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Abstract

Background: The role of the innate immune system in Alzheimer’s disease (AD) and neurodegenerative disease
susceptibility has recently been highlighted in genetic studies. However, we do not know whether risk for
inflammatory disease predisposes unaffected individuals to late-life cognitive deficits or AD-related neuropathology. We
investigated whether genetic risk scores for seven immune diseases and central nervous system traits were related to
cognitive decline (nmax = 1601), classical AD neuropathology (nmax = 985), or microglial density (nmax = 184).

Methods: Longitudinal cognitive decline, postmortem amyloid and tau neuropathology, microglial density, and gene
module expression from bulk brain tissue were all measured in participants from two large cohorts (the Rush Religious
Orders Study and Memory and Aging Project; ROS/MAP) of elderly subjects (mean age at entry 78 +/− 8.7 years). We
analyzed data primarily using robust regression methods. Neuropathologists were blind to clinical data.

Results: The AD genetic risk scores, including and excluding APOE effects, were strongly associated with cognitive
decline in all domains (min Puncor = 3.2 × 10− 29). Multiple sclerosis (MS), Parkinson’s disease, and schizophrenia risk did
not influence cognitive decline in older age, but the rheumatoid arthritis (RA) risk score alone was significantly
associated with microglial density after correction (t146 = − 3.88, Puncor = 1.6 × 10− 4). Post-hoc tests found significant
effects of the RA genetic risk score in multiple regions and stages of microglial activation (min Puncor = 1.5 × 10− 6).
However, these associations were driven by only one or two variants, rather than cumulative polygenicity. Further,
individual MS (Pone-sided < 8.4 × 10− 4) and RA (Pone-sided = 3 × 10− 4) variants associated with higher microglial density
were also associated with increased expression of brain immune gene modules.

Conclusions: Our results demonstrate that global risk of inflammatory disease does not strongly influence aging-
related cognitive decline but that susceptibility variants that influence peripheral immune function also alter microglial
density and immune gene expression in the aging brain, opening a new perspective on the control of microglial and
immune responses within the central nervous system. Further study on the molecular mechanisms of peripheral
immune disease risk influencing glial cell activation will be required to identify key regulators of these pathways.

Keywords: Genomics, Alzheimer’s disease, Microglia, Inflammation, Polygenic score, Innate immunity, Postmortem,
Neuropathology, RNA sequencing

* Correspondence: df2652@columbia.edu
1Center for Translational and Computational Neuroimmunology, Department
of Neurology, Columbia University Medical Center, 630 West 168th Street, PH
19 – 302, New York, NY 10032, USA
2Department of Neurology, Brigham and Woman’s Hospital, 75 Francis Street,
Boston, MA 02115, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Felsky et al. Molecular Neurodegeneration  (2018) 13:38 
https://doi.org/10.1186/s13024-018-0272-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-018-0272-6&domain=pdf
http://orcid.org/0000-0003-1831-9848
mailto:df2652@columbia.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Genetic studies have highlighted the shared architecture
of susceptibility among inflammatory diseases [1]; how-
ever, in unaffected individuals, the significance of this
genetic predisposition to immune dysfunction for
aging-related processes is unknown. Recent genetic stud-
ies of neurodegenerative diseases have also implicated
the immune system – particularly the innate component
– in susceptibility to aging-related conditions [2], with
Alzheimer’s disease (AD) susceptibility being most clearly
enriched for variants that influence the expression and
splicing of genes expressed in myeloid cells [3, 4]. In the
brain, microglia, the resident myeloid cells, have a prom-
inent role, but infiltrating macrophages, B cells, and T
cells also contribute to brain pathology in older age.
Today, it is not clear whether a predisposition to patho-
logic inflammatory responses influences the function of
organ systems in individuals that are not affected by an
autoimmune disease. Here, we evaluate whether a propen-
sity for excessive inflammation that has not manifested it-
self clinically in one’s life course can influence the
likelihood of (1) late-life cognitive deficits, (2) the accumu-
lation of common neuropathology, including amyloid-β
(Aβ) and hyperphosphorylated tau, or (3) microglial re-
cruitment and activation.
The genetic architecture of aging-related traits is not

