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Abstract: Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor
(β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress,
but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the
β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate
the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus.
In the study, maternal mice were treated with restraint stress by being restrained in a transparent
and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy
Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint
stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels,
while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the
FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries.
Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of
FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs).
In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased
significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB
p65 pathway was activated when pregnant mice were under restraint stress. This study provides a
scientific basis for the origin of psychological stress in pregnant women.
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1. Introduction

Some researchers have found that psychological stress has a negative effect on preg-
nancy development, mainly in the study of future generations, including delayed foetal
maturation [1], loss of foetal immune function [2], and offspring neuropsychiatric risk [3].
Most scholars have used the model of restraint stress to simulate psychological stress [4].
In the uterus, Liu et al. found that the balance of oxidative and antioxidative stress
and the balance of apoptosis and proliferation in the uterus were altered under restraint
stress [5,6]. The mechanism of this dysregulation might be due to the involvement of the
nervous and endocrine systems. Gonadotropin-releasing hormone (GnRH) is inhibited by
corticotropin-releasing hormone (CRH), and CRH-induced proopiomelanocortin peptides
suppress ovarian oestradiol and progesterone as well as pituitary luteinizing hormone
(LH) secretion [7].

Exogenous stress activates sympathetic nerve endings to release catecholamine-type
transmitters, including norepinephrine (NE), which acts by binding to adrenergic receptors
located on target organs. Both NE and corticosterone (CORT) are marker of stress, and they
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increase during stress response [8]. It has been reported that β2-AR existed in the uterus of
mice four days after pregnancy. Meanwhile, the β2-AR signalling pathway is activated after
restraint stress, resulting in an asymmetric distribution of intrauterine embryos [9]. During
early pregnancy and placenta formation, local reactive oxygen species (ROS) levels in the
uterus are high in order to induce oxidative stress, while the content of the antioxidant
substance Total Superoxide Dismutase (T-SOD) increases, maintaining the local oxidative–
antioxidant balance of the uterus [10]. However, excessive oxidative stress is considered
to be responsible for the initiation or development of pathological processes affecting
female reproductive activities [11–13], such as embryonic resorption, recurrent pregnancy
loss, intrauterine growth restriction (IUGR), preeclampsia, and foetal death [13,14]. It was
reported that oxidative stress may affect the pregnancy process by inducing the signalling
pathway of NF-κB [15]. As is known, NF-κB can promote inflammation [16]. Meanwhile,
changes in NF-κB caused by oxidative stress may also suggest an inflammatory response in
the uterus [5]. However, the relationship between NF-κB and β2-AR is unclear. Therefore,
whether NF-κB is involved in the β2-AR signal pathway remains to be studied.

The Forkhead transcription factor class O (FOXO) gene encodes a series of transcrip-
tion factors that regulate oxidative stress, DNA repair, and apoptosis in cells in order to
maintain homeostasis [17–19]. In addition, the important role of FOXO in the reproductive
process is mainly in its ability to regulate decidualization, under the influence of proges-
terone content, and to regulate cell apoptosis and differentiation [20]. A study showed
that the β2-AR agonist induced the expression of FOXO1 in mouse skeletal muscle [21]. In
view of the role of FOXO in oxidative stress and decidualization, the role of FOXO in the
activation of β2-AR should also be taken seriously.

In this study, a model of restraint stress was established to study various changes
throughout pregnancy, including the detection of hormones in plasma, changes in the
uterine antioxidant capacity, and the detection of membrane receptor and intracellular
signalling molecules. Finally, the FOXO1-mediated β2-AR/NF-κB signalling pathway was
examined by a cell assay. We focused on the effect of restraint stress in pregnant mothers
throughout pregnancy and conducted preliminary studies of signalling pathways.

