sciences Research Ethics Committee at Trinity
College Dublin, Dublin, Ireland, and all participants provided written informed consent.
All research was performed in accordance with the Declaration of Helsinki. In this study
we considered data from wave 1 and wave 3 of TILDA, and specifically we considered the
merged cohort of both waves, constituted by participants who took part in both waves of
HAC and CAPI.

2.1.2. SART Protocol

The SART is a computerised continuous performance RT task [8]. It requires partici-
pants to respond to a repeating stream of consecutive digits 1 to 9 (GO trials), but withhold
response to the digit 3 (NO–GO trials).

In the SART test, each digit appears for 300 milliseconds (ms), with an interval of
800 ms between digits. The cycle of digits 1 to 9 is repeated 23 times, giving a total of
207 trials. The test lasts for approximately 4 min. Participants are required to press a
keyboard key as soon as possible (with RT automatically recorded using Presentation,
Neurobehavioral Systems, Albany, CA, USA, version 16.5) for each digit presented. In
practice, over the course of the test, many participants lose attention and commit mistakes.
Two types of mistakes can be detected in the data: commission errors (i.e., responding to
NO–GO trials), which reflect lapses of sustained attention; and omission errors (i.e., failure
to respond to GO trials), reflecting a break from task engagement, also corresponding to
lapsing attention [5]. In this work, we considered SART data from wave 1 and wave 3 of
TILDA. TILDA data is unique in that, to our knowledge, no other population-based study
has conducted the SART 4 years apart on the same participants.

2.1.3. Mobility Variables

- TUG: TUG measures the time (seconds) taken for a participant to stand up, walk 3 m
at normal pace along a line on the floor, turn around, walk back to the chair, and sit
down [31]. The test is not just a measure of physical ability, but requires an individual
to process instructions, plan and execute movements, focus on the task and avoid
distractions. This cognitive component makes the test more complex than straight-line
walking. Generally, a cut-off of 12 [29,47] or 14 [48,49] seconds (s) is clinically used
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to discriminate participants with significant mobility impairment and falls risk. The
TUG in wave 1 (TUG1) and wave 3 (TUG3) were utilised in this study. Given our aim
to capture risk of early mobility decline in this relatively healthy community-based
sample, we chose the more restrictive cut-off of 12 s to define clinically significant
mobility impairment in both waves. Specifically, we defined mobility decline (TUG
decline) for a given participant when TUG1 was less than 12 s (TUG1 < 12) and TUG3
was greater than or equal to 12 s (TUG3 ≥ 12).

- Gait speed: gait speed was assessed using a computerised walkway (4.88 m GAITRite
(CIR Systems Inc., Franklin, NJ, USA) pressure sensing mat) [24,33]. Participants
performed two walks at usual pace and two walks under dual-task conditions (i.e.,
reciting alternate letters of the alphabet), starting and finishing 2.5 m before and 2.0 m
after the walkway. The measured usual gait speed (UGS) and dual-task gait speed
(DTGS) were calculated as an average between the two walks under each condition
and did not include the acceleration and deceleration phases. Variable cut-offs have
been used in the literature to individuate mobility disability (range 30–100 cm/s) [30]
and slow usual pace in older adults (range 80–120 cm/s) [50–52]. We considered the
UGS at wave 1 (UGS1) and at wave 3 (UGS3), and defined ‘UGS decline’ for a given
participant when UGS1 was greater or equal than 100 cm/s (UGS1 ≥ 100 cm/s) and
UGS3 slower than 100 cm/s (UGS3 < 100 cm/s). Similarly, we defined DTGS decline
for a given participant when DTGS at wave 1 (DTGS1) was greater or equal than
100 cm/s (DTGS1 ≥ 100 cm/s) and DTGS at wave 3 (DTGS3) slower than 100 cm/s
(DTGS3 < 100 cm/s).

- Falls: as part of the CAPI, participants were asked whether they had fallen in the year
prior to the interview. We recorded the number of recalled falls in wave 1 ( f alls1) and
wave 3 ( f alls3), and defined as ‘new fallers’ participants who had at least 1 fall in the
year prior to the examination at wave 3 ( f alls3 > 0) and no falls in the year prior to
the examination at wave 1 ( f alls1 = 0).

2.1.4. Cognitive Variables

- MMSE: Global cognitive function was assessed using the MMSE test, giving partic-
ipants a score from 0 (minimum) to 30 (maximum) [35]. We considered the MMSE
score in wave 1 (MMSE1) and wave 3 (MMSE3) and, in line with previous recom-
mendations [53], defined as clinically meaningful cognitive decline a decrease of at
least 2 points between wave 1 and 3 (MMSE1 − MMSE3 ≥ 2).

- MoCA: Cognition was also evaluated using the MoCA. As in the MMSE, scores range
from 0 (minimum) to 30 (maximum) [36,54]. In line with previous findings [55],
we defined as clinically meaningful cognitive decline a decrease of at least 2 points
between wave 1 and 3 (MOCA1 MOCA3 ≥ 2).

2.1.5. Covariates

Several potentially relevant covariates at wave 1 were considered in this work: (a) fea-
tures extracted from the SART multimodal visualisation [7], in addition to the traditional
SART mean and standard deviation (SD) of RTs (across all trials), both measured in mil-
liseconds; (b) socio-demographic variables: age, sex, and education level (categorised
as primary/none, secondary or third/higher); (c) variables expressing the psychological
status of participants: anxiety, assessed with the anxiety subscale of the Hospital Anxiety
and Depression Scale (HADS-A) [56], which ranges in scores from 0 to 21 (higher scores
indicating more symptoms of anxiety); depression, assessed with the Centre for Epidemio-
logical Studies Depression (CES-D) scale [57], which ranges in score from 0 to 60 (higher
scores indicating worse depressive status); and (d) variables related to the physical status
of participants: whether or not they were taking any antihypertensive medications (coded
using the Anatomical Therapeutic Chemical Classification (ATC) [58]: antihypertensive
medications (ATC C02), diuretics (ATC C03), β-blockers (ATC C07), calcium channel block-
ers (ATC C08), and renin-angiotensin system agents (ATC C09)), had history of diabetes,
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self-reported smoking (categorised as never, past, or current) and alcohol consumption
habits (the answer to the question “Do you have a drinking problem?” (yes, no, or I don’t
know) was recorded), UGS at baseline, and physical activity status based on the Interna-
tional Physical Activity Questionnaire (IPAQ) (short form) scoring protocol (categorised as
low, medium, or high) [59].

2.2. Multimodal Visualisation

All analyses and graphical representations were created with MATLAB (R2020b, The
MathWorks, Inc., Natick, MA, USA).

2.2.1. Entire Sample

Details and mathematical procedure for the multimodal visualisation, a previously
reported method to visualise the individual trial information obtained from the SART test
together with global parameters, are described elsewhere [7]. Briefly, the main graph is
constituted by a cloud plot, where we represented a spot for each trial and participant, in
which the position on y-axis indicates the average RT in that trial, and size and colour of
the spot indicate the number of mistakes within that trial. Participants sorted by age in
ascending order are organised horizontally from youngest (left) to oldest (right). Moreover,
additional curves indicating the total number of mistakes, MMSE and TUG, in red, blue,
and green, respectively, are superimposed over the first graph.

2.2.2. Thresholded Multimodal Visualisation

We defined as ‘bad performance’ a trial where the participant committed at least 4
mistakes out of 9 possible actions [7], and represented in a second graph only the SART
“big spots”, corresponding to bad performances. All of the above-mentioned notations
regarding the coordinates, size and colour of the spots still apply. Likewise, the curves
representing the number of mistakes, MMSE score, and TUG were now limited only to
participants who had at least one bad performance.

2.2.3. Longitudinal Multimodal Visualisation

We undertook the multimodal visualisation for wave 1 and wave 3, considering two
different color maps (‘copper’ and ‘parula’ respectively) to code the percentage of mistakes
within a given trial for each spot and participant. Similarly, the curves representing the
global parameters were shown for wave 1 and for wave 3. We note that for the visualisation
for wave 3 the merged cohort for waves 1 and 3 was used.

Furthermore, we represented the thresholded multimodal visualisation, which showed
only participants who had at least 1 bad performance, for waves 1 (dark brown / black) and
3 (blue) in the same graph, indicating on the x-axis the age of participants of the merged
cohort at wave 1, and showing the curves representing the total number of mistakes,
MMSE score and TUG both in wave 1 and wave 3. We note that this graph showed only
participants who had at least 1 bad performance in wave 1 and/or wave 3. Therefore, for
those participants who had bad performances in waves 1 and 3, brown and blue “big spots”
were visible in the graph, for those who had bad performances only in wave 1 only brown
“big spots” were visible, while for those who had bad performances only in wave 3 only
blue “big spots” were visible.