yet well understood; although their prevalence in the
population and the heterogeneity observed among older
individuals suggest that the allelic spectrum influencing
susceptibility includes many common variants of modest
effect [5–7]. To assess this hypothesis, we used a com-
mon strategy in which the effects of validated suscepti-
bility variants are aggregated into a single additive
genetic risk score (GRS). While useful as a screening
tool, a GRS obscures the intrinsic granularity of the gen-
omic risk landscape; therefore, they need to be comple-
mented with targeted investigations of individual
variants, where possible. We evaluated two representa-
tive inflammatory diseases for which the genetic archi-
tecture of susceptibility has been well described: MS,
which targets the central nervous system, and rheuma-
toid arthritis (RA), for which a recent study of medical
claims data from over 8.5 million adults reported an in-
creased relative risk of AD among patients with RA. Fur-
ther, anti-TNFα therapy for RA may lower this risk [8].
In MS, a neuropathological study reported no significant
difference in the presence of AD pathologies compared
to controls [9]; however, the prevalence of late-life path-
ologies and cognitive deficits in genetically-defined pop-
ulations remains to be characterized.
We also evaluated GRS for four other traits that could

influence brain aging and have been characterized genet-
ically: Parkinson’s disease (PD), telomere length, coron-
ary artery disease (CAD), as well as schizophrenia,

which may also have an inflammatory component [10].
Specifically, we deployed our GRS in two deeply charac-
terized cohorts of aging individuals, deconstructed poly-
genic associations to resolve whether an association is
driven by selected variants or a broad distribution of
variants, and accessed cortical RNA sequence data to
further develop our mechanistic understanding of ob-
served genetic effects.

Methods
Subjects
Participants in this study were from the Religious Orders
Study (ROS) [11] and the Rush Memory and Aging Pro-
ject (MAP) [12], two cohort studies of elderly popula-
tions from the Chicago area conducted by investigators
at the Rush Alzheimer’s Disease Center (Rush University
Medical Center, Chicago, IL, USA). All subjects were
older and recruited free of dementia (mean age at entry
78 +/− 8.7 years), agreed to annual clinical and neuro-
cognitive evaluation, and signed an Anatomical Gift Act
allowing for brain autopsy at time of death.

Genetics and imputation
In total, 1878 subjects were genotyped using the Affyme-
trix 6.0 Genechip. DNA was extracted from whole blood,
lymphocytes, or frozen brain tissue and genotype data
underwent standard quality control procedures using
PLINK (v1.08), as previously described [13]. Briefly, sub-
jects and variants were filtered based on genotype suc-
cess rate > 0.95, Hardy-Weinberg Equilibrium P > 0.001,
and mishap test P> 1 × 10− 9. After quality control of the
initial genotype dataset, 1709 individuals and 750,173
autosomal variants remained. Whole genome imputation
was performed using BEAGLE (v3.3.2) [14] and the 1000
Genomes reference panel (phase I haplotypes). To
analyze the major histocompatibility complex (MHC) re-
gion in detail, a specialized imputation pipeline,
SNP2HLA [15], was used. This was necessary given the
major contribution of variation in this region to the
pathogenesis of immune-related traits analyzed in this
study. See Additional file 1: Supplementary Methods for
details.

Postmortem amyloid-β and tau neuropathology
Postmortem neuropathology data were available for up
to 985 subjects at time of study. All brains were exam-
ined by a board-certified neuropathologist blinded to age
and clinical data. Aβ and abnormal tau deposition were
measured using immunohistochemistry and automated
image processing for total amyloid and paired helical
filament tau, and a modified Bielschowsky silver staining
technique for neuritic and diffuse plaques, and neurofib-
rillary tangles, as published previously [16].
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Postmortem microglial count density
A subset of up to 183 brain samples with genomic data
were evaluated for the presence of microglia at three
stages of activation, based on morphology: stage 1 (thin
ramified processes), stage 2 (plump cytoplasm and
thicker processes), and stage 3 (appearance of macro-
phages). For each of four regions (midfrontal cortex, in-
ferior temporal cortex, ventral medial caudate, and
posterior putamen), four microglial density scores (total
count of microglia/area surveyed) were calculated: stage
1 only, stage 1 + 2 + 3, stage 2 + 3, and stage 3 only [3]
(see Additional file 1: Supplementary Methods).

