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Abstract

Uncertainty in the structure and parameters of networks is ubiquitous across computational

biology. In constraint-based reconstruction and analysis of metabolic networks, this uncer-

tainty is present both during the reconstruction of networks and in simulations performed

with them. Here, we present Medusa, a Python package for the generation and analysis of

ensembles of genome-scale metabolic network reconstructions. Medusa builds on the

COBRApy package for constraint-based reconstruction and analysis by compressing a set

of models into a compact ensemble object, providing functions for the generation of ensem-

bles using experimental data, and extending constraint-based analyses to ensemble scale.

We demonstrate how Medusa can be used to generate ensembles and perform ensemble

simulations, and how machine learning can be used in conjunction with Medusa to guide the

curation of genome-scale metabolic network reconstructions. Medusa is available under the

permissive MIT license from the Python Packaging Index (https://pypi.org) and from github

(https://github.com/opencobra/Medusa), and comprehensive documentation is available at

https://medusa.readthedocs.io/en/latest.

This is a PLOS Computational Biology Software paper.

Introduction

Hypothesis-driven computational models of biological systems are being increasingly applied

to guide experimentation [1]. In hypothesis-driven modeling, in contrast to data-driven

modeling [2], hypothesized biological parts, functions, and interactions are mathematically

formalized to allow in silico experimentation. These models take many forms, ranging in com-

plexity from a single linear equation relating two quantities to systems of nonlinear differential

equations describing dynamic systems.
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Across all hypothesis-driven modeling frameworks, the choice of model scope and parame-

ter values may strongly influence simulation results. For some types of hypothesis-driven mod-

els in biology, approaches from other fields have been applied to quantify the influence of

parameter values on simulation outcomes, such as sensitivity analysis of dynamical models [3].

For network-based models of biological systems such as metabolic or signaling networks, the

presence or absence of a network component may be uncertain due to lack of characterization

or uncertainty in data itself. Traditional sensitivity analysis methods have recently been refor-

mulated for these systems to analyze sensitivity to topological variation, but these methods

have not seen wide adoption [4]. While uncertainty in network structure poses analytical diffi-

culties, it also presents an actionable framework to accelerate biological discovery. Alternative

network structures can guide experimental design, allowing comparison of simulation results

for alternative networks to experimental data to identify the network structure most consistent

with biological behavior (i.e. model selection) [5]. This uncertainty can also be used to priori-

tize experiments that will maximally improve confidence in the simulations performed with a

model (i.e. uncertainty reduction) [6].

In studies of metabolism, genome-scale metabolic network reconstructions (GENREs) have

emerged as a useful formalism for hypothesis-driven modeling [7]. In conjunction with bio-

logical objective functions, such as maximization of growth rate, GENREs can be used to con-

struct genome-scale metabolic models (GEMs). In addition to topological uncertainty (e.g.,

presence/absence of reactions in a network), simulations with GEMs generally yield many

alternative solutions. Even the simplest simulations that can be performed with GEMs exhibit

this behavior. This is the case for flux balance analysis (FBA), in which a pseudo-steady state is

assumed, and flux values are found for all reactions in a GEM such that an objective function

is optimized [8]. While a single global maximum value for the objective is guaranteed to be

found, flux through every other component of the network is only constrained within a solu-

tion space, not to a single value. As a result, even though performing FBA yields a single value

for the flux through reactions in a network, there are an infinite number of feasible flux values

within the range determined by the solution space for some reactions. Techniques such as flux

variability analysis and flux sampling have been developed to explore the space of alternative

solutions in this scenario [9,10].

A myriad of additional algorithms have been developed for the analysis of GEMs for strain

engineering, contextualization of experimental data, and building cell- and tissue-type specific

GEMs [11–13]. In addition to optimization problems that can be solved using linear program-

ming such as FBA, problems have been formulated to take advantage of mixed integer linear

programming (MILP; see [14] for a review of optimization problems in systems biology).