2. Results
2.1. Effect of Restraint Stress on Body Weight in Pregnant Mice

Body weight was measured before (1st day) and after stress (5th day). The body
weight gain (BWG) was calculated. SBWG = S5th-S1st (Stress group), CBWG = C5th-C1st

(Control group). Body weight gains were affected by pregnancy age (p < 0.001) and
restraint stress (p < 0.001). In this study, the body weight gain was reduced significantly
after restraint stress in different ages compared with control groups (independent sample t
test, NP5: 281.07%, p < 0.001; P5: 517.86%, p < 0.001; P10: 182.81%, p < 0.001; P15: 43.74%,
p = 0.004) (Figure 1). However, on the 20th day, the mother delivered the pups, which
led to the rapid decline of weight at P20. Besides, in our previous study, the number of
foetuses were fewer under restraint stress than control mice [5]. So, the change of BWG
in the stress group was fewer than in the control group (independent sample t test, P20:
15.60%, p = 0.006) (Figure 1) at P20 (for the specific value, see Table S1 of the Supplementary
Material). Overall, restraint stress led to loss in body weight.
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Figure 1. Changes in body weight after restraint stress. Restraint stress caused a significant de-
crease in the weight gain of pregnant mothers. The data are expressed as the mean ± standard er-
ror of mean (SEM). # was used to denote extremely significant difference between stress and corre-
sponding control groups (p < 0.01). Uppercase letters in the column (A, B, C, D) represent the dif-
ferences between different ages in the stress group (p < 0.05). A (in the P15 group) represents the 
biggest value in the stress. Lowercase letters in the column (a, b, c) represent the differences be-
tween different ages in the control group (p < 0.05). a (in the P15) represents the biggest value in 
the control. Treatment groups are significantly different from each other if no labelling letter (a to 
e or A to E) is shared between groups. The X axis represents the days of pregnancy, NP5: Non-
Pregnancy Day 5, P5: Pregnancy Day 5, P10: Pregnancy Day 10, P15: Pregnancy Day 15, P20: Preg-
nancy Day 20. Every group has 10 mice. 

2.2. Effect of Restraint Stress on Organ Index in Pregnant Mice 
In this study, there was no apparent pathological change in most organs, according 

to the pathologic anatomy (Figure S1). Thus, we measured the weights of the liver, spleen, 
thymus, heart, kidney, ovary, and uterus. The organ weight and body weight ratio repre-
sent the organ index. From Figure 2, the pregnancy age affected the change in all organ 
indexes (p <0.001) and the organ indexes were affected by restraint stress (Liver, p < 0.001; 
spleen, p < 0001; thymus, p < 0.001; heart, p < 0.001, kidney; p < 0.001; ovary, p = 0.005; 
uterus, p = 0.009). The indexes of the liver (independent sample t test, NP5: 9.62%, p = 
0.013; P5: 16.10%, p = 0.008; P15: 8.41%, p = 0.010; P20: 7.35%, p = 0.048) (Figure 2A), spleen 
(independent sample t test, P5: 26.74%, p = 0.008; P10: 21.79%, p = 0.034; P15: 32.81%, p = 
0.001; P20: 14.06%, p = 0.045) (Figure 2B), thymus (independent sample t test, NP5: 40.86%, 
p < 0.001; P5: 46.17%, p < 0.001; P10: 53.64%, p < 0.001; P15: 41.79%, p = 0.005; P20: 19.62%, 
p = 0.023) (Figure 2C), ovary (independent sample t test, NP5: 25.87%, p = 0.008; P10: 
16.50%, p = 0.016), and uterus (independent sample t test, NP5: 24.10%, p < 0.001; P5: 
24.51%, p = 0.016; P20: 20.67%, p = 0.047) decreased significantly in the stress group com-
pared with the control group (Figure 2F,G). The indexes had the same tendency in the 
control and stress groups with changes in age (Figure 2A–C,F,G). However, the indexes 
of the heart (independent sample t test, P15: 44.75%, p = 0.003; P20: 23.76%, p = 0.008) and 
kidney (Independent sample t test, P15: 24.46%, p = 0.019; P20: 16.76%, p = 0.003) were 
obviously increased in stressed mice compared with control mice at different ages (Figure 
2D,E) (for the specific value, see Table S2 of Supplementary Material). In summary, re-
straint stress may affect the index of organ. 