Cognitive decline
A total of 1601 subjects with genomic data also had lon-
gitudinal cognitive performance data available at the
time of study. ROS and MAP subjects were both admin-
istered 17 cognitive tests annually spanning five cogni-
tive domains: episodic memory, semantic memory,
working memory, perceptual speed, and visuospatial
ability. Measures of cognitive performance for each do-
main were calculated by averaging z-scores across tests
[11, 12, 17], and rates of cognitive decline were calcu-
lated per subject using general linear mixed models of
cognitive scores over time, co-varying for age at baseline,
years of education, and sex, as described [6].

Gene expression
RNA sequencing and post-processing
RNA was extracted from DLPFC and sequenced on the
Illumina HiSeq (50 million paired-end reads of 101 bp
each), as described [13]. Expression FPKM values were
quantile-normalized, correcting for batch effect with
Combat [18]. Paired-end reads were mapped to genes
using the Ensemble human genome transcriptomic data-
base (http://www.ensembl.org). Expression QTL (eQTL)
analyses were performed in the ROS/MAP sample to as-
certain potential mechanisms of pathology-associated
gene variants with respect to gene expression [19]. The
GTEx portal [20, 21] was used to corroborate eQTL
effects.

Clustering and module enrichment analyses
Gene modules of co-expressed genes were derived using
the SpeakEasy consensus clustering algorithm [22]. In
ROS/MAP, SpeakEasy identified 47 mutually exclusive
modules with 20–556 gene members (median = 331),
several of which have been shown to correlate strongly
with pathology, cognition, and cell-type specific markers
of gene expression in multiple datasets [23]. Of these
modules, five (modules #5, #113, #114, #115, and #116)
show substantial enrichment for immune- and
microglia-related functions and processes [23]. Immune
gene modules were defined based on hypergeometric

enrichment for microglia-specific genes (enrichment p <
0.0011). These microglia-specific genes were defined
based on Olah et al. (2018) [24] as at least four-fold up-
regulated in human bulk microglia. Module 113 (in-
cludes AD genes CLU, SPPL2A, SQSTM1, MPZL1, and
ETS1) has an overlap of 24 microglial genes/313 total
module genes (P = 0.0024); module 114 (no major AD
genes) has an overlap of 24/276 (P= 4.5 × 10− 4); module
115 (no major AD genes) has an overlap of 33/232 (P=
4.1 × 10− 10); module 116 (TREM2, INPP5D) has an over-
lap of 144/224 (P= 5.6 × 10− 148); and module 5 (BIN1,
PVRL2) has an overlap of 58/431 (P =8.5 × 10− 16). See
Patrick et al. (2018) for details [25]. As such, expression
levels of these five modules were used to benchmark the
transcriptional effects of variants in functionally cohesive
immune pathways.

Statistical analysis
GRS calculation
GRS were calculated using PLINK (v1.90b) [26] and
all other analyses were performed using R (v3.3.3)
[27]. We tested eight different GRS in this study: two
inflammatory disease scores (MS and RA) and com-
parator scores that could influence aging-related cog-
nitive decline, including those for AD (including (+)
and excluding (−) APOE), PD (which frequently in-
cludes a dementing illness), CAD (the second most
common cause of dementia in older individuals),
schizophrenia (previously known as dementia prae-
cox), and telomere length (a marker of biological
aging). For each score, lists of genome-wide signifi-
cant variants were extracted from state-of-the-art
genome-wide association studies (listed in Table 1).
Individual publications were chosen rather than an
aggregate database to limit error due to
between-study heterogeneity in outcome definitions,
sample characteristics, and statistical methodology.
The PLINK --score command was then used to gen-
erate average per-allele scores, weighted by each vari-
ant’s published effect. Briefly, for each published trait,
the number of effect alleles (i.e. those associated with
an increase in trait outcome or disease liability) for
each genome-wide significant variant was multiplied
by its effect size (natural logarithm of the odds ratio
or standardized beta coefficient), and these quantities
were summed across variants within each subject to
generate individual polygenic scores. Default parame-
ters were used for this calculation, and missing geno-
types contributed an amount to each score equal to
the effect allele frequency in our sample, minimizing
potential bias. Nonetheless, imputed genotype quality
was high and each GRS calculation was manually
inspected to ensure negligible and non-systematic
missingness.
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Associations of GRS with postmortem pathology and
cognitive decline
Associations of GRS with study outcomes were modeled
using iterated re-weighted least squares, from the “MASS”
R package [27]. The iterated re-weighted least squares re-
gression technique employed here provides effect esti-
mates robust to outliers by assigning weights to each
observation and iteratively fitting Huber M-estimators
[28]. All models of neuropathology co-varied for age at
death, sex, postmortem interval, and the top three
EIGENSTRAT principal components [29]. Tests were cor-
rected using Benjamini & Hochberg’s false discovery rate
(FDR) procedure [30]. Significant associations (two-sided
PFDR < 0.05) were analyzed further to determine region
and activation stage-specific effects on microglial density.
All variants within each significantly associated GRS (with
minor allele frequency > 0.1) were then tested individually.