Moreover, the curves indicating the MMSE score and TUG in wave 3 were constituted
by (i) a regular line for those participants who had bad performances only in wave 3, and
(ii) stars for those participants who had bad performances also, or only, in wave 1.

2.3. Fuzzy Clusters

Clustering is an unsupervised machine learning technique that partitions a set of
elements into subsets, or clusters, such that:

1. elements of the same group are similar to each other (they are ‘close’ to each other),
2. elements in different groups are dissimilar (they are far apart from each other).
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The concept of ‘distance’ can be represented by one or more continuous variables, and
each element of the initial set has a value for each variable considered.

Clustering algorithms can be divided into two subgroups: ‘hard clustering’ and ‘soft
clustering’. In hard clustering, each element belongs to one and only one cluster. Instead,
in soft clustering, or ‘fuzzy clustering’, the probability to belong to each cluster is assigned
to each element, therefore the subdivision is not sharp, but ‘fuzzy’ [37,38].

One of the widely used soft clustering algorithms is the Fuzzy C-means clustering
(FCM) algorithm [60]. FCM, as all the other clustering algorithms, uses an iterative process
to partition the set of elements into subsets [39,61]. A full mathematical explanation of the
FCM algorithm is given in Appendix A.

We considered the merged cohort (waves 1 and 3) and applied the FCM algorithm
to classify the set of participants into 3 clusters C1, C2, C3, using a ‘distance’ based on
the variable ‘bad performance’ [7] at wave 1 and wave 3. At the end of the partitioning
procedure, each participant had 3 probability scores p(C1), p(C2), p(C3) (range [0, 1]), one
for each cluster. For each participant, we considered the maximum of the 3 probability
scores and assigned the participant to the corresponding cluster.

Elbow Method

Clustering algorithms depend on a predetermined number of clusters, whereas, in
practice, clusters are usually unpredictable. The ‘elbow’ method is one of the most com-
monly used methods to individuate the optimal number of clusters in which a set of
elements should be partitioned [62].

For each number of clusters, we can consider the Within-Clusters-Sum of Squared
errors (WSS), which gives the sum of the square distances between each point of a certain
cluster and its centroid. It can, then, be considered as a function depending on the variable
c, the number of clusters.

WSS(c) =
c

∑
i=1

∑
x ∈ Ci

(
(
xw1 − qiw1

)2
+
(
xw3 − qiw3

)2
)

where xw1 and xw3 are the value of the variable ‘bad performance’ for the participant x
belonging to cluster Ci at wave 1 and wave 3, respectively. The same is applied to qiw1 and
qiw3 , where qi is the centroid of the cluster Ci [62,63].

According to the elbow method, the “best” number of clusters c corresponds to the
first point of the minimum of the function WSS(c), namely the number of clusters for which
the function WSS(c) starts to decrease, in other words, the clusters start to be dense, which
is the goal of “good” clustering. Generally, the function WSS(c) will decrease eventually,
having a large number of clusters, because the more clusters there are, the finer the partition.
So, what is important is the point where WSS will start to decrease for an increasing number
of clusters, which will have, in the graph, the shape of an ‘elbow’.

We considered WSS(c), c = 1, . . . , 10 and chose the optimal number of clusters.

2.4. Statistical Analysis
2.4.1. Longitudinal Study on SART

We considered the SART performances of participants in the merged cohort at waves
1 and 3. In particular, we analysed the longitudinal evolution of the variable ‘bad perfor-
mance’ [7] between the two waves, and produced two types of histogram: the first one
showed the individual trial mistakes distribution at wave 1 and wave 3, and the second
showed the distribution of the variable bad performances at the two waves. In more detail,
the first graph was constituted by two histograms, one for each wave; each histogram
had 10 bars, for 0, 1, 2, . . . , or 9 mistakes within a single trial, respectively. Each bar was
made of many thin vertical lines, one for each participant who had committed in at least
1 trial as many mistakes as indicated by the corresponding bar, represented in different
colours, consistent across different bars; the height of these thin vertical lines indicated the
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frequency of that number of mistakes committed, namely the number of trials in which
that participant committed the number of mistakes indicated by the bar. For example,
the fifth bar contained all the vertical lines corresponding to participants who committed
4 mistakes in at least 1 trial; the height of a given line indicates the number of trials in
which the corresponding participant committed 4 mistakes. Therefore, summing up the
height of the vertical lines contained in the 4th, 5th, . . . , 9th bars, we can obtain the number
of bad performances in that wave, as per definition of ‘bad performance’ [7]. The second
histogram simply showed the number of bad performances for each participant at waves
1 and 3 distinguishing the two waves by colour: blue for wave 1 and red for wave 3. The
two histograms were created in MATLAB.

We then statistically compared the distribution of ‘bad performance’ at wave 1 and
wave 3 using the Wilcoxon test, a nonparametric test used to compare related samples [47,48].
We also tested the variable bad performances at wave 1 and wave 3 for potential trends,
using the Spearman’s rank correlation coefficient [41,64,65].

We dichotomised the variable ‘bad performance’ at wave 3 and assigned 1 to those
participants who had at least 1 bad performance at wave 3, and 0 otherwise. Binary logistic
regression (BLR) models were used to predict the binary outcome of bad performances at
wave 3, considering as potential predictor the continuous variable bad performances at
wave 1. Covariates at wave 1 were used in four different regression models to gradually
determine the robustness of the predictor: model 1, with just the predictor; model 2, which
was model 1 additionally adjusted with mean RT and SD RT; model 3, which was model
2 controlled by age, sex and education level; and model 4, which was the fully adjusted
regression model, considering also all the other covariates mentioned in Section 2.1.5
(anxiety, depression, hypertensives, diabetes, smoking, alcohol, UGS baseline and IPAQ).
We reported the odds ratio (OR) with corresponding 95% confidence interval (C.I.) and
p-value for each independent variable in the model. The OR expresses the odds that an
outcome will occur in the presence of an independent variable, compared to the odds that
the outcome will occur in the absence of that variable; therefore if OR > 1 the independent
variable influences positively the odds of the outcome, if OR < 1 the independent variable
influences negatively the odds of the outcome, i.e., it is “protective” against the outcome,
and if OR = 1 the independent variable does not influence the outcome [30,50]. The same
four different BLR models were applied considering the same covariates mentioned before
but substituting the ‘number of bad performances’ with the global variable ‘number of total
mistakes’ in the whole SART task, and the ‘number of mistakes in good performances’, both
variables at wave 1 [7]. Of note, every time we applied the binary logistic regression model
(whether adjusted by covariates or not) we considered only one of these three potential
predictors, because we were interested to test whether bad performances at wave 1 could be
used independently from the other predictors. Each adjusted model, considering the three
different predictors separately, had been tested for multi-collinearity (based on Spearman’s
correlation). We compared the OR of the three predictors, whilst noting the degree of
overlap in the 95% C.I.s and the corresponding p-values.

All the aforementioned statistical tests were performed in IBM SPSS Statistics version
27 (IBM Corp., Armonk, NY, USA). Statistical significance was set at p < 0.05 throughout.

2.4.2. Clusters Characterisation

We performed a comprehensive characterization of participant clusters at each wave.
Particularly, for the main variables (TUG, falls, UGS, DTUGS, MMSE, MOCA) we checked
the statistical difference between the distributions of the same variables at the two waves
with the Wilcoxon test.
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Moreover, we computed the inter-wave change of a variable between wave 1 and wave
3 and compared it between clusters. For each participant in a given cluster, we considered
the relative difference of the same variable between waves 1 and 3 and referred to the value
at wave 1, e.g., (UGS1 −UGS3)/UGS1 for UGS. Then, we compared the distributions of
these values between different clusters using the Mann-Whitney U test, a non-parametric
test used to compare non-related samples [66], and repeated the procedure for the other
main variables.

Finally, we measured the proportion of decline within each cluster. Particularly, we
computed the percentage of participants who manifested a decline for a given variable,
according to the cut-offs defined in Sections 2.1.3 and 2.1.4, within each cluster. We then
applied the χ2- test to check whether the differences in proportions between clusters were
statistically significant. In fact, the χ2- test is used to test the independence between two
categorical variables [67,68]. In our case, the two categorical variables considered were
(i) the classification in clusters and (ii) whether the participant showed a decline in one
of the main variables (TUG, falls, UGS, DTUGS, MMSE, MOCA). If p < 0.05, then there
was significant dependence between the two categorical variables. Moreover, the χ2-value
gives a measure of the dependence: consulting a χ2 distribution table [69], we can see
the minimum χ2-value accepted in order to have the dependence between categorical
variables considered significant, namely for probability values p of χ2 such that p < 0.05.
The minimum χ2-value accepted depends by the number of degrees of freedom df, which
corresponds to the number of classes minus one. In our case, we had d f = 2, since our
classes were represented by the 3 clusters, and the corresponding minimum χ2-value
accepted was 5.99 [67,69].

