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Abstract: Over the last few years, miRNA microarray platforms have provided great insights
into the biological mechanisms underlying the onset and development of several diseases.
However, only a few studies have evaluated the concordance between different microarray
platforms using methods that took into account measurement error in the data. In this work,
we propose the use of a modified version of the Bland–Altman plot to assess agreement
between microarray platforms. To this aim, two samples, one renal tumor cell line and a pool
of 20 different human normal tissues, were profiled using three different miRNA platforms
(Affymetrix, Agilent, Illumina) on triplicate arrays. Intra-platform reliability was assessed
by calculating pair-wise concordance correlation coefficients (CCC) between technical
replicates and overall concordance correlation coefficient (OCCC) with bootstrap percentile
confidence intervals, which revealed moderate-to-good repeatability of all platforms for
both samples. Modified Bland–Altman analysis revealed good patterns of concordance for
Agilent and Illumina, whereas Affymetrix showed poor-to-moderate agreement for both
samples considered. The proposed method is useful to assess agreement between array
platforms by modifying the original Bland–Altman plot to let it account for measurement
error and bias correction and can be used to assess patterns of concordance between other
kinds of arrays other than miRNA microarrays.
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1. Introduction

MiRNAs are small non-coding RNA molecules that have been shown to play a critical role in
tumorigenesis [1–4] and in several other pathologies [5–8]. In order to measure miRNA intensity
levels, several methods, such as RT-qPCR, high-throughput sequencing and microarrays, have been
developed and have enabled researchers to profile a large number of miRNAs simultaneously across
different experimental conditions [9]. MiRNA microarrays, in particular, since their first appearance
in 2004 [10], have known a considerable expansion in life sciences and are now routinely used in
biomolecular research.

In the last few years, miRNA microarrays have been compared with next generation sequencing
technologies to study their performances [11,12]. The main interest lies in the potentialities and
advantages offered by these new platforms in terms, for instance, of new miRNAs discovery [13].
However, since results from these comparison studies appear to be contrasting, miRNA microarrays
still remain an effective and useful technology, whose characteristics need to be properly assessed, both
in terms of within-platform reliability and of between-platforms agreement.

To date, only a few studies have attempted to evaluate within-platform [14] and between-platform
[15,16] reliability in miRNA microarrays. Results were reported mainly as correlation coefficients (both
Pearson and Spearman) for evaluating both intra-platform and inter-platform performance, calculated
on a subset of miRNA that depended on detection calls concordant between platforms (i.e., miRNA
that were called “detected/present” on all platforms considered for the analysis). Additionally, Sato
and colleagues assessed between-platform comparability also in terms of miRNAs that were commonly
differentially expressed between samples for all platforms [15], whereas Yauk et al. [16] evaluated
within-platform reproducibility via Lin’s concordance correlation coefficient [17].

In this work, a different approach based on the Bland–Altman method to assess between-platform
agreement is proposed. In particular, the proposed method is applied to assess agreement between
three different miRNA microarray platforms (Affymetrix, Agilent, Illumina). Additionally, advice
against the use of Pearson/Spearman correlation coefficients is provided, and use of concordance
correlation coefficients (pairwise and overall) is suggested as a better measure to evaluate
within-platform reliability.

2. Experimental Section

2.1. Samples

The two samples involved in the study are a renal tumor cell line named A498 (ATCC, Manassas, VA,
USA) [18] and a pool of twenty different human normal tissues (namely, hREF), obtained from the First
Choice c© Human Total RNA Survey Panel, (Ambion Inc, Austin, TX, USA). RNA material was analyzed
in different laboratories, as follows: Affymetrix processing took place at the Biomedical Technologies
Institute of the University of Milan (Segrate, Italy); Illumina and Agilent processing were performed
at the Department of Experimental Oncology of the National Cancer Institute (Milan, Italy). For both
samples, three technical replicates for each platform were performed, leading to a total of 18 arrays, six
for each different microarray platform.
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2.2. Sample Preparation and Hybridization

The cell lines were cultured at cell confluence according to the corresponding ATCC datasheets. Total
RNA samples were extracted using the miRNeasy kit (Qiagen Spa, Hilden, Germany) and quantified by
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Using an Agilent 2100
BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA), RNA integrity was assessed on the basis
of the RIN (RNA integrity number) factor, and the presence of low molecular weight RNA (5S) was
verified. Labeling of total RNA samples was performed using the FlashTagTM Biotin RNA labeling Kit
(Genisphere Inc., Hatfield, PA, USA) starting from 1 µg of total RNA. Briefly, the tailing reaction is
followed by ligation of the biotinylated signal molecule to the target RNA sample. The labeling reaction
is based on Genisphere proprietary 3DNA dendrimer signal amplification technology. Prior to array
hybridization, total RNA labeling was verified using the enzyme-linked oligosorbent assay (ELOSA).
After that, biotin-labeled samples were hybridized onto the arrays at 48 ◦C, then washed and stained
using the Affymetrix Fluidics Station 450. Arrays were scanned with the GeneChip c© Scanner 3000
7G to acquire fluorescent images of each array and analyzed by use of GeneChip Operating Software
(GCOS, version 1.2).