Overlap between variants affecting microglial density and
gene module expression
To compare effects of risk variants on microglial density
vs. effects of the same risk variants on gene module ex-
pression, the -log(P-value) for each variant’s effect on
both phenotypes were multiplied by their allelic direc-
tions of effect (+ 1 or − 1) and tested for association
using Spearman rank correlations. Thus, whole sets of
variants, grouped by the GRS to which they contribute,
could be tested for synergistic effects on both microglial
density and gene module expression. Correlation coeffi-
cients were calculated separately for each GRS and mod-
ule combination, where positive ρ values indicate a
tendency for variants within a given GRS to influence
both microglial density and gene module expression in
concordant directions. The ranks of these coefficients
for the five immune modules were then evaluated for
significance by calculating the probability that the lowest
of five randomly selected ranks would be equal to the
lowest observed rank by chance alone (see Additional
file 1: Supplementary Methods).

Results
The RA but not the MS GRS is associated with cognitive
decline and postmortem neuropathology
Table 2 summarizes the demographic characteristics of
the ROS/MAP participants that were included in our
analyses. In comparing the GRS to one another, we
found a modest correlation between the RA and MS
scores (Spearman ρ = − 0.13, Puncor = 2.29 × 10− 8), as ex-
pected given the documented sharing of susceptibility
loci between the two diseases (see Additional file 1:
Figure S1).
After FDR correction, both the AD GRS including

(AD+APOE) and excluding (AD-APOE) the APOE ɛ4 risk
haplotype were significantly associated with faster de-
cline in all cognitive domains proximal to death (min
Puncor < 1 × 10− 16), but no other GRS demonstrated
significant associations (Fig. 1). The AD+APOE GRS was
also strongly associated with both amyloid (4.7 × 10− 21 >
Puncor > 1.8 × 10− 23) and tau (7.1 × 10− 20 > Puncor > 1.2 ×
10− 22) phenotypes; whereas the AD-APOE GRS was only
associated with tau measures (5.5 × 10− 4 > Puncor > 5.5 ×
10− 4) (Fig. 2). There were no associations of either AD
GRS with microglial counts, confirming findings previ-
ously reported in these and other cohorts. [5, 31] Across
all other scores, only the RA GRS was significantly asso-
ciated with brain-wide microglial density after correc-
tion: an increase in liability for RA was associated with a
decrease in microglial density (t146 = − 3.88, Puncor =
1.6 × 10− 4) (Fig. 2). We then accessed our more detailed
microglial data and repeated the analyses to test for the
effects of each GRS on microglial count density across
each brain region and stages of microglial activation. We
found that the effect of the RA GRS is widely distrib-
uted, being present in multiple brain regions and stages
of activation (1.4 × 10− 3 > Puncor > 1.5 × 10− 6). In addition,
significant (CAD; t171 = 3.44, Puncor = 7.3 × 10− 4) and sug-
gestive (MS and AD) associations, particularly in relation
to the activated stage 3 microglia, were noted in the infer-
ior temporal gyrus (Fig. 3).