3. Results

Raw SART data were available for 3468 participants (54.2% women; age: 61.0 ± 7.8 years
at wave 1) for the merged cohort (wave 1 and wave 3). Table 1 presents descriptive statistics
for the variables used in this work at wave 1 and wave 3.

Table 1. Descriptive statistics for the whole set of variables considered in this study for the merged
dataset (N = 3468) at wave 1 and wave 3. The first part of the table gives minimum, maximum
values, and mean and SD for each continuous variable. The second part shows ordinal or nominal
variables and their frequency in percentage.

Continuous Variable Wave 1:
Mean (SD); Range

Wave 3:
Mean (SD); Range

SART bad performances 0.2 (0.8); 0.4 (1.8);
0–15 0–23

SART: Total mistakes
9.6 (10.6); 11.0 (16.0);

0–92 0–184
SART: Mistakes in good
performances

8.8 (8.8); 8.9 (8.6);
0–60 0–51

SART: Mean RT (ms)
381.4 (94.2); 348.4 (84.8);
168.9–836.5 156.0–842.0

SART: SD RT (ms)
69.7 (40.1); 71.0 (43.3);
12.7–364.2 0.0–347.4

TUG (s)
8.6 (1.7); 9.2 (2.1);
4.8–28.5 5.1–27.6

UGS (cm/s)
137.6 (19.0); 135.4 (20.2);
43.1–207.5 47.5–207.5

DTGS (cm/s)
113.2 (25.6); 114.4 (25.6);
28.4–203.4 26.2–203.3

Falls
0.4 (1.4); 0.1 (4.2);

0–50 0–15
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Table 1. Cont.

Continuous Variable Wave 1:
Mean (SD); Range

Wave 3:
Mean (SD); Range

MMSE
28.9 (1.6); 29.0 (1.4);

0–30 15–30

MOCA
25.7 (2.9); 26.9 (3.0);

7–30 7–30

Age (years) 61.0 (7.8); 65.3 (7.7);
50–89 53–94

Anxiety 5.4 (3.5); 8.0 (2.6);
0–20 6–23

Depression 5.3 (6.6); 3.0 (3.6);
0–48 0–24

Ordinal/Nominal Variable Cohort 1 (Wave 1)
Frequency (%)

Cohort 2 (Merged Wave 1–3)
Frequency (%)

Female 54.2 54.2
Education level
- primary/none 17.5 17.4
- secondary 41.9 39.9
- third/higher 40.6 42.7
Anti-hypertensives 30.4 39.3
Diabetes 5.4 7.0
Smoker
- never 47.3 47.1
- past 39.5 43.4
- current 13.2 9.5
Drinking problem 13.8 (7.4 *) 12.4 (10.5 *)
IPAQ
- low 26.2 33.0
- medium 36.6 36.4
- high 37.3 25.4

* Dummy group of participants who answered “Don’t know” to the question “Do you have a drinking problem?”.

In Figure 1 we present a flow chart of the present research work, starting from the
datasets (cohort at wave 1 and merged cohort at wave 3), reporting on the side the year of
corresponding data collection, and indicating with arrows the employed analysis, mention-
ing the output from certain steps of the analysis, which used as input the dataset or the
output of previous steps. Moreover, next to each output of analysis, where appropriate the
figures and/or tables are indicated which represent the output obtained. The flow chart
has a color-code: green for data collection, black for output and steps of the analysis, blue
for figures and red for tables.
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Figure 1. Research flow chart, where the input and output at every phase of analysis are detailed.
The flow chart has a color-code: green for data collection, black for output and steps of the analysis.

3.1. Longitudinal Multimodal Visualisation

Figure 2 shows the multimodal visualisation based on the procedure described in
Section 2.2. Figure 2a presents the multimodal visualisation for the entire SART dataset at
wave 1 (N = 4864 participants) [7]. There were in total 1222 “big spots” representing bad
performances for 565 different subjects (11.6% of the sample). Among those aged 50–64,
8.2% had bad performances; among those aged 65–74, 17.9% had bad performances; and
among those aged 75 years and older, 33.7% had bad performances. Figure 2b presents the
multimodal visualisation for the entire merged cohort at wave 3 (N = 3468 participants).
There were in total 1244 “big spots” representing bad performances for 403 different
subjects (11.6% of the sample). Among those aged 54–64, 6.6% had bad performances;
among those aged 65–74, 14.0% had bad performances; and among those aged 75 years
and older, 24.1% had bad performances. The density distribution of big spots can be better
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appreciated in Figure 2c. Figure 2c presents the thresholded multimodal visualisation
for the merged cohort (N = 3468), only showing data for participants who had at least
1 bad performance at wave 1 (brown/black spots) or only participants who had at least
1 bad performance at wave 3 (dark blue spots). In the merged cohort there were in total
732 “big spots” representing bad performances at wave 1 for 329 different subjects (9.5%
of the sample). Among these, only 104 participants also had bad performances at wave 3.
Therefore, 225 participants of the merged cohort improved their SART performances, while
299 participants worsened their SART performances.
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3.2. SART Longitudinal Study
3.2.1. Histograms

Figure 3 shows the distribution of individual trial mistakes at wave 1 and wave 3,
as described in Section 2.4.1, and Table 2 summarises the number of participants in the
merged cohort who made 0, 1, 2, . . . mistakes in an individual trial and how many trials
there were in total with the corresponding number of mistakes.
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Figure 3. Histograms of distribution of individual trial mistakes at (a) wave 1 and (b) wave 3. Within
each group of bars, the participants are age-sorted from left to right: 50–59 year (blue-light green),
60–69 year (green-orange), 70 year and over (red).

Moreover, Table 2 indicates the change in percentage between wave 1 and wave 3 in
number of participants for each individual trial number of mistakes and in total number
of trials with the corresponding number of mistakes. Comparing the distributions of
individual trial mistakes at wave 1 and wave 3, we note that at wave 3 the number of
participants who made 0 mistakes and the total number of trials with 0 mistakes decreased
compared to wave 1; the same is valid for 9 mistakes, while for all the other values of
individual trial mistakes, the density increased at wave 3, showing a general worsening
trend for the SART performances. Besides, the percentage of change between wave 1
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and wave 3 increased, with a growing ratio along with the higher number of mistakes in
each trial.

Table 2. Summary of distribution density for the individual trial mistakes at wave 1 and wave 3.

Number of Mistakes
within a Trial

Wave 1 Wave 3 Change between Wave 1 and
Wave 3 [%]

N. Participants Total N. Participants Total N. Participants Total

0 3444 60,346 3433 59,403 −0.3% −1.6%

1 2736 9035 2764 9396 +1.0% +4.0%

2 2522 7925 2599 7844 +3.1% −1.0%

3 925 1854 964 1877 +4.2% +1.2%

4 268 429 323 491 +20.5% +14.5%

5 79 100 98 135 +24.1% +35.0%

6 22 32 42 58 +90.9% +81.3%

7 19 24 44 66 +131.6% +175.0%

8 4 4 66 494 +1550% +12,250%

9 13 15 0 0 −100% −100%

Figure 4 shows the distribution of the variable ‘bad performances’ for each partici-
pant at waves 1 and 3. We note those blue lines not superimposed by red lines, namely
participants with bad performances at wave 1 who did not have bad performances at
wave 3.
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waves 1 (blue) and 3 (red).

Moreover, generally the red lines are higher than the blue lines. Therefore, the his-
togram provides the following information: (i) there were not many consistent bad perfor-
mance participants between waves, (ii) the number of participants with bad performances
increased at wave 3, (iii) the number of bad performances per participant increased at
wave 3.
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3.2.2. Dynamic Graph

Figure 5 shows the evolution of the variable ‘bad performances’ (BP) from wave 1,
on the x-axis, to wave 3, on the y-axis, where each spot indicates a different value of bad
performances (number of bad performances for each participant) present in the distribution
of the variable at each wave, i.e., the coordinates of each spot indicates a pair (BP1, BP3),
where BP1 is the number of bad performances at wave 1, and where BP3 is the number
of bad performances at wave 3. The size of each spot is proportional to the number of
participants that have the same pair (BP1, BP3). We note that 2840 participants (82% of the
cohort) had BP1 = 0 and BP3 = 0, while for 23 points in the graph the corresponding pair in
(BP1, BP3) had been registered in just one participant. Therefore, using a linear proportion
between the size of the spots and the number of participants for the corresponding pair
would not make all the spots visible. Thus, we employed a logarithmic transform to the
number of participants for each pair (BP1, BP3), and the spots size corresponds to the
density of that pair in log scale. Moreover, the color of each spot indicates the age at wave 1
averaged across all participants who registered the corresponding pair of values (BP1, BP3).