Figure 1. Changes in body weight after restraint stress. Restraint stress caused a significant decrease
in the weight gain of pregnant mothers. The data are expressed as the mean ± standard error of
mean (SEM). # was used to denote extremely significant difference between stress and corresponding
control groups (p < 0.01). Uppercase letters in the column (A, B, C, D) represent the differences
between different ages in the stress group (p < 0.05). A (in the P15 group) represents the biggest value
in the stress. Lowercase letters in the column (a, b, c) represent the differences between different ages
in the control group (p < 0.05). a (in the P15) represents the biggest value in the control. Treatment
groups are significantly different from each other if no labelling letter (a to e or A to E) is shared
between groups. The X axis represents the days of pregnancy, NP5: Non-Pregnancy Day 5, P5:
Pregnancy Day 5, P10: Pregnancy Day 10, P15: Pregnancy Day 15, P20: Pregnancy Day 20. Every
group has 10 mice.

2.2. Effect of Restraint Stress on Organ Index in Pregnant Mice

In this study, there was no apparent pathological change in most organs, according to
the pathologic anatomy (Figure S1). Thus, we measured the weights of the liver, spleen,
thymus, heart, kidney, ovary, and uterus. The organ weight and body weight ratio represent
the organ index. From Figure 2, the pregnancy age affected the change in all organ indexes
(p <0.001) and the organ indexes were affected by restraint stress (Liver, p < 0.001; spleen,
p < 0001; thymus, p < 0.001; heart, p < 0.001, kidney; p < 0.001; ovary, p = 0.005; uterus,
p = 0.009). The indexes of the liver (independent sample t test, NP5: 9.62%, p = 0.013;
P5: 16.10%, p = 0.008; P15: 8.41%, p = 0.010; P20: 7.35%, p = 0.048) (Figure 2A), spleen
(independent sample t test, P5: 26.74%, p = 0.008; P10: 21.79%, p = 0.034; P15: 32.81%,
p = 0.001; P20: 14.06%, p = 0.045) (Figure 2B), thymus (independent sample t test, NP5:
40.86%, p < 0.001; P5: 46.17%, p < 0.001; P10: 53.64%, p < 0.001; P15: 41.79%, p = 0.005; P20:
19.62%, p = 0.023) (Figure 2C), ovary (independent sample t test, NP5: 25.87%, p = 0.008;
P10: 16.50%, p = 0.016), and uterus (independent sample t test, NP5: 24.10%, p < 0.001;
P5: 24.51%, p = 0.016; P20: 20.67%, p = 0.047) decreased significantly in the stress group
compared with the control group (Figure 2F,G). The indexes had the same tendency in the
control and stress groups with changes in age (Figure 2A–C,F,G). However, the indexes
of the heart (independent sample t test, P15: 44.75%, p = 0.003; P20: 23.76%, p = 0.008)
and kidney (Independent sample t test, P15: 24.46%, p = 0.019; P20: 16.76%, p = 0.003)
were obviously increased in stressed mice compared with control mice at different ages
(Figure 2D,E) (for the specific value, see Table S2 of Supplementary Material). In summary,
restraint stress may affect the index of organ.
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Figure 2. Effect of restraint stress on organ index in pregnant mice. The liver, spleen, kidney, heart, 
ovary, uterus, and thymus were weighed. The organ index was expressed as the ratio of the 
weight of the organ to the body weight. The result showed that restraint stress caused a significant 
decrease in the organ index of the liver (A), spleen (B), thymus (C), ovary (F), and uterus (G), indi-
cating that restraint stress affects the immune system, the digestive system, and the reproductive 
system. At the same time, the heart (D) index and kidney (E) index increased under restraint 
stress. In general, restraint stress may affect the function of the various systems of the body. The 
data were expressed as the mean ± SEM. Non-Pregnancy Day 5 (NP5) (nstress = 10, ncontrol = 10), 
Pregnancy Day 5 (P5) (nstress = 10, ncontrol = 10), Pregnancy Day 10 (P10) (nstress = 10, ncontrol = 10), Preg-
nancy Day 15 (P15) (nstress = 10, ncontrol = 10), and Pregnancy Day 20 (P20) (nstress = 10, ncontrol = 10). 
Lowercase letters in the column (a, b, c) represented the differences between NP5, P5, P10, P15, 
and P20 in the control group (p < 0.05), and uppercase letters in the column (A, B, C, D) repre-
sented the differences between NP5, P5, P10, P15, and P20 in the stress group (p < 0.05). *p < 0.05 
and #p < 0.01 were used to denote the significance of the stress group compared with the corre-
sponding control group. 