2.3. Data Pre-Processing

2.3.1. Affymetrix GeneChip c© miRNA Array

Intensity .CEL files were obtained from the scan images and imported to the Affymetrix c© miRNA
QC Tool software (Version 1.0.33.0) to quantify the signal value. Quality control (QC) was assessed by
plotting the average intensity of the oligo spike-in and background probe sets (included in the control
target content) across all of the arrays. According to Genisphere, oligo spike-in 2, 23, 29, 31 and 36
probe sets should present a value of more than 1000 intensity units to accept array quality. The miRNA
arrays were detected using the Affymetrix detection algorithm, based on the non-parametric Wilcoxon
rank-sum test, applied independently on each array and probe/probe set; a p-value greater than 0.06
stands for “not detected above background” [19]. For data normalization, the “default” method was
used, obtaining log2 expression values (expression values data matrix) from the raw data (intensity values
data matrix). Briefly, this method involved the following three steps: grouping the background probes
intensities based on GCcontent, where the median intensity of each bin was the correction value for each
probe with the same GC content; a quantile normalization and, finally, a median polish summarization.
To obtain a single intensity value for each miRNA mapped on the log2 array, intensity measures for
replicated spots were averaged.

2.3.2. Agilent Human miRNA Microarray (V1)

Images were scanned using the Agilent Feature Extraction (AFE) software (version 11.0.1.1),
obtaining the total gene signal (TGS) for all miRNAs on the array. Negative values were transformed
by adding, for each array separately, the absolute value of the minimum TGS intensity on the array as
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extracted by the AFE + 2 before log2 transformation [20]. Data extracted from AFE were imported in
the R environment [21] and processed using the AgimiRNA package, available in Bioconductor [22,23].

2.3.3. Illumina HumanMI_V2

Raw data were processed using the proprietary BeadStudio software (Version 3.3.8). No background
subtraction was performed. Probe-level data were summarized to obtain miRNA-level data, and then,
a log2 transformation was applied.

2.3.4. miRNA Selection and Normalization

The Affymetrix platform contained information on 7815 miRNAs, of which 847 (10.83%) were
human, whereas Agilent platform content was of 961 miRNAs (851 human, 88.55%), and on the Illumina
array 1145 miRNAs were detected, of which 858 (74.93%) were human miRNAs. Human miRNAs
common to all platforms were selected according to their name and confirmed by a search on miRBase
(Release 18, November 2011). Unlike other published works, miRNAs were not filtered on a detection
basis, because such an approach could possibly introduce a bias in the results. In fact, some of the
miRNAs that are filtered out because they are “switched-off” could show patterns of within- and/or
between-platform disagreement in another experiment, where they are “turned-on”. This could possibly
lead to an over-estimate of the level of reliability. Considering only human miRNAs should circumvent
this issue and, at the same time, provide relevant information, since human miRNAs are commonly those
that are of major interest in biomolecular investigation.

Moreover, no data normalization was performed. Almost all works that focused on comparing
microarray platforms normalized their data (for instance, [15,16,24]), but this is a non-trivial issue
that has to be carefully evaluated. As a matter of fact, to date, normalization for miRNA microarray
has been largely debated, with results that have been somehow discordant [25–29], so that no
“gold-standard” methods exists. Additionally, normalizing data in the context of assessing platform
agreement poses other relevant problems. If data on two different platforms are normalized and then
compared, then there is no way to discriminate between platform and normalization on the results of
concordance/agreement/reproducibility assessment. A high level of between-platforms agreement, due
not to the platforms themselves, but to the normalization used, might be found. On the other hand,
the same normalization on different platforms could highlight patterns of discordance that cannot be
ascribed to the platforms. Nonetheless, comparing un-normalized data exposes the risk of finding poor
concordance, because of incidental batch effects occurring in the experiment, which may lead to an
underestimate of the “true” agreement between platforms. In this paper, we have chosen to use non
normalized data, so that we could assess the performance of different platforms “per se”. For the sake of
comparison, data were also normalized with the quantile and loess algorithm, and results were compared
to those obtained on non-normalized data.
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2.4. Statistical Analysis

2.4.1. Intra-Platform Reliability

To assess the reliability of the three miRNA microarray platforms, pair-wise concordance correlation
coefficients [17] were computed for all possible pairs of technical replicates for all platforms, within
each sample. The CCC ρc between two series of n measurements x and y is defined as:

ρc =
2σxy

σ2
x + σ2

y + (µx − µy)2 =
2ρσxσy

σ2
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y + (µx − µy)2 (1)
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are the sample variances of x and y. Unlike the correlation

coefficients, which only can give information about the existence of a linear relationship between two
measurement methods, the CCC provides information on both precision (best-fit line) and accuracy (how
far the best-fit line deviates from the concordance line) and is thus a better measure to assess platform
reliability [30]. Additionally, the pairwise CCCs were combined within each sample and platform into
an overall measure of reliability, the overall concordance correlation coefficient (OCCC) [31], a weighted
mean of pairwise CCCs, which is defined as follows:

ρ0
c =

∑J−1
j=1

∑J
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jk
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j=1

∑J
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where ρjkc is the standard Lin’s CCC between j-th and k-th replicate measurement series (in this study,
these are the replicate arrays), and ξjk are the weights, specific for each paired comparison:

ξjk = σ2
j + σ2

k + (µj − µk)2 (3)

Confidence intervals for the OCCC were computed using the bootstrap [32]. Specifically, 1000
bootstrap samples were extracted, and for each of these samples, sample means, variances, covariances,
CCC and OCCC were computed. Then, using the empirical distribution of the bootstrap, estimates of
the OCCC percentile confidence intervals at 95% were estimated.

To evaluate whether pairs of technical replicates are actually in agreement, the non-inferiority
approach proposed by Liao and colleagues [33] for gene expression microarrays was followed.
This approach consists of defining a threshold, or lower-bound, ρc(CL) reflecting the minimal value that
the CCC should assume to conclude that two methods agree and then testing the following hypothesis:

H0 : ρc ≤ ρc(CL) vs. H1 : ρc > ρc(CL) (4)

This can be done using the confidence intervals for both CCC and OCCC, interpreting the results as
follows: if the lower confidence bound falls below ρc(CL), then the null hypothesis cannot be rejected
and the two replicates cannot be said to be in agreement; otherwise, the two replicates are in agreement.
To determine the value of ρCL, the authors define the minimum thresholds of precision and accuracy, and
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then, since the CCC can be seen as a product of a precision and accuracy term, ρc(CL) is computed as the
product of these two thresholds. In their example, they propose a threshold of 0.90, yet in this paper, we
have chosen to use the value of 0.96, according to the following formula:

ρc(CL) =
2ρCL(

vCL + v−1
CL + u2

CL

) =
2 ∗ 0.98

0.9 + 0.9−1 + 0.152
= 0.9638 ≈ 0.96 (5)

where v = σ1/σ2 represents the scale shift between the two measurements series and
u = (µ1−µ2)/

√
σ1σ2 is the location shift relative to the scale. The reason for the choice of these values is

subjective, but in this case, there has been the attempt to be conservative: a higher value for ρCL means a
relationship between technical replicates as linear as possible, though leaving space for small departures
due to ineffective probes or small experimental effects. On the other hand, increasing vCL to 0.9 is
due to the fact that miRNA measurements are assumed to be less variable than gene expression, so that
technical replicates may show very similar patterns of variability. Only uCL is unchanged, because the
value proposed in [33] appeared reasonable also for miRNA microarrays.

2.4.2. Between-Platform Agreement

In the microarray literature, concordance between platforms has been often studied using the
correlation coefficient. Not only is this the wrong approach, but additionally, correlation coefficients
are computed assuming that intensity/expression values do not suffer from any measurement error,
thus leading to possible underestimates of the real level of correlation between platforms [34]. Here,
agreement between platforms was evaluated using a modified version of the Bland–Altman approach.
Such a modification, suggested by Liao et al. [35], allows one not only to assess whether two methods of
measurement are concordant, but also to provide information on the eventual sources of disagreement.
In a nutshell (greater details can be read in the original paper), the method involved the estimation, for
each platform pair and separately for each sample, of a measurement error model, i.e., a model where
also the independent variable(s) X were assumed to be affected by uncertainty, of the form:

Yi = a0 + b0X
0
i + εi (6)

Xi = X0
i + δi (7)

where (X0
i , Y

0
i ), i = 1, ..., n were the unobserved true values of the two measurement methods to be

compared, i.e., miRNAs intensities on the two platforms, and εi and δi, were the i.i.d. error components
of the model, which followed a normal distribution with the mean equal to 0 and variances equal to σ2

ε

and σ2
δ , respectively. To estimate this model, the ratio λ of the error variances of Y and X had to be

known, possibly by means of replication or, when replication is not feasible, by setting it equal to 1, thus
assuming equal error variances for both methods. In this study, both strategies were evaluated, using the
technical replicates to estimate λ by fitting a linear model with the factor “replicate” as the covariate.
The estimated residual variance was then used as the sample error variance for the platform. Once the
parameters of the model were estimated, assuming that Y − X ∼ N(a0 + (b0 − 1)X0, (1 + λ)σ2

δ ),
modified versions of the agreement interval for Y − X proposed by Bland and Altman [36,37] were
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estimated according to the bias (fixed or proportional) needed to correct for when comparing two
platforms, as follows:

(a) No bias: (a0 = 0, b0 = 1)

∆ =
(
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√
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)
(8)
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where Xi were the actual measured values of the method. Including only the parameter a0 in the
agreement interval meant that the two methods differ only by a “fixed” shift that did not depend on the
value of Xi (thus, fixed bias). Including only (or also) b0, on the other hand, meant that the differences
between the two methods increased proportionally with the increase of the value of measurement Xi

according to the value of the parameter b0 itself (thus, proportional bias). Finally, let n be the number of
subjects and 0 < k < n; the methods were considered to be in agreement, after eventual bias correction,
if no more than k subjects showed Y −X differences outside these intervals. The choice of k depends
on the acceptable tolerance: the lower the tolerance for disagreeing subjects, the lower the value of k.
The method thus involved estimation of the full model (both intercept and slope) and then evaluation of
the most proper bias correction, according to inference on the parameter.