Geriatrics 2022, 7, x FOR PEER REVIEW 16 of 32 
 

the age at wave 1 averaged across all participants who registered the corresponding pair 
of values (𝐵𝑃ଵ, 𝐵𝑃ଷ). 

 
Figure 5. Evolution of the variable bad performances between wave 1 (along the x-axis) and wave 3 
(along the y-axis). The colour of the spots represents the age at wave 1. The size of the spots indicates 
the density distribution of the variables. 

The Wilcoxon rank sum test suggested that the distributions of BP at waves 1 and 3 
were significantly different from each other: p < 0.001. Moreover, no significant trends 
were individuated between 𝐵𝑃ଵ and 𝐵𝑃ଷ: Spearman’s coefficient was ρ = 0.210 at the 
significance level α = 0.01. 

3.3. Predictive Model for SART Bad Performances 
The three potential SART predictors, bad performances, total mistakes and mistakes 

in good performances, were not normally distributed (Kolmogorov–Smirnov and 
Shapiro–Wilk normality tests 𝑝 <  0.001, i.e., their distributions were not significantly 
similar to the normal distribution) [7]. Therefore, we excluded the linear regression model 
and any other parametric tests and applied binary logistic regression models to predict 
the presence of bad performances at wave 3 (binary outcome as defined in Section 2.4.1). 
In every model, the independent variables passed the multi-colinearity test (Spearman’s 
correlation coefficient |𝜌| ≤  0.422 for all pairs at the significance level α = 0.01) and sat-
isfied all other logistic regression assumptions [7]. 

Table 3 shows a comparison of the OR, reporting also the 95% C.I. and p-value, for 
the three predictors in the four different logistic regression models, as defined in Section 
2.4.1. In each model, all predictors were significantly associated with the presence of bad 
performances at wave 3. However, the variable ‘bad performances’ always had a larger 
OR than that of other predictors, and without overlap of 95% C.I.s, suggesting its larger 
weight in the prediction of this outcome (p < 0.001 in all four models, OR = 1.326, 95% C.I. 
= (1.167; 1.506) in the fully adjusted model (model 4), i.e., for every one-unit increase in 
bad performances we would expect an increase of 0.326 in the odds for having bad per-
formances at wave 3. 

  

Figure 5. Evolution of the variable bad performances between wave 1 (along the x-axis) and wave 3
(along the y-axis). The colour of the spots represents the age at wave 1. The size of the spots indicates
the density distribution of the variables.

The Wilcoxon rank sum test suggested that the distributions of BP at waves 1 and
3 were significantly different from each other: p < 0.001. Moreover, no significant trends
were individuated between BP1 and BP3: Spearman’s coefficient was ρ = 0.210 at the
significance level α = 0.01.

3.3. Predictive Model for SART Bad Performances

The three potential SART predictors, bad performances, total mistakes and mistakes
in good performances, were not normally distributed (Kolmogorov–Smirnov and Shapiro–
Wilk normality tests p < 0.001, i.e., their distributions were not significantly similar to the
normal distribution) [7]. Therefore, we excluded the linear regression model and any other
parametric tests and applied binary logistic regression models to predict the presence of bad
performances at wave 3 (binary outcome as defined in Section 2.4.1). In every model, the
independent variables passed the multi-colinearity test (Spearman’s correlation coefficient
|ρ| ≤ 0.422 for all pairs at the significance level α = 0.01) and satisfied all other logistic
regression assumptions [7].
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Table 3 shows a comparison of the OR, reporting also the 95% C.I. and p-value,
for the three predictors in the four different logistic regression models, as defined in
Section 2.4.1. In each model, all predictors were significantly associated with the presence
of bad performances at wave 3. However, the variable ‘bad performances’ always had a
larger OR than that of other predictors, and without overlap of 95% C.I.s, suggesting its
larger weight in the prediction of this outcome (p < 0.001 in all four models, OR = 1.326, 95%
C.I. = (1.167; 1.506) in the fully adjusted model (model 4), i.e., for every one-unit increase
in bad performances we would expect an increase of 0.326 in the odds for having bad
performances at wave 3.

Table 3. Comparison of the OR and corresponding 95% C.I. of bad performances, total mistakes,
and mistakes in good performances for the prediction of bad performances w3 in the binary logistic
regression models.

Bad Performances w3

Bad Performances Total Mistakes Mistakes in Good Performances

OR 95% C.I. p OR 95% C.I. p OR 95% C.I. p

Model 1 1.673 1.476–1.896 <0.001 1.065 1.056–1.074 <0.001 1.077 1.067–1.088 <0.001
Model 2 1.364 1.216–1.530 <0.001 1.054 1.043–1.065 <0.001 1.063 1.049–1.077 <0.001
Model 3 1.301 1.159–1.461 <0.001 1.045 1.033–1.057 <0.001 1.051 1.036–1.066 <0.001
Model 4 1.326 1.167–1.506 <0.001 1.044 1.032–1.057 <0.001 1.049 1.033–1.065 <0.001

Models for each main predictor, i.e., bad performances, total mistakes, or mistakes in good performances: model 1,
with just the main predictor; model 2, adjusted with mean RT and SD RT; model 3, which is model 2 with the
addition of age, sex, and education level; model 4, the fully adjusted regression model, considering also the
other covariates mentioned in Section 2.1.5 (anxiety, depression, hyper-tensives, diabetes, smoking, alcohol, UGS
at baseline (wave 1), and IPAQ). The odds ratio (OR) and corresponding 95% confidence interval (C.I.) give a
measure of the influence of the predictor on the outcome; the p-value expresses the statistical significance of the
predictor in the model.

Table 4 shows the results of the fully adjusted binary logistic regression model 4 where
the OR, 95% C.I. for OR and p-value for each independent variable in the model are reported.
Of note, other significant predictors of the presence of bad performances at wave 3 in model
4 were SD RT, age, and level of anxiety. A third/higher level of education was significantly
protective against ‘bad performances w3’, i.e., those who were highly educated were less
likely to have a SART bad performance after 4 years. Moreover, comparing the OR of bad
performances across different models applied, we noted that it was stronger in model 1,
decreased in models 2 and 3, and increased again in model 4.

Table 4. Results for the fully adjusted per covariates binary logistic regression model 4 considering
bad performances as potential predictor of having SART bad performances at wave 3.

Bad Performances w3
Independent Variable OR 95% C.I. p-Value

Bad performances w1 1.326 1.167–1.506 <0.001
SART mean RT 1.000 0.999–1.001 0.931
SART SD RT 1.009 1.006–1.011 <0.001
Age 1.070 1.052–1.088 <0.001
Females 0.939 0.727–1.212 0.629
Education level
- primary/none [ref]
- secondary 0.920 0.679–1.245 0.588
- third/higher 0.580 0.417–0.805 0.001
Anxiety 1.057 1.017–1.099 0.005
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Table 4. Cont.

Bad Performances w3
Independent Variable OR 95% C.I. p-Value

Depression 1.001 0.981–1.022 0.926
Anti-hypertensives 0.888 0.681–1.158 0.381
Diabetes 1.399 0.877–2.233 0.158
Smoker
- never [ref]
- past 1.021 0.786–1.325 0.877
- current 1.155 0.784–1.702 0.466
Drinking problem
- “No” [ref]
- “Don’t know” 1.263 0.515–3.100 0.610
- “Yes” 0.740 0.498–1.100 0.136
UGS at baseline 0.994 0.987–1.001 0.081
IPAQ
- low [ref]
- medium 1.173 0.868–1.586 0.300
- high 1.046 0.763–1.435 0.778