MILP employs binary state variables during optimization to solve problems that involve dis-

crete activation or inactivation of variables. MILP problems are particularly well-suited to net-

work-based models, since they allow switch-like behavior that can include or exclude network

components (e.g., shutting reactions off/on). MILP has been used widely for gap-filling of

GEMs, a process in which constraints or objectives are set to recapitulate a known phenotype

by adding biochemical functions from a universal set of reactions [15]. In MILP problems

used for gap-filling, the objective function is generally minimization of the number of modifi-

cations to a GEM that must be made to satisfy the constraints imposed (e.g., metabolite uptake

or secretion, production of biomass). One consequence of this formulation is that alternative

solutions, which contain unique sets of reactions which need to be altered in the network or

added, are common for large networks that have a large space of potential solutions to draw

from (e.g., a large universal set of reactions). These alternative optima in MILP problems are

increasingly being considered and leveraged to understand redundancy in solutions and

whether or not portions of a solution may be spurious [16–18].
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It has been shown that the order in which separate instances of gap-filling are applied to the

same network (e.g., gap-filling for growth on individual carbon sources iteratively) strongly

influences which reactions are included in the resulting network [19]. In this same study, the

alternative solutions generated during this process were used to improve gene essentiality pre-

dictions using EnsembleFBA, a technique in which sets of alternative GEMs are used to per-

form FBA to determine gene essentiality. Using the entire ensemble, performance can be

tuned by varying the voting threshold required to make a specific prediction. This is analogous

to the threshold-based voting procedure used to construct receiver operating characteristic

curves for ensemble-based machine learning models such as random forest [20]. This

approach is likely to be highly beneficial for studies of organisms for which little biochemical

data are available, which typically have many gaps in their GENRE and thus have many

highly-variable alternative gap-filling solutions. Although a nascent approach for studying

GENREs, we have built on these observations, and ensemble generation and analysis have

been applied in several cases [6,19,21,22].

Here, we present Medusa, a Python package for the generation and analysis of ensembles of

GENREs. Medusa provides a framework for compactly representing ensembles of GENREs,

avoiding the redundancy of storing many separate models while still being flexible enough to

represent variation in any component within a GENRE. Medusa manages ensemble storage

and indexing during simulation, allowing users to interact with an entire ensemble in the same

way they would interact with an individual GENRE using any constraint-based reconstruction

and analysis (COBRA) method. Furthermore, by standardizing the representation of ensem-

bles and their interface with existing COBRA methods, Medusa enables the application of

supervised and unsupervised machine learning to gain insight into the influence of varying

components within an ensemble of GENREs on the predictions they make. The architecture

and functionality of Medusa were designed to make ensemble analyses as accessible and usable

as COBRA methods applied to single networks.

Design and implementation

Architecture overview and dependencies

Medusa is built on top of COBRApy, a Python-based package in which many COBRA meth-

ods are implemented [23]. Although a dependency-free approach in which ensemble simula-

tion methods are implemented from the ground up could be more efficient, we chose to

extend COBRApy to greatly decrease the size and complexity of the codebase and to reduce

the domain-specific knowledge required to use Medusa and understand the source code (i.e.

decrease the effort for existing COBRApy users and contributors to use Medusa). As such, the

architecture of Medusa closely mimics COBRApy Fig 1.

At the time of this writing, GENREs are represented within COBRApy using a Model class.

The Model class manages the interface between COBRApy and numerical solvers through

optlang, a Python package for formulating and solving optimization problems that extends the

symbolic mathematics package SymPy [24,25]. GENREs are represented by a Model using

additional classes with biological analogs (Metabolite, Reaction, and Gene). Objects belonging

to each of these classes are stored within container-like objects (metabolites, reactions, and

genes, respectively) that are each an attribute of a Model. Each Metabolite, Reaction, and Gene

has attributes which might affect simulations performed using the Model, such as the lower

and upper bounds of flux through each Reaction or the gene-protein-reaction relationship for

each Reaction, which link them to specific Genes.

In Medusa, ensemble functionality is introduced using three new classes. The first, Feature,

describes a GENRE component which has a parameter that varies across an ensemble (e.g., a
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reaction that is reversible in some ensemble members but irreversible in others). The second,

Member, describes individual GENREs within an ensemble and their state for each Feature.

The third is the Ensemble class, which references every Feature and Member associated with

an ensemble of GENREs, as well as a COBRApy Model, referred to as the “base model”. This

base model holds all COBRApy objects that might be associated with any Member in the

Ensemble. Within an Ensemble, each Feature references the component within the base model

(Metabolite, Reaction, or Gene) for which it encodes alternative parameter values, as well as

the attribute within that component that is modified (e.g., the upper bound of flux through a

reaction). When a simulation is to be performed using a particular GENRE within an Ensem-

ble, Medusa changes the state of the base model to represent the proper state for the corre-

sponding Member for every Feature. Thus, the Ensemble can represent any number of

variants in GENRE structure throughout an ensemble (e.g., reaction presence/absence, revers-

ibility, alternative gene-protein-reaction relationships) and can be used to apply any methods

implemented in COBRApy. Furthermore, this implementation has a memory footprint only

slightly larger than a single COBRApy Model, and facilitates queuing of simulations for parallel

processing.