With respect to the common use, this method was used in a slightly different way. In a
nutshell, commonly, there are n subjects on which specific biological quantities are measured using
k measurement methods (k ≥ 2), and the goal is to evaluate whether measurements from the k methods
agree using information on n samples. Had this procedure been followed, each miRNA should have
been evaluated separately (since the miRNA is the biological quantity of interest), and the intensities in
the n samples (in our case, the two cell lines) should have been compared between the k platforms (in
this case, 3), jointly, for both cell lines. Actually, the miRNAs were considered to be “subjects” and
the entire profile of intensity on a platform to be the vector of measurements to be compared between
different platforms (that is, k = 3), separately, for each cell line.

All of the analyses were performed using R [21] and Bioconductor [23].
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3. Results and Discussion

3.1. Data Description

Analyses involved two samples (A498, a tumor line, and hREF, a pool of healthy tissues), each with
three technical replicates for all platforms considered (Affymetrix GeneChip c© miRNA Array, Agilent
Human miRNA Microarray (V1) and Illumina humanMI_V2). MiRNA selection described in the
Experimental Section, resulted in a total of 813 human miRNAs considered for analysis, which account
for 95.99% of human miRNAs on Affymetrix platforms, 95.53% on Agilent and 94.76% on Illumina
(see Figure 1). Pairwise intersections of human miRNA lists revealed that the larger overlap occurred
when Affymetrix and Agilent were considered (830 miRNAs, 97.99% of Affymetrix hsaand 97.53%
of Agilent hsa), whereas Illumina showed a slightly poorer degree of overlap with both Affymetrix
(817 miRNAs, 96.46% of Affymetrix and 95.22% of Illumina) and Agilent (815 miRNAs, 95.77% of
Agilent and 94.99% of Illumina).

Figure 1. Venn diagram of common human miRNAs across platforms.

Density plots and boxplots for both samples in Figure 2 showed that the distribution of intensity values
of common miRNAs was very different between platforms, with a marked skewness for Affymetrix and
Agilent (red and green) and peaks of density for relatively low values. The Illumina platform was
characterized by a slightly more symmetrical behavior. Notably, the first replicate of sample A498 had
some technical problems for both Affymetrix and Agilent (solid red and green lines, lower right panel),
whereas no similar pattern was seen for Illumina. In fact, the quantile distribution appeared to be quite
different between technical replicates for these two platforms, despite similar inter-quartile ranges (see
Table 1), suggesting that systematic bias had occurred in the profiling of the sample. The same plots were
produced for normalized data and showed quite a different distribution, at least in terms of location, in
particular for Illumina platform, whose right tail was relevantly reduced (see Supplementary Material,
Figures S1 and S2).



Microarrays 2014, 3 310

Table 1. Quartiles and inter-quartile range for the three platforms.

Affymetrix Agilent Illumina
Sample Array 25th 50th 75th IQR 25th 50th 75th IQR 25th 50th 75th IQR

1 4.907 5.044 5.592 0.685 3.415 3.911 5.804 2.389 6.821 8.830 10.772 3.951
hREF 2 4.943 5.066 5.570 0.627 3.366 3.955 5.998 2.632 7.168 9.150 11.015 3.847

3 4.943 5.087 5.615 0.672 3.449 4.065 6.242 2.793 7.103 9.117 10.907 3.804

1 5.160 5.285 5.508 0.348 3.139 3.432 4.065 0.926 5.492 6.863 8.782 3.290
A498 2 5.375 5.524 5.827 0.452 3.066 3.448 4.287 1.221 5.606 6.973 8.942 3.336

3 5.468 5.651 5.983 0.515 2.690 3.175 3.988 1.298 5.812 7.294 9.246 3.433

Figure 2. Box and density plots for both samples. The left column refers to hREF and the
right column to A498. Plots refer to non-normalized log2-transformed data. (Lower panels)
Solid lines represent the technical replicate labeled as 1 in the datasets, whereas dashed lines
and dotted lines represent technical Replicate 2 and 3, respectively.

3.2. Intra-Platform Reliability

Results for the pairwise CCCs and the overall CCC for each sample and platform using common
human miRNAs are reported in Table 2. Globally, the hREF sample showed better features of reliability,
in particular for the Agilent and Illumina platform (OCCC: 0.994 (CI 95%: 0.993–0.995) and 0.994
(CI 95%: 0.994–0.995), respectively). On the other hand, the A498 sample showed lower values
of OCCC, which dramatically decreased when considering the Affymetrix platform (0.927, CI 95%:
0.906–0.941). According to the non-inferiority threshold of 0.96 defined in the Experimental Section,
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Agilent and Illumina could be consistently declared repeatable across the two samples considered,
whereas Affymetrix resulted in repeatable only for sample hREF.