3.4. Fuzzy Clusters

Results of the WSS for 1,2, . . . ,10 clusters of participants in the merged cohort obtained
applying the FCM algorithm based on the variable bad performances at wave 1 and wave 3
are shown in Figure 6. According to the elbow method the optimal number of clusters could
be three or five. However, applying the FCM for five clusters we obtained an excessively
low number of participants in one cluster, which would have not allowed meaningful
statistical analysis. Therefore, we opted for three clusters as optimal partition.
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Applying the FCM algorithm, we obtained three clusters, presented in blue, green and
red respectively in Figure 7, and representing the following types of participants based on
their SART performances at waves 1 and 3: the blue cluster comprehended participants
who did not have any bad performances at wave 1, or had just one, and maintained
a very low number (maximum four) of bad performances at wave 3; the green cluster
comprehended participants who had a wide range of values in bad performances at wave
1 (0–15) but did not have more than nine bad performances at wave 3; and the red cluster
comprehended participants who did not have more than three bad performances at wave
1 (11 for only one participant) but had bad per f ormances ≥ 9 at wave 3; in some cases
even all the 23 SART performances were ‘bad’ at wave 3. The blue cluster was the biggest,
containing N = 3254 participants, the green cluster had N = 177 participants and the red
cluster had N = 37 participants.
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3.4.1. Cluster Characterisation

Table 5 presents descriptive statistics for the variables used in this study at wave 1 and
wave 3 for each cluster. Of note, (i) the red cluster was the oldest on average, (ii) the mean
RT was longest in the red cluster, and it increased from wave 1 to wave 3, while in the other
clusters it decreased, (iii) there were no evident differences in the anxiety and depression
inter-wave evolution between clusters, (iv) the red cluster had the highest percentage of
participants with diabetes and/or taking anti-hypertensives. The inter-wave evolution of
the main variables of the present study and how they differed among clusters are treated in
more detail in the next section.
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Table 5. Descriptive statistics for the whole set of variables considered in this study at wave 1 and
wave 3 for each cluster. The first part of the table gives minimum, maximum values, and mean
and SD for each continuous variable. The second part shows ordinal or nominal variables and their
frequency in percentages.

Continuous Variable

Cluster Blue (N = 3254) Cluster Green (N = 177) Cluster Red (N = 37)

Wave 1:
Mean (SD);

Range

Wave 3:
Mean (SD);

Range

Wave 1:
Mean (SD);

Range

Wave 3:
Mean (SD);

Range

Wave 1:
Mean (SD);

Range

Wave 3:
Mean (SD);

Range

Age (years) 60.6 (7.6); 65.0 (7.6); 65.8 (8.5); 70.2 (8.5); 68.7 (7.5); 73.0 (7.6);
50–89 53–94 50–85 54–89 50–86 54–90

SART bad performances 0.1 (0.2); 0.1 (0.4); 2.4 (2.2); 1.8 (2.3); 0.7 (2.0); 15.5 (4.6);
0–1 0–4 0–15 0–9 0–11 9–23

SART: Total mistakes
8.2 (8.1); 8.7 (8.9); 33.5 (16.6); 11.0 (16.0); 17.7 (17.7); 120.7 (36.3);

0–64 0–55 2–92 0–184 0–74 64–184
SART: Mistakes in good
performances

8.8 (8.8); 8.2 (8.0); 22.7 (12.0); 8.9 (8.6); 14.7 (12.3); 8.4 (8.6);
0–60 0–51 0–51 0–51 0–46 0–32

SART: Mean RT (ms) 376.7 (91.3); 343.1 (81.1); 459.6 (108.0); 348.4 (84.8); 422.6 (101.7); 438.1 (95.6);
168.9–794.7 156.0–842.0 232.6–836.5 156.0–842.0 238.5–625.9 246.9–668.4

SART: SD RT (ms) 66.6 (37.1); 63.3 (41.4); 121.1 (50.7); 71.0 (43.3); 99.5 (59.6); 110.3 (60.2);
12.7–364.2 9.7–347.4 25.3–302.0 0.0–347.4 34.0–290.7 0.0–256.5

TUG (s) 8.4 (1.6); 9.1 (2.0); 9.3 (2.3); 10.1 (2.5); 9.5 (2.3); 10.5 (2.8);
4.8–28.5 5.1–27.6 5.6–24.3 6.2–18.4 6.3–17.6 6.7–18.1

UGS (cm/s) 138.2 (18.6); 136.1 (19.9); 129.5 (22.1); 126.1 (21.7); 126.7 (23.4); 119.0 (25.3)
43.1–207.5 47.5–207.5 46.0–181.3 63.8–177.6 64.2–164.3 67.4–161.6

DTGS (cm/s) 113.9 (25.4); 115.2 (25.3); 102.1 (25.5); 101.7 (28.2); 100.8 (26.7); 101.6 (24.0);
28.4–203.4 26.2–203.3 34.4–167.6 26.2–179.3 39.9–140.5 51.2–146.5

Falls
0.3 (1.4); 0.3 (0.8); 0.6 (1.6); 0.3 (0.8); 0.4 (0.8); 0.4 (0.6);

0–50 0–15 0–12 0–4 0–3 0–2

MMSE
29.0 (1.5); 29.0 (1.3); 27.7 (2.6); 28.1 (2.3); 27.5 (2.5); 27.7 (3.1);

0–30 19–30 19–30 18–30 20–30 15–30

MOCA
25.9 (2.7); 26.3 (2.8); 23.2 (4.0); 23.3 (4.2); 23.9 (4.2) 23.5 (5.2);

13–30 11–30 10–30 7–30 7–30 9–30

Anxiety 5.4 (3.5); 8.0 (2.6); 5.7 (3.5); 8.3 (2.7); 5.2 (3.9); 7.6 (1.7);
0–20 6–23 0–19 6–21 0–15 6–11

Depression 5.2 (6.6); 3.0 (3.6); 5.9 (6.6); 3.3 (3.6); 5.0 (7.2); 3.6 (4.0);
0–48 0–24 0–31 0–20 0–33 0–15

Ordinal/Nominal Variable
Wave 1

Frequency
(%)

Wave 3
Frequency

(%)

Wave 1
Frequency

(%)

Wave 3
Frequency

(%)

Wave 1
Frequency

(%)

Wave 3
Frequency

(%)
Female 54.1 54.1 58.8 58.8 40.5 40.5
Education level
- primary/none 16.2 16.1 39.0 39.5 27.0 27.0
- secondary 42.1 40.0 37.3 36.7 48.6 45.9
- third/higher 41.7 43.9 23.7 23.7 24.3 27.0
Anti-hypertensives 29.8 38.8 35.0 42.4 56.8 70.3
Diabetes 5.3 6.8 6.2 7.9 13.5 16.2
Smoker
- never 47.1 46.9 51.4 51.4 43.2 40.5
- past 39.7 43.5 35.6 41.2 43.2 45.9
- current 13.2 9.6 13.0 7.3 13.5 13.5
Drinking problem 14.0 (7.2 *) 12.6 (10.3 *) 10.2 (10.7 *) 9.6 (12.4 *) 13.5 (5.4 *) 2.7 (16.2 *)
IPAQ
- low 25.9 34.4 31.4 41.4 27.0 38.9
- medium 36.5 38.5 37.1 36.4 35.1 41.7
- high 37.6 27.1 31.4 22.2 37.8 19.4

* Dummy group of participants who answered “Don’t know” to the question “Do you have a drinking problem?”.

3.4.2. Mobility and Cognitive Decline across Clusters

Figure 8 shows in bar plots the inter-wave evolution of the main variables specific
to each cluster. Error bars denote the standard error of the distribution of values of a
given variable in a given wave for a given cluster. Stars indicate whether the difference of
distributions of values of a given variable for a given cluster was statistically significant be-
tween waves. TUG significantly increased from wave 1 to wave 3 (Wilcoxon test p ≤ 0.001)
showing a mobility decline present in all clusters. The number of falls reported decreased
in average from wave 1 to wave 3 for all clusters; however, only for the blue cluster was the
difference between distributions of the two waves statistically significant (Wilcoxon test
p = 0.029). UGS significantly decreased from wave 1 to wave 3 for all clusters (Wilcoxon
test p ≤ 0.002), agreeing with the mobility decline after 4 years already detected with TUG.
DTGS remained the same for all clusters: no significant differences were found between the
distribution in wave 1 and the distribution in wave 3 (Wilcoxon test p ≥ 0.279). MMSE
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increased from wave 1 to wave 3 in all clusters, but only for the blue and the green clusters
was the difference between distributions of the two waves statistically significant (Wilcoxon
test p ≤ 0.010). MOCA significantly increased after 4 years for the blue cluster (Wilcoxon
test p < 0.001), remained the same for the green cluster (Wilcoxon test p = 0.999), and
seemed to decrease for the red cluster, although with no statistical significance (Wilcoxon
test p = 0.579).
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Figure 8. Evolution of TUG (a), number of falls reported (b), UGS (c), DTGS (d), MMSE (e) and MOCA
(f) from wave 1 to wave 3 specific for each cluster. The bars are coloured based on the corresponding
cluster (blue, green and red, respectively). The height of the bars indicates the average value of the
variable for a given cluster in a given wave. Stars indicate whether the difference of distributions of
values of a given variable for a given cluster was statistically significant between waves.