Table 1 Summary of Studies Used to Derive Polygenic Scores

Trait/Disease Publication Total study size
(cases/controls)a

# of SNPs in score SNPs with ROS/MAP
MAF > 0.1

AD Lambert et al., 2013 (Nat. Genet.) 25,580 / 48,466 22 18

CAD Nikpay et al., 2015 (Nat. Genet.) 60,801 / 123,504 63 54

MS Patsopoulos et al.,2017 (Biorxiv) 47,351 / 68,284 232 196

PD Nalls et al., 2014 (Nat. Genet.) 13,708 / 95,282 32 27

RA Okada et al., 2014 (Nature) 29,880 / 73,758 76 67

Schizophrenia Psychiatric Genomics Consortium,
2014 (Nature)

36,989 / 113,075 106 100

Telomere length Codd et al., 2013 (Nat. Genet.) 48,423b 8 8
aStudy size represents all subjects analyzed, regardless of study design (i.e. case/control, meta-analysis, and family-based designs) or analysis stage.
bThe study by Codd et al., 2013 [43] was not a case/control design, as telomere length was evaluated as a continuous outcome. MAF =minor allele frequency.
MAP = Rush Memory and Aging Project. ROS = Rush Religious Orders Study
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Individual variants drive GRS associations with microglial
density
To understand what drives the association of the RA
and CAD GRS with microglial phenotypes, we analyzed
individual variants contributing to each GRS. For CAD,
rs4977574 (chr. 9) alone drove the GRS association, and,
for RA, two variants, rs9268839 (chr. 6) and rs10175798
(chr. 2), were responsible (Fig. 4). After removal of these
two top RA GRS variants and re-calculation of the RA
score, we found no association with total microglial
density (P = 0.74) nor with any of the region- or
stage-specific measures (0.23 > P < 0.88). The more

strongly associated RA variant, rs9268839, is found in
the Human Leukocyte Antigen (HLA) class II region
and is also the strongest RA susceptibility variant in
Europeans (O.R. = 2.47, C.I.95% = [2.39,2.55], Pmeta =
1.5 × 10− 300) [32]. Therefore, upweighting of this variant
in the calculation of the RA GRS biased its effect on
microglial density (Additional file 1: Figure S3). In the
CAD GRS, a similar pattern was observed: rs4977574
drives the association and is the strongest hit in the CAD
genome-wide association study (O.R. = 1.21, C.I.95%
= [1.19,1.24], Pmeta = 2.29 × 10− 98) [33] (Additional file 1:
Figure S4).

Table 2 Sample Sizes and Characteristics for Each Analysis

Phenotype N Mean SD Min Max

Neuritic Plaques 985 0.86 0.85 0.00 5.04

Diffuse Plaques 0.73 0.77 0.00 4.61

Neurofibrillary Tangles 0.63 0.76 0.00 6.23

Sex (F/M) 641/344 – – –

APOE ε4 status (−/+) 723/262 – – –

Age at death 89.06 6.39 66.22 108.28

Dx at last visit (CN/MCI/AD/other) 319/237/343/86 – – –

PMI 8.57 7.59 0.00 85.08

Total Amyloid 952 4.21 4.20 0.00 19.93

Sex (F/M) 617/335 – – –

APOE ε4 status (−/+) 697/255 – – –

Age at death 88.95 6.38 66.22 108.28

Dx at last visit (CN/MCI/AD/other) 309/230/329/84 – – –

PMI 8.52 7.57 0.00 85.08

Total PHF-Tau 946 6.43 7.70 0.00 78.52

Sex (F/M) 615/331 – – –

APOE ε4 status (−/+) 694/252 – – –

Age at death 88.91 6.38 66.22 108.28

Dx at last visit (CN/MCI/AD/other) 312/228/326/80 – – –

PMI 8.47 7.56 0.00 85.08

Microglial Density (all regions) 154 191.02 54.88 48.30 348.64

Sex (F/M) 96/58 – – –

APOE ε4 status (−/+) 117/37 – – –

Age at death 89.50 5.15 74.83 101.19

Dx at last visit (CN/MCI/AD/other) 51/41/58/4 – – –

PMI 7.36 5.97 2.50 54.50

Cognition 1601 −0.01 0.09 −0.48 0.17

Sex (F/M) 1113/488 – – –

APOE ε4 status (−/+) 1 594a 1186/408 – – –

Age at baseline evaluation 1601 86.50 6.81 60.15 108.15

Dx at last visit (CN/MCI/AD/other) 700/357/436/108 – – –

Note: All values of N are given for samples that have data for both the specified phenotype and genome-wide genotypes.
aAPOE ε4 status was obtained separately from genome-wide genotypes, so seven samples with cognitive data did not have APOE ε4 status data available at time
of study, CN cognitively normal, Dx diagnosis, F female, M male, MCI mild cognitive impairment, PHF-Tau paired helical filament tau, PMI postmortem interval, SD
standard deviation
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In ROS/MAP cortical RNA and GTEx, the top variant influ-
encing microglial density for the RA score (rs9268839, Puncor
= 2.48 × 10−5) influences HLA class II expression (see
Additional file 1: Supplementary Methods). The top CAD
SNP, rs4977574, has no cis-eQTL effects in these data but has
been reported to influence VIL2 in blood (P=6.1 × 10−6) [34].