As a means of comparison to previous studies, these results were obtained also on data filtered using
the detection call approach, i.e., by removing all of the miRNAs that were called “present” on no more
than two samples (see Table 3). This information was available only for Agilent and Illumina and led
to a reduced dataset consisting of 347 human miRNAs. It can be noticed that estimates were mostly
unchanged for the Illumina platform, though with a slight improvement after data filtering, whereas for
Agilent, the pattern was not clear, though the differences appeared to be larger for A498, where filtering
led to some relevant improvements, both in the pair-wise CCC and in the OCCC.

Table 2. CCC and Overall CCC with bootstrap 95%CI (common miRNAs) CCCs and the
OCCC were computed on the 813 miRNAs common across all platforms considered for
the study, and bootstrap 95%CI for the Overall Concordance Correlation Coefficient were
computed using 1000 bootstrap samples and the percentile method [32].

Affymetrix Agilent Illumina
Sample Pair CCC OCCC CI 95% CCC OCCC CI 95% CCC OCCC CI 95%

1-2 0.988 0.997 0.991
hREF 1-3 0.993 0.992 (0.990–0.993) 0.989 0.994 (0.993–0.995) 0.993 0.994 (0.994–0.995)

2-3 0.994 0.995 0.999

1-2 0.935 0.975 0.996
A498 1-3 0.888 0.927 (0.906–0.941) 0.970 0.975 (0.969–0.979) 0.981 0.989 (0.987–0.991)

2-3 0.961 0.978 0.989

Table 3. Concordance correlation coefficient (CCC) and overall CCC with bootstrap 95% CI
(detection call filtering). CCCs and the OCCC were computed on the 347 miRNAs common
across Illumina and Agilent platforms after detection call filtering (present on at least three
samples), and bootstrap 95% CI for the overall CCC were computed using 1000 bootstrap
samples and the percentile method [32].

Agilent Illumina
Sample Pair CCC OCCC CI 95% CCC OCCC CI 95%

1-2 0.996 0.988
hREF 1-3 0.978 0.989 (0.987–0.990) 0.994 0.993 (0.992–0.994)

2-3 0.992 0.998

1-2 0.974 0.997
A498 1-3 0.988 0.983 (0.979–0.986) 0.987 0.992 (0.990–0.994)

2-3 0.986 0.992

CCCs and OCCC using all human miRNAs and all miRNAs (human and non-human) were also
evaluated on each platform (see Supplementary Material, Tables S1 and S2). When considering all
of the human miRNAs on each platform (847 for Affymetrix, 851 for Agilent and 858 for Illumina;
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Table S1), results were almost identical to the situation with only common miRNAs used, the only
difference lying in the Affymetrix platform for sample A498, which showed an OCCC of 0.93 (CI 95%:
0.911–0.943), a slightly higher value than those seen for common miRNAs. Using all of the miRNAs
measured on the platform (7815 for Affymetrix, 921 for Agilent and 1145 for Illumina) returned values
that confirmed patterns of agreement already depicted in Tables 2 and S1, with the exception of line A498
for Affymetrix, which showed an increase, both in point and interval estimates for the OCCC (0.954, CI
95%: 0.950–0.957, see Table S2). The Agilent platform on line A498, on the contrary, showed similar
patterns of moderate-to-poor agreement throughout all miRNA selection strategies.

Additionally, the normalization effect was evaluated by estimating CCC and overall CCC on data
normalized according to quantile and loess normalization [38], which resulted in a general increase of
both pairwise and overall concordance for both samples and for all platforms. In particular, also sample
A498 profiled with Affymetrix showed good patterns of repeatability, with its CI 95% lying above the
threshold of 0.96. Detailed results were reported in Tables S3 and S4 of the Supplementary Material.

3.3. Between-Platform Agreement

To perform agreement evaluation, miRNA intensities were averaged across technical replicates for
each array and both samples. Then, pairwise array agreements were evaluated in terms of miRNA
lying within the modified agreement interval described in the Experimental Section. Estimates of the
measurement error model for error-variance ratio λ equal to one, presented in Table 4, show that the
relationship between Agilent and Illumina was the one that is closest to the agreement line with intercept
zero and slope one for both samples. On the other hand, models that include the Affymetrix platform for
line A498 showed a very negatively large intercept (−12.4128 and −17.4064), which possibly reflected
the technical bias already highlighted in the previous section. However, if line hREF is considered,
Affymetrix was confirmed to be the array deviating most from the line of perfect agreement with both
Illumina and Agilent, whereas these two showed patterns very close to concordance (slope = 1.0925,
CI 95%: 1.0371–1.1479). Since the confidence intervals for the intercept and the slope suggested
an intercept different from zero and a slope different from one for all comparisons in both samples,
the agreement intervals following Formula 11 were built.