2.3. Effect of Restraint Stress on Plasma Hormone Levels in Pregnant Mice 
As is known, stress activates the hypothalamic–pituitary–adrenal (HPA) axis and the 

sympathetic-adrenal medullary system (SAS), which induce the release of glucocorticoids 
from the adrenal cortex and the catecholamines epinephrine (EPI) and NE from the ad-
renal medulla and sympathetic nerve termini [22]. In our study, the concentration of stress 
hormones increased significantly, including the concentrations of CORT (independent 
sample t test, NP5: 6.048 ng/mL, 33.48%, p = 0.001, P5: 3.544 ng/mL, 17.82%, p = 0.044, P10: 
7.118 ng/mL, 33.05%, p = 0.040; P15: 2.411 ng/mL 12.67%, p = 0.010; P20: 7.669 ng/mL, 
40.82%, p < 0.001) (Figure 3A) and NE (independent sample t test, NP5: 56.754 pg/mL, 
125.01%, p < 0.001; P5: 28.205 pg/mL, 29.49%, p < 0.001; P10: 26.251 pg/mL, 13.61%, p < 
0.001; P15: 31.445 pg/mL, 20.18%, p < 0.001; P20: 43.289 pg/mL, 25.68%, p < 0.001) (Figure 
3B). Additionally, gluconeogenesis is usually enhanced by glucocorticoids and then in-
creases blood glucose levels [23]. Compared with control mice, in stress mice, the blood 
glucose level increased significantly in each age group (independent sample t test, NP5: 
2.533 mmol/L, 42.22%, p = 0.007; P5: 1.875 mmol/L, 27.57%, p < 0.001; P10: 1.700 mmol/L, 
25.63%, p = 0.003; P15: 0.825 mmol/L, 11.66%, p = 0.047; P20: 1.633 mmol/L, 25.79%, p = 
0.002) (Figure 3C). As is well known, E2 is a marker of female reproduction. The concen-
tration of E2 was detected by radioimmunoassay, and there was a significant decrease at 
P5 (independent sample t test, 13.704 pg/mL, 49.66%, p < 0.001) and P10 (independent 

Figure 2. Effect of restraint stress on organ index in pregnant mice. The liver, spleen, kidney, heart,
ovary, uterus, and thymus were weighed. The organ index was expressed as the ratio of the weight
of the organ to the body weight. The result showed that restraint stress caused a significant decrease
in the organ index of the liver (A), spleen (B), thymus (C), ovary (F), and uterus (G), indicating that
restraint stress affects the immune system, the digestive system, and the reproductive system. At
the same time, the heart (D) index and kidney (E) index increased under restraint stress. In general,
restraint stress may affect the function of the various systems of the body. The data were expressed
as the mean ± SEM. Non-Pregnancy Day 5 (NP5) (nstress = 10, ncontrol = 10), Pregnancy Day 5 (P5)
(nstress = 10, ncontrol = 10), Pregnancy Day 10 (P10) (nstress = 10, ncontrol = 10), Pregnancy Day 15 (P15)
(nstress = 10, ncontrol = 10), and Pregnancy Day 20 (P20) (nstress = 10, ncontrol = 10). Lowercase letters in
the column (a, b, c) represented the differences between NP5, P5, P10, P15, and P20 in the control
group (p < 0.05), and uppercase letters in the column (A, B, C, D) represented the differences between
NP5, P5, P10, P15, and P20 in the stress group (p < 0.05). * p < 0.05 and # p < 0.01 were used to denote
the significance of the stress group compared with the corresponding control group.