Variants affecting microglial density also tend to affect
expression of immune gene modules
Another approach to exploring the role of GRS in the
aging brain involves assessing their effects on the cor-
tical transcriptome of ROS/MAP participants, using the
47 modules of co-expressed genes previously defined in

Fig. 1 Analysis of GRS vs. cognitive decline slopes (n = 1601). Two-sided uncorrected P-values derived from robust regression are shown within
tiles. Models co-varied for age at initial assessment, sex, years of education, and three EIGENSTRAT principal components. The color scale indicates
magnitude and direction of the effect T-statistic. *significant after FDR correction (PFDR < 0.05)

Fig. 2 Analysis of GRS vs. aggregate AD-related pathologies and microglial density. Immunohistochemistry images showing (a) neuritic amyloid
plaques (stained with 4G8), (b) neurofibrillary (tau) tangles (stained with AT8), and (c) microglia at three stages of activation (stained with CR3–43)
in our postmortem tissue samples. (d) Two-sided uncorrected P-values derived from robust regression are shown within tiles. Models co-varied
for age at death, sex, and three EIGENSTRAT principal components. The color scale indicates magnitude and direction of the effect T-statistic.
*significant after FDR correction (PFDR < 0.05)
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these individuals [23]. Additional file 1: Figure S5A
shows the results of the direct association of each
gene module’s expression with each GRS. After cor-
rection, this analysis yielded no significant results
overall; however, 17 correlations exceeded Puncor <
0.05. Evaluating gene module expression directly
against midfrontal microglia density (stages 1 + 2 + 3),
only module #118 had a significant effect after cor-
rection (t94 = − 3.60, Puncor = 5.1 × 10− 4), whereby in-
creased expression was associated with a decrease in
microglial density (Additional file 1: Figure S5B). To
evaluate the intersection of gene variant effects on
both microglial density and gene expression, Spear-
man correlations of variant effects on both outcomes
were evaluated within each GRS. Again, no results
were significant after correction, largely due to a
sparsity of individually significant associations of GRS
SNPs with either microglial density or module expres-
sion. Nonetheless, our exploratory findings suggest a
possible tendency for variants which affect microglial
density to also influence immune module expression
(See Additional file 1: Figure S7, Additional file 1:
Supplementary Results).

Discussion
We show that polygenic risk burden for RA and CAD
significantly impact microglial count density, in different
regions and at different stages of activation, in postmor-
tem brain of elderly individuals. However, these associa-
tions were driven by only one or two variants within
each GRS, highlighting a key limitation in the use of
polygenic risk models of complex traits. In joint analyses
of GRS, microglial densities, and RNA sequencing from
the frontal cortex, we found no significant direct associa-
tions between GRS and immune gene module expres-
sion. However, when evaluating pleiotropy among GRS
variants, microglial density and immune gene expres-
sion, we noted significant associations of MS, CAD, and
RA risk variants with brain-wide microglial density and
expression of at least one immune module. In parallel, a
high genetic MS burden was linked to a loss of modules
that are enriched for neuronal or mitochondrial genes,
suggesting that it may play a role in exacerbating the
dysfunction or loss of neurons or their transcriptional
programs.
Several GRS tested showed effects in the directions ex-