Table 4. Estimates of the linear measurement error model, λ = 1.

a0 b0

Sample Pair Estimate CI 95% Estimate CI 95%

Agilent vs. Affymetrix −6.1037 (−6.4471, −5.7603) 1.9610 (1.8964, 2.0255)
hREF Illumina vs. Affymetrix −4.7630 (−5.5006, −4.0254) 2.4418 (2.3472, 2.5363)

Illumina vs. Agilent 3.6033 (3.3791, 3.8274) 1.0925 (1.0371, 1.1479)

Agilent vs. Affymetrix −14.2358 (−16.3792, −12.0923) 3.1409 (2.9815, 3.3004)
A498 Illumina vs. Affymetrix −17.4064 (−18.6406, −16.1722) 4.2889 (4.1679, 4.4098)

Illumina vs. Agilent 2.1916 (1.7773, 2.6058) 1.3254 (1.2407, 1.4100)
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In Figures 3 and 4, graphical results for lines A498 and hREF, respectively, were reported. When
a value k of tolerance equal to 0.05×813' 41 was set, thus considering the platforms to be in agreement
if no more than k measurements lay outside these intervals, the pair Illumina-Agilent was the only one
that could be said to be in agreement for both samples. In fact, 97.79% (CI 95%: 96.52–98.68) of
miRNAs for hREF and 95.45% (CI 95%: 93.78–96.78) of miRNAs for A498 were concordant between
the two platforms (795 and 776 miRNAs in agreement for cell lines hREF and A498, respectively). On
the other hand, the remaining pairs showed poor patterns of concordance. The Affymetrix platform on
line A498 was poorly concordant with both Agilent and Affymetrix, possibly because of the issues
previously described, but also for line hREF, it showed a poor degree of agreement. In particular,
only 82.53% (CI 95%: 79.75–85.08) and 82.78% (CI 95%: 80.01–85.31) of miRNAs, corresponding
to 671 and 673, were found to lie within the agreement interval for comparison to Agilent and Illumina,
respectively.

Figure 3. Agreement intervals for line hREF, λ = 1. (A) The comparison
Agilent-Affymetrix; (B) the comparison Illumina-Affymetrix; and (C) Illumina-Agilent.
The samples/miRNAS have been plotted in ascending order according to their value on the
second platform in the y-axis label, so that the x-axis only contains a progressive value from
one to 813 according to such ordering.

Figure 4. Agreement intervals for line A498, λ = 1. (A) The comparison
Agilent-Affymetrix; (B) the comparison Illumina-Affymetrix; and (C) Illumina-Agilent.
The samples/miRNAs have been plotted in ascending order according to their value on the
second platform in the y-axis label, so that the x-axis only contains a progressive value from
one to 813 according to such ordering.
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These results relied on the assumption that the ratio of the error variances from the two methods
being compared was equal to one. The main advantage of this assumption was that previous knowledge
of the error variances was not required; however, it was likely to be violated when the methods to
be compared had very different analytical properties, such as microarray platforms (see, for instance,
Figure 2). The technical replicates were used to fit a random effects model for each combination of cell
line and array, estimated the error variance as the residual error of the model itself and computed the
parameter λ as the ratio of the error variance of Y and X (see Table 5). The confidence intervals for λ
did not include one in any comparison, thus suggesting a different measurement error for each platform.

Table 5. Estimates of λ and CI 95%. Values were obtained as the ratio of σ2
ε (error variance

of Y) and σ2
δ (error variance of X), estimated via random effects models.

Sample Pair λ CI 95%

Agilent-Affymetrix 2.608 2.409–2.824
hREF Illumina-Affymetrix 2.935 2.711–3.178

Illumina Agilent 1.125 1.039–1.218

Agilent-Affymetrix 4.125 3.810–4.466
A498 Illumina-Affymetrix 5.576 5.150–6.037

Illumina-Agilent 1.352 1.248–1.463

Model parameters estimates when λ is estimated according to a random effects model are reported in
Table 6. The estimates of the slopes and of the intercepts suggested that also in this case, the interval to
be preferred should be the one described in Formula 11.

Table 6. Estimates of the linear measurement error model, λ estimated.

a0 b0

Sample Pair Estimate CI 95% Estimate CI 95%

Agilent vs. Affymetrix −7.3495 (−8.1460, −6.5529) 2.1806 (2.0824, 2.2789)
hREF Illumina vs. Affymetrix −7.0221 (−9.3909, −4.6533) 2.8402 (2.6707, 3.0096)

Illumina vs. Agilent 3.4477 (3.2018, 3.6936) 1.1235 (1.0655, 1.1816)

Agilent vs. Affymetrix −12.4128 (−12.9575, −11.8681) 2.8265 (2.7461, 2.9068)
A498 Illumina vs. Affymetrix −20.3938 (−29.7127, −11.0749) 4.8042 (4.4718, 5.1366)

Illumina vs. Agilent 1.5756 (0.9998, 2.1514) 1.4804 (1.3806, 1.5802)

Illumina and Agilent showed the best patterns of concordance for both samples, resulting in
a percentage of miRNAs in agreement exceeding the 95% threshold previously discussed: 97.54% (CI
95%: 96.23–98.49) for hREF and 96.3% (CI 95%: 94.77–97.50) for A498, corresponding to 793 and
783 miRNA (see Figures 5 and 6).