2.3. Effect of Restraint Stress on Plasma Hormone Levels in Pregnant Mice

As is known, stress activates the hypothalamic–pituitary–adrenal (HPA) axis and the
sympathetic-adrenal medullary system (SAS), which induce the release of glucocorticoids
from the adrenal cortex and the catecholamines epinephrine (EPI) and NE from the adrenal
medulla and sympathetic nerve termini [22]. In our study, the concentration of stress
hormones increased significantly, including the concentrations of CORT (independent
sample t test, NP5: 6.048 ng/mL, 33.48%, p = 0.001, P5: 3.544 ng/mL, 17.82%, p = 0.044, P10:
7.118 ng/mL, 33.05%, p = 0.040; P15: 2.411 ng/mL 12.67%, p = 0.010; P20: 7.669 ng/mL,
40.82%, p < 0.001) (Figure 3A) and NE (independent sample t test, NP5: 56.754 pg/mL,
125.01%, p < 0.001; P5: 28.205 pg/mL, 29.49%, p < 0.001; P10: 26.251 pg/mL, 13.61%,
p < 0.001; P15: 31.445 pg/mL, 20.18%, p < 0.001; P20: 43.289 pg/mL, 25.68%, p < 0.001)
(Figure 3B). Additionally, gluconeogenesis is usually enhanced by glucocorticoids and
then increases blood glucose levels [23]. Compared with control mice, in stress mice,
the blood glucose level increased significantly in each age group (independent sample
t test, NP5: 2.533 mmol/L, 42.22%, p = 0.007; P5: 1.875 mmol/L, 27.57%, p < 0.001; P10:
1.700 mmol/L, 25.63%, p = 0.003; P15: 0.825 mmol/L, 11.66%, p = 0.047; P20: 1.633 mmol/L,
25.79%, p = 0.002) (Figure 3C). As is well known, E2 is a marker of female reproduction.
The concentration of E2 was detected by radioimmunoassay, and there was a significant
decrease at P5 (independent sample t test, 13.704 pg/mL, 49.66%, p < 0.001) and P10
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(independent sample t test, 7.440 pg/mL, 21.63%, p = 0.004) in stress mice compared with
control mice (Figure 3D) (for the specific value, see Table S3 of Supplementary Material).
A two-way analysis of variance showed that the age of pregnancy affected the change in
these index levels (p < 0.001), except for the blood glucose (p = 0.085), and all of them were
influenced by restraint stress (p < 0.001). This result showed that restraint stress increased
stress levels and inhibited E2 levels.
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Figure 3. Changes in plasma hormone levels in pregnant mice. Restraint stress caused an increase
in corticosterone (CORT) (A), norepinephrine (NE) (B), and blood glucose (C) levels but a decrease
in oestradiol (E2) (D) in the plasma of pregnant mice. Restraint stress caused disorders of stress
hormones and reproductive hormone levels, resulting in endocrine disorders. The data are expressed
as the mean ± SEM. Lowercase letters in the column (a, b, c, d) represent the differences between
NP5 (n = 10), P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20 (n = 10) in the control group (p < 0.05),
and uppercase letters in the column (A, B, C and D) represent the differences between NP5 (n = 10),
P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20 (n = 10) in the stress group (p < 0.05). * p < 0.05 and
# p < 0.01 were used to denote the significance of the stress group compared with the corresponding
age of the control group.