Figure 9 shows a comparison of the inter-wave change across clusters. Specifically, the
height of the bars indicates the relative difference (relative inter-wave change) of a given
variable between waves 1 and 3 for each cluster. Error bars indicate the standard error of
the distribution of the relative inter-wave change values for each cluster. Stars indicate
whether the difference of distributions of inter-wave change values between clusters was
statistically significant. The inter-wave change for TUG was bigger for the red cluster,
although the difference among clusters was not statistically significant (Mann–Whitney U
test p ≥ 0.179 for all pairs). The inter-wave change for falls was bigger for the green cluster;
however, there was no statistically significant difference between clusters (Mann–Whitney
U test p ≥ 0.409 for all pairs). The inter-wave change for UGS was bigger for the red cluster,
showing statistically significant difference to the inter-wave change in the blue cluster
(Mann–Whitney U test p = 0.004), while no significant differences were found for all other
pairs (Mann–Whitney U test p ≥ 0.051). The inter-wave change for DTGS was bigger for
the red cluster, but there was no statistically significant difference between clusters (Mann–
Whitney U test p ≥ 0.188 for all pairs). The inter-wave change for MMSE was bigger for the
green cluster, showing statistically significant difference with the inter-wave change in the
blue cluster (Mann–Whitney U test p < 0.001), while no significant differences were found
for all other pairs (Mann–Whitney U test p ≥ 0.242). The inter-wave change for MOCA
was negative for the blue cluster, indicating an improvement in the performance, null for
the green cluster, indicating no change between waves, and positive for the red cluster,



Geriatrics 2022, 7, 51 21 of 32

indicating a worsening of cognitive performance, although no significant differences were
found between clusters (Mann–Whitney U test p ≥ 0.111 for all pairs).
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Figure 9. Comparison of the relative inter-waves change of TUG, falls, UGS, DTGS, MMSE and
MOCA among clusters. Stars indicate whether the difference of distributions of inter-wave change
values between clusters was statistically significant.

The last step of the comparison between clusters is presented in Figure 10. Here bars
represent the frequency of decline of the main variables of the present study, as defined in
Sections 2.1.3 and 2.1.4, within each cluster. Stars indicate whether the condition of decline
of a given participant statistically significantly depended on the classification in clusters,
namely if the classification in clusters statistically significantly represented a difference in
percentage of decline. Specifically, the presence of decline for TUG, UGS, DTUGS, MMSE
and MOCA significantly depended on the classification in clusters (χ2-test p < 0.013 for
all variables but MMSE, for which the p-value was p = 0.049), while the possibility of
being a new faller did not significantly depended on the classification in clusters (χ2-test
p = 0.708). The blue cluster presented the lowest percentage of decline in all variables.
Moreover, the green cluster presented a significantly higher percentage of TUG decline
(χ2 = 41.825), while the red cluster presented a significantly higher percentage of decline
in UGS (χ2 = 44.971), DTGS (χ2 = 9.039), MMSE (χ2 = 6.051) and MOCA (χ2 = 8.644).
Therefore, based on the χ2-value, the mobility decline represented by a decline in TUG and
UGS was highly dependent on the clusters’ classification.
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Figure 10. Percentage of TUG decline, new fallers, UGS decline, DTGS decline, MMSE decline and
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statistically significantly depended on the classification in clusters, namely if the classification in
clusters statistically significantly represented a difference in percentage of decline.

4. Discussion

The SART has been widely utilized to investigate executive cognitive functions of
healthy subjects and patients with neurodegenerative disorders [19,20]. Particularly, SART
has been shown to be a valuable tool to explore the emergent awareness in patients of FTD,
CBG and PSP, where direct frontal atrophy or breakdown of fronto-subcortical pathways
contributed to the disruption to metacognitive awareness [19]. Moreover, the SART test has
been used to investigate the sustained attention in robust, pre-frail, and frail older adults,
employing frequency-spectral analysis techniques to associate the RT frequency bands
with certain conditions [20]. It has been demonstrated that the fast variability component
of sustained attention was strongly positively correlated with the risk of pre-frailty or
frailty [17]. Considering the important role that SART plays in the medical research and
clinical investigation of the assessment of executive functions, we expanded our previous
results [7] in this study, employing new techniques for the longitudinal study of SART, and
applying novel big data analysis algorithms to investigate potential correlations with other
physiological systems.

4.1. Longitudinal Study of SART
4.1.1. Longitudinal Multimodal Visualisation

In the present work, we employed a previously reported methodology for the mul-
timodal visualisation of big repeated-measures data with continuous variable ordering,
already introduced in a previous companion paper [7]. We applied the technique to the
raw SART performance data, accompanied by global measures, such as MMSE score and
TUG, and enriched the visualisation with a longitudinal approach, representing in the
same panel the SART, MMSE, and TUG datasets at wave 1 and wave 3 using two different
color-codes (Figure 2).

The advantages of the new visualisation are discussed elsewhere [7]. Briefly, this
novel type of visualisation allows researchers and clinicians to appraise a large amount of
information in ‘the blink of an eye’. The whole complex repeated-measures dataset (SART
performances in this case) across different subjects, sorted by age, and across repeated
measures, is represented in the same figure. Moreover, the additional presence of global
parameters for diverse physiological systems could help clinicians to formulate relevant
hypotheses that consider the general health status of the subject, analysed per se and in
comparison with other subjects in the same age group.
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The new element of the multimodal visualisation introduced in the present study
allows cross-sectional and longitudinal comparisons in the same figure. Using the thresh-
olding variable, as previously introduced [7], and the double colour-code, we can analyse
the dynamic change of ‘big spots’ density from wave 1 to wave 3 across different age
groups. For example, considering the merged cohort of waves 1 and 3, we note that 68%
of participants who had at least one bad performance at wave 1, did not have any bad
performances at wave 3, so they improved their SART performances, while the remaining
32% maintained a number of BP≥ 1 at wave 3, constituting the 26% of the participants with
bad performances. On the other hand, 74% of this latter subgroup showed a worsening
of their SART performance from wave 1 to wave 3, going from a value BP = 0 to BP > 0.
We can also notice that the total number of mistakes increased from wave 1 to wave 3.
Thus, having in the same figure the multimodal SART visualisation at wave 1 (a) and at
wave 3 (b), and the subset of SART bad performances for waves 1 and 3 differentiated by
colour in the same graph (c), could help to understand how the SART performances of
participants in the merged cohort evolve after 4 years. We were, therefore, interested in
understanding which physiological factors at wave 1 could have predicted a worsening of
SART performance at wave 3.

4.1.2. Predictive Model for SART Performance after 4 Years

As we mentioned in the previous section, the distribution of ‘big spots’ changed from
wave 1 to wave 3. Not only the number of participants with bad performances increased,
but also the number of bad performances per participant increased at wave 3 and, above
all, a consistent portion of this subgroup was constituted by participants who did not have
bad performances at wave 1. The results of our statistical study on the inter-wave change
of BP are widely presented in Results Section 3.2. Our findings showed a generally signifi-
cant worsening of SART performances after 4 years. Wilcoxon rank sum test suggested a
significance difference between the distributions of BP at waves 1 and 3 (p < 0.001), and a
low Spearman’s coefficient (ρ = 0.210 at the significance level α = 0.01) demonstrated the
absence of significant trends between BP1 and BP3. Moreover, recent studies [7,25,27,31]
have shown interactions between different physiological systems and, particularly, correla-
tions have been found between cognitive and mobility decline. Therefore, motivated to
inspect if predictors of this worsening could be found in other physiological systems, we
employed BLR models, having as output the dichotomised variable that represented the
presence of bad performances at wave 3 (see Sections 2.4.1 and 3.3).

Based on the same structure of the BLR models employed in [7], we considered BLR
models using an increasing number of independent variables (see Section 2.4.1) besides the
main predictor. As main predictor we used the number of bad performances at wave 1,
after testing the variable ‘bad performances’ at wave 1 and wave 3 for potential trends
(Spearman’s rank correlation coefficient ρ = 0.210 at the significance level α = 0.01), the
total number of SART mistakes at wave 1 and the number of mistakes in good performances
at wave 1. The BLR models considered the main predictors separately, namely the three
main predictors did not figure together in the same model: each time a BLR model had
a main predictor and an increasing number of covariates as independent variables. The
reason behind this choice was that we were interested in understanding which variable
had good predictive power for the outcome and could be used independently from the
other predictors.