Fig 1. Architecture of ensembles and simulation output in Medusa. A) Ensemble functionality is implemented in Medusa through the Ensemble class. The Ensemble

class exposes three attributes to the user: features, members, and base_model. Both features and members are container-like objects similar to genes, reactions, and

metabolites in COBRApy. Within each container, Medusa objects of class feature and member are stored. The base_model attribute points to a COBRApy model. This

base_model contains all of the features present in any member of the ensemble, and is manipulated when generating an ensemble or performing simulations. B)

Description and shape of simulation results for common COBRA methods as implemented in Medusa. Each simulation method returns a distribution-equivalent to the

single-model simulation result.

https://doi.org/10.1371/journal.pcbi.1007847.g001
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Medusa is developed partially with test-driven development. Unit tests are implemented

using the pytest package (https://docs.pytest.org/en/latest) and are run automatically with each

modification to the Medusa github repository via continuous integration with TravisCI (Travis

CI, GMBH, Berlin, Germany). Support is provided for Python version 3.4 and later. Tests are

run in TravisCI using Python 3.6, with plans to include Python 3.7 and 3.8. No support is pro-

vided for Python 2.

Results

Performing ensemble simulations

Currently, users can perform FBA, flux variability analysis (FVA), single gene deletions, and

single reaction deletions using an ensemble in Medusa. In each case, the simulations are per-

formed with a single function, which returns a collection of results, where each entry corre-

sponds to the simulation results for a single ensemble member. Users have the option of

performing simulations using the entire ensemble, a specific set of Members, or a random frac-

tion of Members. For the currently implemented analyses, the collection of results are returned

as a DataFrame from the pandas Python package, where each column corresponds to the entry

normally populating the results for a single network (e.g., a reaction ID for FBA/FVA, a gene

ID for single gene deletions), and each row corresponds to an ensemble Member (except for

FVA, where two columns are required for each ensemble member to describe the minimum

and maximum fluxes). See Fig 2 for a schematic describing how the shape of data describing

simulation results changes for each simulation method.

Because the Ensemble object implemented in Medusa maintains a COBRApy Model object,

users can also perform any custom simulation they would like by 1) manipulating the COBR-

Apy Model to be suitable for their simulations (e.g., set custom constraints or objectives), 2)

setting the state of the model to represent an ensemble member using Medusa functionality, 3)

performing their simulation, then 4) iterating through any other ensemble members they

would like and performing steps 2–3.

Comparing ensemble simulations

When performing simulations with an ensemble rather than a single model, results shift from

single values to distributions. While this explicitly accounts for uncertainty, it also requires

that statistical approaches are applied to interpret differences in distributions. In the simplest

case, performing ensemble FBA to predict the growth rate on each of two different media con-

ditions for a single bacterial species generates two distributions of predicted growth rates Fig

3A. A paired univariate test (e.g., t-test or a non-parametric equivalent) can be used to deter-

mine whether the predicted growth rate is equal in these two conditions. This example is dem-

onstrated in the Medusa documentation at https://medusa.readthedocs.io/en/latest/stats_

compare.html.

Coupling ensemble modeling with machine learning

The availability of ensemble generation and simulation methods in Medusa provides ample

opportunity to apply machine learning to leverage variation in ensembles. One application

area that we have developed focuses on guiding the curation of genome-scale metabolic net-

work reconstructions by attributing simulation uncertainty to network components in the

ensemble, then prioritizing curation of these components based on how much they contribute

to simulation uncertainty [6]. This approach can be broken down into four steps: 1) ensemble

generation, 2) ensemble simulations, 3) unsupervised learning to summarize simulation
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uncertainty, and 4) supervised learning to associate uncertainty in network structure with

uncertainty in simulations. In addition to our published work utilizing Medusa for this pur-

pose, we provide an example in the Medusa documentation that applies this method to a single

ensemble FBA simulation: https://medusa.readthedocs.io/en/latest/machine_learning.html.