In general, estimating the value of λ led to an increased number of miRNAs within the determined
agreement interval, in particular for the Affymetrix-related comparisons (see Table 7).
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Performing the same analysis on detection call filtered data (thus, only on 347 miRNAs and comparing
Agilent and Illumina platforms only) led to similar results, though with some improvement for line A498.
In particular, if λ was set to one, the proportion of concordant miRNAs was equal to 97.69% (CI 95%:
95.51–99.00) for line hREF and to 98.56% (CI 95%: 96.67–99.53) for line A498. Estimating the error
variance ratio (0.629, CI 95%: 0.557–0.710 for hREF; 0943, CI 95%: 0.835–1.065 for A498) led to
slightly improved results, the proportion of concordant miRNAs being equal to 99.14% for hREF (CI
95%: 96.67–99.53) and to 98.56% (CI 95%: 97.49–99.82) for A498.

Figure 5. Agreement intervals for line hREF, λ estimated. (A) The comparison
Agilent-Affymetrix; (B) the comparison Illumina-Affymetrix; and (C) Illumina-Agilent.
The samples/miRNAs have been plotted in ascending order according to their value on the
second platform in the y-axis label, so that the x-axis only contains a progressive value from
one to 813 according to such ordering.

Figure 6. Agreement intervals for line A498, λ estimated. (A) The comparison
Agilent-Affymetrix; (B) the comparison Illumina-Affymetrix; and (C) Illumina-Agilent.
The samples/miRNAs have been plotted in ascending order according to their value on the
second platform in the y-axis label, so that the x-axis only contains a progressive value from
one to 813 according to such ordering.

The same analysis was performed also on quantile and loess normalized data, with contrasting results.
For sample A498, there was a general increase in the performance of all platforms, yet only Agilent
and Illumina could be considered to be concordant (net of bias correction), whereas for sample hREF,
there was a general decrease, at least when λ = 1 was considered, in the proportion of concordant
miRNAs. This difference was substantially relevant when Affymetrix and Illumina were compared (see
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Tables S8 and S12 in the Supplementary Material). The fact that differences between normalized and
un-normalized data were more relevant when λ was assumed to be one could be due to the effect of
the normalization procedure on the error variance ratio: in particular, when normalization is performed,
there is a use of information carried by the data that can lead to a reduction in the residual error variance
and in the ratio λ and, eventually, to more stable results and, thus, more concordant measurements. On
the other hand, differences between platforms are already taken into account when λ is estimated, so that
a normalization procedure could only limitedly improve results.

Table 7. miRNA in agreement between arrays. Number (n) and proportion (%) of miRNAs
lying in the different agreement intervals, estimated according to the measurement error
model parameters estimated by setting λ = 1 and by estimating it via random effects models.
Confidence intervals for the proportions were computed using the Clopper–Pearson exact
method [39].

λ = 1 λ Estimated

Sample Comparison % (CI95%) n % (CI95%) n

Agilent-Affymetrix 82.53 (79.75–85.08) 671 84.26 (81.57–86.70) 685
hREF Illumina–Affymetrix 82.78 (80.01–85.31) 673 89.91 (87.64–91.90) 731

Illumina-Agilent 97.79 (96.52–98.68) † 795 97.54(96.23–98.49) † 793

Agilent-Affymetrix 74.17 (71.02–77.15) 603 78.84 (75.87–81.60) 641
A498 Illumina-Affymetrix 56.46 (52.97–59.90) 459 73.43 (70.25–76.44) 597

Illumina-Agilent 95.45 (93.78–96.78) 776 96.31 (94.77–97.50) 783
†: the platform pair is in agreement.

Results for model parameter and λ estimation on normalized data are available in the Supplementary
Material, from Tables S5 to S7 for quantile normalization and from S9 to S11 for loess normalization.

4. Conclusions

Studies evaluating high-throughput platform reliability by means of correlation coefficients, both
Pearson and Spearman [15], are often seen in the literature. Many of these studies claim that high
correlation coefficients imply high reliability. This misuse of the correlation coefficients has already
been outlined in the microarray literature [30]; however, several studies still use these measures to assess
the repeatability or reproducibility of high-throughput platforms.