Our findings showed that in all combinations of covariates the BP1 had the highest
OR with no overlapping 95% confidence intervals, demonstrating, indeed, the highest
predictive power to detect the presence of bad performances at wave 3. Other significant
predictors were SD RT, age, and level of anxiety, while the third or higher level of educa-
tion was significantly protective against BP3 > 0. We note that the significance of these
predictors was always very high, having a p-value equal or lower than 0.005, and showing,
then, the high reliability of our findings.
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Previous findings [7] showed the importance of the variable ‘bad performances’ to
characterise cognitive performance and to predict a mobility decline after 4 years. Here,
we demonstrated the importance of this variable in the prediction of a worsening of the
SART performance, and we believed that this could have further clinical implications. We
used a combination of BP1 and BP3 in a longitudinal study to detect a subgroup of subjects
who would show a decline in multiple physiological systems. The concept of multiple
physiological dysregulations underlines frailty, a complex geriatric syndrome, which is
manifested in older adults as a general decline in different organs [22]. Frailty could be seen
in its physical dimension, where certain symptoms like muscle weakness, slow gait speed,
and weight loss are the natural markers, and the cognitive dimension, where the focus is the
assessment of cognitive status [70]. Therefore, recent findings proposed a multidimensional
approach, investigating the role of different neuropsychological domains to individuate
frailty and pre-frailty [71]. Particularly, significant associations between frailty and action
monitoring, depression and disinhibition, and impaired awareness for instrumental activi-
ties disabilities have been found [71]. In the framework of this multidimensional approach
for investigation of frailty, the present research work aims to detect, through an automatic
algorithm based on the evolution of SART performance in a 4 years-time frame, specific
groups of people who show decline at different physiological levels.

4.2. Fuzzy Clusters and the Three Degrees of Physiological Dysregulation

The natural tool of investigation was the application of clustering techniques. Clus-
tering methods are nowadays frequently used in biological and medical research [39,42]
aiming to automatically individuate subsets of subjects with similarities, which could
represent particular physiological conditions, or subsets of values in physiological param-
eters, which could represent biological markers. Our aim was to develop a clustering
technique that would allow to high specificity in the dataset analysed, individuating a
small group of participants with the highest risk of decline and potentially in need of closer
medical attention.

Recent studies have demonstrated that hard clustering algorithms were not well
suited to the analysis of biomedical data in most situations, since the subdivision in a
certain dataset between a subset of participants with a potential disorder and a subset of
participants who were potentially healthy was not very clear, for a variety of reasons [42].
Therefore, the fuzzy clustering with its probabilistic approach seemed to reproduce more
faithfully what happens in reality. In hard clustering, the algorithm partitions the set
well when the clusters are dense and well separated, namely when the elements of each
cluster are close enough to the centroid and sufficiently far from other cluster centroids.
Differently, in a fuzzy clustering algorithm such as FCM, the centroid of each cluster is
attracted towards outliers instead of the center of the cluster. The latter is, therefore, more
suitable when the partition is not clear for the intrinsic nature of the data.

We employed the FCM algorithm to classify the merged cohort (waves 1 and 3) into 3
clusters based on the evolution of the variable ‘bad performances’ from wave 1 to wave 3.
We were able to individuate 3 different degrees of physiological dysregulation in different
physiological systems, represented by the 3 clusters created: C1, C2, C3, blue, green and
red, respectively. The blue cluster, the biggest (94% of the entire cohort), comprehended
participants with a low number of bad performances and total mistakes at both waves,
youngest mean age, with the fastest RT and lowest SD RT. We note that the SART-related
variables indicate an improvement of SART performance from wave 1 to wave 3, although
very small. Moreover, compared to the other clusters at both waves, the blue cluster com-
prehended participants with shortest TUG, highest UGS and DTGS, lowest number of falls
reported, highest MMSE and MOCA scores, lowest percentage of participants with primary
or one level of education and highest percentage of participants with third/higher level of
education, lowest percentage of participants with diabetes or on anti-hypertensives, but
high percentage of participants with a drinking problem (Table 5). The green cluster (5% of
the entire cohort) comprehended participants with a high number of bad performances at
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wave 1 but with a lower number of bad performances at wave 3. Consequently, even the
number of total mistakes substantially decreased from wave 1 to wave 3 and the mean RT
and SD RT were lower in wave 3 compared to wave 1, indicating a considerable improve-
ment of the SART performance. Moreover, the green cluster had the highest percentage
of female participants, the lowest percentage of smokers and the lowest percentage of
participants with a drinking problem at wave 1. However, compared to the other clusters,
the participants in the green cluster had the lowest MOCA score, the highest level of anxiety
and depression (wave 1), the highest percentage of participants with primary/no education
and low level of physical activity, especially at wave 3, which could explain the biggest
drop of the number of falls reported compared to the other clusters (Table 5). Furthermore,
the green cluster was the only one where the DTGS, averaged across participants, decreased
from wave 1 to wave 3. Finally, the red cluster (only 1% of the entire cohort), comprehended
participants with none or a low number of bad performances at wave 1, but with a very
high number of bad performances at wave 3. The number of total mistakes for this cluster
increased by 682%, from 17.7 at wave 1 to 120.7 at wave 3; besides, this was the only cluster
where the mean RT and the SD RT increased at wave 3 compared to wave 1, indicating
a general steep worsening of the SART performance. Moreover, compared to the other
clusters at both waves, the participants of the red cluster had the longest TUG, the lowest
UGS and DTGS, the lowest MMSE score, and the biggest increase of depression level, from
the lowest value at wave 1 (5.0) to the highest value at wave 3 (3.6); this cluster was the
only one where the MOCA scores decreased from wave 1 to wave 3, and had the highest
percentage of participants with secondary level of education, diabetes, anti-hypertensives,
and the highest percentage of past or current smokers. Moreover, this cluster had the
biggest drop in the percentage of participants with high level of physical activity, from
the highest value at wave 1 (37.8%) compared to the other clusters to the lowest at wave 3
(19.4%). The only healthy signs for participants in the red cluster were the lowest level of
anxiety and smallest number of participants with a drinking problem, but even if in this
case the percentage of the dummy group was high (Table 5).

Summarising, we could consider the blue cluster as constituted by the healthier
majority of the sample, according to diverse physiological parameters, and the green
cluster as constituted by a small portion of participants whose SART performance markedly
improved, especially taking into account that this cluster showed the lowest MOCA score
at both waves, the highest level of anxiety and the highest percentage of participants with
none/primary level education. Moreover, the participants in the green cluster also showed
an improvement regarding the level of depression and smoking status, having the highest
percentage of participants (6%) transitioning from the status of current to past smoker
after 4 years. On the other hand, the red cluster revealed a selected group of participants
who showed a dramatic worsening of the SART performance after 4 years, especially
considering the low level of anxiety, one of the significant predictors for the presence of bad
performances at wave 3 according to the BLR models (see Section 3.3). Furthermore, the
participants in the red cluster showed a multiple dysregulation, a general unhealthy status
in all physiological systems, especially at wave 3, suggesting certain common features to
identify subjects who might need to be kept under medical observation.

High Specificity for a Selective Group of High-Risk Participants

As mentioned in the previous section, the FCM algorithm allowed detection of a
very restricted group of participants who showed dysregulation in multiple physiological
systems. This is not only a cross-sectional observation, but also a longitudinal consideration.
The comparison among clusters for the main variables is presented at three different levels
of inspection in Section 3.4.2.

Figure 8 shows the main variables and their evolution from wave 1 to wave 3 for all
clusters. All showed a homogeneous trend in mobility decline, represented by an increase
in TUG and decrease in UGS, and a general learning effect considering the cognitive
variables, consistent with other findings [72,73]. Moreover, the decrease in the number of
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falls reported, manifested in all clusters, could be seen in relation to the general decrease
in the percentage of participants with higher levels of physical activity. We note that the
increase of MMSE score, due to a learning effect, is not significant for the red cluster;
besides, the increase of MOCA score is significant only for the blue cluster, while the red
even showed even a decrease in this score.

Figure 9 shows a comparison of the relative differences between wave 1 and wave 3 of
the main variables among clusters. The biggest difference between waves was represented
by the red cluster, with the exception of number of falls reported, which reported a high
SD for all clusters, and the MMSE score. Moreover, the red cluster was the only one with a
positive relative difference between wave 1 and wave 3, indicating a decrease of MOCA
score after 4 years. Due to a general large SD in the relative inter-wave change for most of
the variables, a significant difference in inter-wave change among cluster was found only in
two cases: between the blue and the red cluster for UGS decline, and between the blue and
the green cluster for the improvement in MMSE score. The latter case indicated that the
biggest improvement concerning the MMSE score was found in the green cluster, further
suggesting that the green cluster was mainly constituted by participants who showed a
substantial improvement in cognitive status.