In this example, a previously generated ensemble is loaded into Medusa, media conditions

are set to allow uptake of any metabolites with transporters in the ensemble, and ensemble FBA

is performed. Then, a random forest regressor is used to predict the simulated values for flux

through biomass (e.g., the values generated with ensemble FBA) for each ensemble member

using the Medusa states (i.e., binary reaction presence/absence) for the same ensemble member

as input. Examining the most predictive feature in the random forest regressor, we perform a lit-

erature search and find that the feature is likely not present for the bacterial species under study

Fig 2. Usage and benchmarking of Medusa. A) Comparison of ensemble flux balance analysis (FBA) simulations across different conditions. A) Ensemble FBA

performed on glucose or mannose minimal media using an ensemble of 1000 GEMs for Staphylococcus aureus. This ensemble was generated in [6] by iteratively gap-

filling a draft reconstruction to enable biomass production in single-carbon source growth conditions supported with experimental data. Mean for the distribution for

either condition shown by vertical line of same color. Predicted flux through biomass is higher on mannose than glucose (Wilcoxon signed-rank test, p< 1E-5). B)

Benchmarking of Ensemble FBA. Simulations were performed with the same S. aureus ensemble of 1000 members as in panel A. C) Benchmarking of ensemble

generation time with iterative gapfilling (process shown in Fig 3). D Comparison of Ensemble FBA simulations before and after curation using a machine learning-

guided approach. Ensemble FBA was performed on complete medium (uptake of -1000 mmol/g�DW�hr allowed for all metabolites) using an ensemble of 1000 GEMs

for S. aureus. Mean for the distributions before and after curation shown by vertical line of same color in the last panel in the workflow. Ensemble and machine-

learning guided curation identified N-Formimino-L-glutamate iminohydrolase as a driver of variation in simulated flux through biomass. Based on a literature search,

this reaction was inactivated in all ensemble members and ensemble FBA was performed again, resulting in the shift in the distribution shown. See documentation for

full narrative-style example: https://medusa.readthedocs.io/en/latest/machine_learning.html.

https://doi.org/10.1371/journal.pcbi.1007847.g002
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(i.e. the species does not have the ability to catalyze the reaction described by the feature). Based

on this examination, we disable the feature (which is a reaction in this case), perform ensemble

FBA again, and find that this curation step has reduced the average predicted flux through bio-

mass Fig 3B. Although we use this approach to guide curation, we also envision the same process

having great utility for attributing simulation uncertainty more generically, such as with simula-

tions performed using an ensemble generated using ‘omics integration methods [11].

Generating ensembles

The simplest way to generate an ensemble in Medusa is to load a collection of models from

files or a collection of COBRApy Model objects. This can be performed by specifying a batch

Fig 3. Iterative gap-filling strategy used to generate ensembles implemented in Medusa. A) Given a list of conditions in which an organism satisfied some objective

(e.g., secretion of a specific metabolite, growth) and a draft GENRE for the organism, gap-filling is performed sequentially on each condition. After each gap-fill step on

a single condition, reactions in the gap-fill solution are added to the GENRE before starting gap-filling on the next condition. In this schematic, all conditions are used,

but Medusa also allows users to randomly subsample a fraction of conditions to generate more variation in the resulting gap-filled GENREs. Here, gap-filling is

performed to enable growth in the presence of each individual metabolite (indicated by a green arrow for a single condition during each gap-fill step). B) Medusa

iteratively performs gap-filling as shown in panel A, then shuffles the order of conditions to introduce variation in the gap-fill solution. After a user-defined number of

cycles through the process shown in panel A, Medusa generates an ensemble containing all unique GENREs that resulted from gap-filling.

https://doi.org/10.1371/journal.pcbi.1007847.g003
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of files that Medusa loads iteratively to construct an ensemble or by loading all the models into

memory as COBRApy Models and passing them to an ensemble constructor function. Access

to both of these methods for constructing an ensemble gives users flexibility to use other soft-

ware that generates multiple GENREs and to construct their own ensembles from COBRApy

Models that are only ever present in memory (i.e., never written to disk). There are also perfor-

mance tradeoffs between each method; constructing an ensemble from a batch of files allows

the user to specify a batch size for the number of models loaded into memory during each iter-

ation. Increasing the batch size increases memory usage but generally decreases the time

required to construct an ensemble. Similarly, constructing an ensemble from a collection of

COBRApy Models already loaded into memory has high memory usage but low runtime.