In this study, both the issue of within-platform reliability and between-platform agreement of
three miRNA microarray platforms were discussed. Results have highlighted that Agilent and Illumina
were the platforms showing the best pattern of both reliability and agreement, whereas Affymetrix
appeared to have some technical problem. In terms of reliability, the OCCC for line A498 was relevantly
lower than that for line hREF for all platforms and for all sets of miRNAs considered (common human
miRNAs, human miRNAs array-wise, all miRNAs). Overall, Illumina (OCCC from 0.989 to 0.994)
showed better performances with respect to Agilent (from 0.975 to 0.994) and, in particular, Affymetrix
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(from 0.927 to 0.993), and this was better seen for line A498. Since this line suffered from technical
issues on Affymetrix and, partially, also on Agilent, the related OCCC possibly underestimated the
“true” degree of reproducibility of the platforms, which could be better appreciated with line hREF,
where it ranged from 0.992 (CI 95%: 0.990–0.993) to 0.993 (CI 95%: 0.993–0.994), with values almost
identical to those of Agilent and Illumina, thus suggesting also in this case a good performance of the
array. These results, however, only referred to the “repeatability” of the assay, meaning that technical
replicates were performed under “conditions where independent test results are obtained with the same
method on identical test items in the same laboratory by the same operator using the same equipment
within short intervals of time”. Conversely, reproducibility implies “conditions where test results are
obtained with the same method on identical test items in different laboratories by different operators
using different equipment”, as defined by the ISO [40]. This specification is relevant, since studies
claiming to have evaluated the reproducibility of arrays actually evaluated only their repeatability [15],
whereas reproducibility assessment necessarily requires the involvement of multiple laboratories, as in
the MAQCProject [41].

Assessing agreement between different methods of measurement is a task that has rarely been
addressed in the microarray literature, where the focus has always been more on the evaluation of a linear
relationship between platforms or with “gold-standard” assays, such as qPCR, mainly via computation
of correlation coefficients. Such an approach has often been biased by the selection of miRNAs used
to do the computations, in that often, only miRNAs concordantly detectable between platforms [15,16]
were chosen, possibly leading to an overestimate of the real level of correlation between arrays. To avoid
this issue, human miRNAs common (i.e., matched by name) on all of the platforms considered for the
experiment were used.

By setting a “strong” threshold at 95%, equivalent to 772 miRNAs, it was found that Agilent and
Illumina arrays were concordant according to the agreement interval derived from the estimation of the
measurement error model, irrespective of the method for choosing the value of λ. The choice of this
threshold was subjective and should depend on the issue at hand; the present choice was based on the
fact that it is likely that a few miRNAs exist that do not agree because of unwanted technical issues not
attributable to the platform itself, but also to the need to reduce the number of false positives (i.e., falsely
concordant platforms). This last point is crucial in the field of microarrays, since the comparability
of results from different platforms as a tool for validating a laboratory’s own results has gained much
relevance in omic research. As a matter of fact, the basic assumption is that the two platforms are
“linked” in that what they convey about the profile of intensity/expression for a sample is similar, the net
of the different measurement and the analytic scale of the platform itself.

There is, however, a possible confounding effect in these results that was not possible to control,
i.e., the site where the arrays were processed. As described in the Experimental Section, Affymetrix
arrays were processed at a laboratory (say LAB1), Agilent and Illumina at another one (say LAB2), so
that when the comparison between Affymetrix and the other platforms is done, different laboratories
and different platforms are compared in a completely confounded way. In this perspective, it is not
clear to what extent the laboratory effect encompasses the platform effect, i.e., how much the differences
between Affymetrix and the other platforms were due to different sites of processing and how much to
actual assay differences. Similarly, it could not be exclude that the high degree of concordance between
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Illumina and Agilent could be sharpened by this confounding effect. One alternative could have been to
have all of the arrays processed at a single site, so that the shared laboratory effect would cancel out, yet
this was not possible, for the facilities involved in the experiment did not have all of the instrumentation
needed for performing the experiment with all of the arrays. Thus, though being confident in the validity
of our results, we cannot discriminate between “true” agreement, i.e., concordance due to real similarity
between platforms, and “technical” agreement, i.e., concordance or discordance related to the lab where
the platform was processed.

Notably, the measurement error model considered here was just one of the possible models that could
be fitted. Scatterplots of Figure 7 show the fitted lines for each of the comparisons when λ = 1. It is easy
to note that the linearity of the relationship between discordant platforms can be questioned, so that the
identified differences could be due to a non-linearity in it or to a lack-of-fit of the regression line, which
can be accounted for by considering different functional forms for the x variable, both in a linear and in
a non-linear context.

Figure 7. Measurement error model fit. The red line represents fitted values of the
measurement error model and green crosses represent miRNAs not in agreement after bias
correction. For simplicity, we represent the model fit for λ = 1 separately for line A498 (A)
and hREF (B).

To conclude, these results show that Agilent and Illumina were the most concordant platforms
showing good patterns of agreement, whereas Affymetrix-related comparisons showed poor agreement
for both lines. For line A498, this could be explained by technical issues on one replicate, whereas for
line hREF, this could possibly be due to a non-linear relationship between the arrays, whose biological
or technical source we were not able to ascertain. This suggests considering different functional forms
to achieve a better characterization of the relationship.

The power of the proposed method is that it can be used to assess agreement in various contexts and,
though supposing a simple linear relation exists between arrays, allows one to estimate it in terms of
model parameters corrected for the presence of measurement error, an issue that is often neglected in
microarray studies.
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