pected based on existing literature: both the AD+APOE

Fig. 3 Analysis of GRS vs. microglial densities across four regions for each measured stage of activation. Two-sided uncorrected P-values derived
from robust regression are shown within tiles. Models co-varied for age at death, sex, and three EIGENSTRAT principal components. The color
scale indicates magnitude and direction of the effect T-statistic. *significant after FDR correction (PFDR < 0.05)
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and AD-APOE GRS were significantly associated with cog-
nitive decline at corrected thresholds, but, interestingly,
the AD-APOE GRS was only significantly associated with
tau-related neuropathology, complimenting existing evi-
dence from in vivo PET imaging and CSF analyses show-
ing an effect of APOE ε4 on amyloid- but not
tau-related biomarkers in healthy elderly [35]. While our
observed association of the CAD GRS with microglial
density in the inferior temporal cortex was not expected,
the variant driving this association, rs4977574, is in high
linkage disequilibrium (r2 = 0.89) with another variant,
rs1333049, that has been associated at genome-wide sig-
nificance with risk for ischemic stroke [36]. It is possible
that the overlapping susceptibility at this locus for CAD
and stroke drives cerebrovascular changes that lead to
the recruitment and activation of microglia. Analyses of
regional interactions between microglia density and
other types of brain pathology, such as silent infarction,
is beyond the scope of our current study and is a topic
of future interest. For our observed association of the
RA GRS with microglia across multiple activation stages,
there appears to be little regional specificity other than
that the association is much less pronounced is the in-
ferior temporal gyrus. Interestingly, this region is the
earliest affected in AD [37] and appears to behave

differently from the other three brain regions in our ana-
lyses: it harbors additional, significant (CAD) and sug-
gestive (MS and AD) associations in secondary analyses,
particularly in relation to the activated, stage 3 microglia.
Finally, we note that, while we elected to use an
FDR-based correction in our original analysis plan, our
main results also meet more conservative thresholds of
significance, such as Bonferroni correction.
Many tests revealed a lack of GRS effects on our out-

comes: for example, the schizophrenia GRS was not asso-
ciated with any measure of cognitive decline or
neuropathology. This seemingly contradicts previous evi-
dence of increased HLA-DR+ microglia in brains of
schizophrenia patients compared to age-matched controls
[38]. Our lack of association of schizophrenia GRS with
microglial density in any area and at any stage of activa-
tion suggests that the mechanism behind aberrant micro-
glial recruitment in the schizophrenia brain is less likely to
be due to schizophrenia-specific genetic risk factors; ra-
ther, it may be driven by environmental factors or be a
consequence of processes downstream of the onset of
schizophrenia. In addition, for telomere length variants,
we find a lack of association with AD pathology or cogni-
tive decline, in contrast to a recent meta-analysis finding
that AD patients have shorter telomeres than controls

Fig. 4 Analysis of individual variants in the RA GRS on microglial density in the ventral medial caudate. Published effect sizes on the x-axis have
been transformed using a natural logarithm and oriented in the positive direction to align allelic effects (color denotes direction of effect on
microglial density). P-values (uncorrected) are two-sided and derived from robust iterated re-weighted least squares regression models, co-varying
for age at death, sex, and three EIGENSTRAT principal components
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[39], as well as Mendelian randomization analyses sug-
gesting causal links between telomere length and AD [40].
Also, our top signals for association across all GRS (in-
cluding RA) localized to the MHC region, which influ-
ences many immune traits, and resolving the mechanism
of this association to the HLA class II region within the
MHC will be difficult given the extensive linkage disequi-
librium that exists in this unique genomic region [41].
The main limitation of our GRS is that they were de-

rived from lists of genome-wide significant loci only. We
chose this approach due to (1) the lack of unrestricted
availability of full summary statistics for all diseases tested,
and (2) validity assumptions of individual variant analyses.
If many variants well below genome-wide significance
from each GWAS were included in our GRS calculations,
then post-hoc associations of individual variants may not
be relevant in the context of risk for the disease of interest.
Moreover, our post-mortem measure of microglial activa-
tion is based on morphologic criteria and is subject to
error associated with misclassification of individual cells
to specific microglial stages of activation. However, by
analyzing multiple binned groups of microglia by stage in
our detailed analyses, the confounding of misclassification
over the spectrum of groups has likely been mitigated.
Also, the challenge of objectively classifying microglial ac-
tivation states is not unique to our study; microglial sta-
ging is an active field of investigation [42].

Conclusions
Together, our findings demonstrate limited links between
microglial activation and liability for archetypal inflamma-
tory diseases of both the central nervous system (MS) and
periphery (RA). Thus, the immune dysfunction involved
in AD susceptibility seems to be largely distinct from
those genes and pathways that are involved in susceptibil-
ity to inflammatory disease in young and middle-aged
adults. Nonetheless, we have uncovered a handful of vari-
ants that have strong effects on both inflammatory disease
risk and microglial density, which informs our under-
standing of human microglial biology in aging which re-
mains poorly understood today.
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