Ensembles can also be generated in Medusa by performing gap-filling on an individual

GENRE. Medusa implements a previously-developed algorithm for gap-filling GENREs using

growth phenotyping data [6,19]. The algorithm takes a GENRE with an objective function

(i.e., a COBRApy Model), a universal reaction database (stored as a COBRApy Model) and a

dataset of binary growth/no-growth calls on defined media conditions as input. The objective

function is then set as a constraint with bounds such that any feasible flux distribution must

enable activity within the bounds (e.g. at least some amount of flux through biomass produc-

tion or a demand reaction). All reactions from the universal reaction database are added to the

GENRE being gap-filled, and a new objective function is set to minimize the sum of fluxes

through reactions in the reaction database. The problem is solved to identify reactions taking

part in this minimal flux activity. To generate a single gap-filled ensemble member, the draft

GENRE is iteratively gap-filled on each positive growth media condition. This process is

repeated to produce the number of desired ensemble members. Variation in model structure

is introduced by randomizing the order in which media conditions are used for gap-filling.

We previously found that ensemble members generated with this iterative strategy are equiva-

lent to gap-filled models generated by finding a single gap-filling solution to all growth condi-

tions simultaneously (i.e., with a single optimization step), yet this iterative process is multiple

orders of magnitude faster than the global solution [19]. See Fig 3A and 3B for a schematic

summarizing this approach.

This gap-filling process is implemented in Medusa through a single function, and a full

example of preparing a model and all data necessary for this process are provided in the

Medusa documentation at https://medusa.readthedocs.io/en/latest/creating_ensemble.html.

Although Medusa implements the previously published version of this approach, it also allows

users to randomly subsample a fraction of conditions to generate more variation in the result-

ing gap-filled GENREs. We benchmarked construction of ensembles using the standard

Medusa iterative gap-filling approach, a Staphylococcus aureus draft metabolic network recon-

struction generated via ModelSEED [26], and the modelSEED universal biochemistry using a

2019 Apple Macbook Pro (2.4GHz Intel Core i5-8279U, 16GB RAM). Ensembles with 5, 25, or

100 members, gap-filled on 10 randomized positive growth media conditions, took an average

of 1.8, 5.3, and 18.6 minutes to generate in 10 independent trials (Fig 2C). A substantial por-

tion of this time (~60 seconds) is spent copying the universal model; time spent after this copy

step scales linearly with the size of the ensemble being generated.

Benchmarking Medusa

The structure of a Medusa Ensemble was designed to help users simplify their code when deal-

ing with an ensemble of models, decrease memory and disk storage demands, and decrease

processing time when possible. The Medusa documentation provides thorough benchmarking

examples for multiprocessing using Medusa, constructing an ensemble, and memory and disk
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utilization. These benchmarking notebooks demonstrate the memory savings when using a

Medusa Ensemble rather than individual models (~50MB with Medusa vs. ~16GB for individ-

ual models representing an ensemble with 1000 members) and the disk space savings in the

same scenario (~6MB for a Medusa Ensemble vs. 1GB for 1000 individual models). Medusa

reduces memory and storage demands by over two orders of magnitude in these cases.

Improvements in runtime for performing FBA in Medusa, rather than using individual mod-

els, are more modest but improve further when using more than one processor. Fig 2B shows

the decrease in optimization runtime in Medusa as the number of processors is increased, and

the diminishing returns associated with a larger number of processors. Memory, storage, and

runtime benchmarking were performed using the same hardware as the iterative gapfilling

benchmarking in Fig 2C. All benchmarking is available in narrative-style notebooks in the

Medusa documentation.

Availability and future directions

Stable releases of Medusa are available through the Python package index (PyPI, https://pypi.

org) as well as github (https://github.com/opencobra/Medusa). Documentation is available

through Readthedocs at https://medusa.readthedocs.io. Current development efforts are

focused on parallelization and integrating Medusa with other Python-based tools in the

COBRA community.

Currently, the only high-level function available to users of Medusa to share ensembles gen-

erates a serialized version of the Ensemble object using the pickle package (the standard

Python library package for serializing objects). Alternatively, users can save the base_model

for any Ensemble as a Systems Biology Markup Language (SBML, [27]) file using COBRApy,

then choose the formatting option of their liking to save Feature and Member information for

the Ensemble. In SBML, there is not currently a standardized way to represent ensembles as

required in Medusa. We plan on extending the Flux Balance Constraints package, an extension

to SBML intended for constraint-based models, to enable standardized sharing of Medusa

ensembles. Until then, we recommend users include both an SBML file for the base_model of

each Ensemble and the serialized pickle at time of publication.
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