Finally, Figure 10 shows a comparison of the percentage of participants with decline
for the main variables, as defined in Sections 2.1.3 and 2.1.4, between clusters. The red
cluster presented the highest percentage of participants with mobility and cognitive decline,
with the exception of TUG decline and new fallers, where the highest percentage of decline
was found in the green cluster. Moreover, for all main variables, with the exception of
new fallers, the classification in clusters statistically significantly represented a difference
in percentage of decline. We mention that the statistical tests on the inter-wave change
for the main variables across different clusters (Figures 8 and 9) and on the percentage of
decline across clusters (Figure 10) detected a very high effect size (Wilcoxon test p ≤ 0.029
for significant differences between waves, Mann–Whitney U test p ≤ 0.004 for significant
differences of the inter-waves change between clusters, χ2-test p < 0.013 for significant
differences of the portion of decline between clusters, except for MMSE, which had a
borderline p = 0.049, and χ2 ≥ 6.051), indicating the high robustness of our findings on
the population study. Therefore, the employed ‘physiologic clustering’ (i) individuated
different degrees of physiological dysregulation in diverse physiological systems, and (ii) in-
dividuated in a generally healthy cohort a selected group of participants who presented
a mobility and cognitive decline after 4 years. We note that a potential mobility decline
would be easily detectable, while a cognitive decline is in general hard to detect [7]. Indeed,
in population-based longitudinal studies such as TILDA, cognitive decline is difficult to
detect, but a loss of the expected learning effect may signify clinically significant cognitive
impairment despite no/mildly statistically significant differences in cognitive scores. The
applied technique provided a high degree of specificity and in practice could potentially
help clinicians select a small number of individuals to keep under medical observation.

4.3. Strengths and Limitations of the Study

One of the main strengths of our study is the possibility of working with a large dataset
and comprehensive health assessment: TILDA is one of the most detailed population-
based longitudinal studies of ageing, and the comprehensive measures and tests taken at
different waves constitute the main strength for longitudinal analyses involving various
physiological systems. In particular, a complex repeated measures dataset, like SART,
allows deep investigation for a large sample of individuals. Moreover, the predominant
longitudinal aspect of the TILDA study allows investigations over time, providing a
further dimension to cross-sectional studies, and allowing the investigation of the dynamic
evolution of various physiological parameters. Furthermore, the FCM algorithm applied to
the new variable ‘bad performances’ at waves 1 and 3 allowed detection in a large generally
healthy cohort of a very specific group of participants that might require closer monitoring,
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because after four years they presented marked signs of dysregulation across multiple
physiological systems.

Our study also has potential limitations. For example, in this study we did not in-
vestigate sensorium, nor did we make a comprehensive neuropsychological assessment,
including of autonomy in daily life, awareness of possible deficits, or an exploration of
individual cognitive domains, although previous studies had shown correlations between
sustained attention and preferred retinal locus, a fundamental compensative mechanism in
patients with foveal vision loss [74]. We focused on variables which are mainly representa-
tive of the mobile and cognitive systems. This is a first step in longitudinal investigation of
the complex raw information contained in the SART dataset, and its possible correlations
with other physiological systems. Future studies will consider the entire spectrum of
cognitive functions for the different clusters of participants and the analysis of their brain
magnetic resonance imaging (MRI), which has been shown to contain useful information
and clear biomarkers of accelerated brain ageing and neurodegenerative disorders [18,75].
Indeed, a GO-NoGO fMRI paradigm investigated metacognitive-executive functions in
neurocognitive disorders and in neuropsychiatric diseases, e.g., in Parkinson’s disease,
in which the loss of dopaminergic neurons impacts on the functioning of ACC, which
has a central role in detecting the processing of conflict, intention, and response initia-
tion/inhibition [17,18].

Moreover, the green and, especially, the red clusters had a very low number of partic-
ipants, which affected the statistical analysis and made for difficulty of interpretation in
comparison with the large blue cluster. Of the entire cohort, 94% fell into the blue cluster;
this represented the vast majority of healthier participants, this being this a population
study conducted on relatively healthy and high-functioning older adults. The participants
in the blue cluster basically did not have worrying SART performances at both waves,
nor did they show signs of decline in the other physiological systems. In contrast, the
remaining participants represented the small portion of adults that improved their SART
performances and their life in general (green cluster), and a very select group of people
that not only dramatically worsened in the SART, but also manifested multiple organic
dysregulation (red cluster). We note that all the statistical tests in the present study always
referred to the size of each cluster. In fact, some results did not reach statistical significance.
However, we believe that this is a small price worth paying for having obtained a selected
group of participants who showed mobility and, most importantly, cognitive decline af-
ter 4 years. This is usually hard to detect [76], especially in relatively high-functioning
community-dwelling adults with good cognitive and physical health [77]. In TILDA, we
succeeded in identifying a very small group of participants at high risk of physical and
cognitive decline after four years. Translating this to clinical practice, our findings mean
that our methodology could be replicated to allow clinicians to identify highly specific
patients who may require closer medical follow up and interventions to prevent accelerated
loss of functionality and premature loss of independence.

5. Conclusions

In conclusion, the present work expanded the multimodal visualisation previously
introduced in [7] with a longitudinal approach, allowing (i) rapid visual inspection of
a large amount of data, the complex raw SART data in this case, and to identify poor
SART performances, (ii) inspection of the dataset together with different health variables of
clinical interest, and (iii) observation of evolution across waves in the same graph. This
representation would allow researchers and clinicians to compare the participants’ perfor-
mances between each other and across time in order to generate hypotheses. Moreover,
the study offered a longitudinal inspection of the SART dataset, investigating main pre-
dictors for the presence of BP at wave 3, and individuating as such BP1, age and level of
anxiety. Furthermore, applying the fuzzy clusters algorithm to the evolution of the variable
bad performances from wave 1 to wave 3, we were able (i) to automatically organise the
participants into three different groups based on their SART performances at waves 1



Geriatrics 2022, 7, 51 28 of 32

and 3, (ii) individuate three different degrees of physiological dysregulation, represented
by healthy participants (blue cluster), participants whose cognitive status was not the
highest compared to the rest of the dataset but who showed the biggest improvement
(green cluster), and participants whose mobility and cognitive conditions steeply deterio-
rated after 4 years (red cluster); and (iii) to identify a very specific group of participants
that might require closer monitoring, because after four years they presented marked
signs of dysregulation across multiple physiological systems. The identification of such
a group of participants in a cohort of relatively high-functioning community-dwelling
adults with good cognitive and physical health is the very first step in the detection of
frailty, in the framework of a multidimensional approach based on metacognitive-executive
functions [71].
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Appendix A

The FCM algorithm partitions a collection of N elements S =
{

xi,i=1,...,N
}

, defined in a
space where it is possible to state a metric d, into c fuzzy groups, such that c ≤ N [39,61,78].

Similarly to hard clustering [4], the FCM algorithm follows an iterative procedure with
random initialization of cluster centroids q

i,i=1,...,c
. The centroids are iteratively updated

as the remaining elements of S are assigned to the clusters, where the membership matrix
U =

[
uij
]
∈ Mc×N , having as many rows as there are clusters, and as many columns as

there are elements of S, and which indicates the degree of belongingness of each element to
each cluster, is such that:

1. 0 ≤ uij ≤ 1 ∀i ∈ 1, . . . , c, ∀j ∈ 1, . . . , N
2. ∑c

i=1 uij = 1 , ∑N
j=1 uij > 0

3. the objective function of FCM JFCM = ∑c
i=1 ∑N

j=1 uij
m d(xj, q

i
)2 is minimised.

https://tilda.tcd.ie/data/accessing-data/
https://tilda.tcd.ie/data/accessing-data/
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where m is the fuzziness parameter: the higher it is, the more likely are the elements to
belong to more clusters [39,61,78]. The fuzzy partitioning is carried out through an iterative
optimization of the objective function, updating the membership uij and the centroids q

i
according to the following equations:

uij =
1

∑c
k=1

[
d
(

xj, q
i

)
d
(

xj, q
k

)
] 2/(m−1)

(A1)

qi =
∑N

j=1 uij
mxj

∑N
j=1 uij

m
(A2)

We applied the FCM algorithm to classify the set of participants into three clusters,
using the function cmean in MATLAB (R2020b, The MathWorks, Inc., Natick, MA, USA). In
our case:

• the set of elements to partition is the merged cohort (wave 1 and 3) of participants
• the metric d has two components: the variable bad performances at wave 1 and the

same variable at wave 3
• c = 3
• m = 2 (as default in MATLAB)
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