2.4. Effect of Restraint Stress on Antioxidative Ability in the Uterus of Pregnant Mice

Antioxidant enzymes and oxidative products represent the antioxidative ability and
oxidant level of mice, respectively. The related anti-oxidases were tested, including Glu-
tathione peroxidase (GSH-Px), T-SOD, and Total Antioxidant Capacity (T-AOC). The
concentrations of T-SOD and GSH-Px in the stress group compared with the control group
were significantly decreased at P5 (independent sample t test, T-SOD, 0.626 U/mg, 17.89%,
p < 0.001; GSH-Px, 53.409 U/mg, 29.23%, p = 0.001), P10 (independent sample t test, T-
SOD, 0.427 U/mg, 14.02%, p = 0.011; GSH-Px, 23.180 U/mg, 17.57%, p < 0.001), and P20
(independent sample t test, T-SOD, 0.576 U/mg, 20.49%, p < 0.001; GSH-Px, 10.956 U/mg,
6.70%, p < 0.001) (Figure 4A,B). The activity of T-AOC decreased significantly in the stress
group compared with the control group at every age (independent sample t test, NP5:
0.735 U/mg, 49.10%, p < 0.001; P5: 0.294 U/mg, 39.52%, p < 0.001; P10: 0.556 U/mg,
37.98%, p < 0.001; P15: 0.247 U/mg, 19.84%, p = 0.001; P20: 0.347 U/mg, 26.27%, p = 0.012)
(Figure 4C). Furthermore, the levels of Malondialdehyde (MDA) increased in each age
group except NP5. Additionally, the degree of elevation was significant (independent sam-
ple t test, P5: 1.798 nmol/mg, 63.43%, p < 0.001; P10: 3.348 nmol/mg, 114.97%, p < 0.001;
P15: 1.363 nmol/mg, 63.12%, p < 0.001; P20: 5.101 nmol/mg, 307.84%, p < 0.001) (Figure
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4D) (for the specific value, see Table S4 of Supplementary Material). A two-way analysis
of variance found that both pregnancy age (p < 0.001) and restraint stress (p < 0.001) af-
fected the change in anti-oxidation ability. Overall, the antioxidative ability of the uterus
decreased under restraint stress.
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Figure 4. Effects of restraint stress on the oxidative stress states in the uterus in pregnant mice.
These graphs show the contents of total superoxide dismutase (T-SOD) (A), glutathione peroxidase
(GSH-Px) (B), total antioxidant capacity (T-AOC) (C), and malondialdehyde (MDA) (D) in the uterus
of the control and stress group at NP5, P5, P10, P15, and P20. Restraint stress reduced the levels of
T-SOD (A), GSH-Px (B), and total antioxidant capacity (C) in pregnant mice, resulting in increased
lipid peroxide MDA content (D). In conclusion, restraint stress reduced the antioxidant capacity
of the uterus in pregnant mice. Values are expressed as the mean ± SEM. Lowercase letters in the
column (a, b, c, d) represent the differences between NP5 (n = 10), P5 (n = 10), P10 (n = 10), P15
(n = 10), and P20 (n = 10) in the control group (p < 0.05), and uppercase letters in the column (A, B, C
and D) represent the differences between NP5 (n = 10), P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20
(n = 10) in the stress group (p < 0.05). * p < 0.05 and # p < 0.01 were used to denote the significance of
the stress group compared with the corresponding control group.

2.5. Effect of Restraint Stress on FOXO1, FOXO3, and FOXO4 mRNA Levels and FOXO1
Protein in the Uterus and Ovary of Pregnant Mice

The FOXO family plays an important role in oxidative stress and reproduction. In
this study, FOXO family members were studied via real-time fluorescence quantitative
PCR (qRT-PCR) and Western blotting. As shown in Figure 5, in the stress group, the
mRNA levels of FOXO1 in the ovary increased significantly at NP5 (independent sample
t test, 25.38%, p < 0.001), P5 (independent sample t test, 44.29%, p < 0.001), and P10
(independent sample t test, 22.11%, p < 0.001) (Figure 5A). In the uterus, the mRNA levels
of FOXO1 increased significantly at NP5 (independent sample t test, 29.01%, p < 0.001), P5
(independent sample t test, 168.07%, p < 0.001), P10 (independent sample t test, 36.04%,
p < 0.001), and P20 (independent sample t test, 24.45%, p < 0.001) (Figure 5B). Furthermore,
the mRNA levels of FOXO3 increased significantly at NP5 (independent sample t test,
48.53%, p < 0.001), P5 (independent sample t test, 53.89%, p < 0.001), P10 (independent
sample t test, 73.64%, p < 0.001), and P15 (independent sample t test, 27.99%, p < 0.001)
in the ovary (Figure 5C). These levels also increased significantly at NP5 (independent
sample t test, 78.34%, p < 0.001), P5 (independent sample t test, 43.81%, p = 0.001), P10
(independent sample t test, 30.08%, p < 0.001), P15 (independent sample t test, 53.52%,
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p < 0.001), and P20 (independent sample t test, 15.07%, p = 0.006) in the uterus (Figure 5D)
(for the specific value, see Table S5 of Supplementary Material).
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Figure 5. Effect of restraint stress on FOXO mRNA levels and FOXO1 protein in the uterus and ovary
of pregnant mice. Restraint stress significantly increased the level of Forkhead transcription factor
class O (FOXO) mRNA associated with oxidative stress in the ovary (A,C,E) and uterus (B,D,F),
suggesting that the oxidative stress experienced by the body was excessive. Furthermore, the relative
expression of FOXO1 was highest among FOXO, so the protein level of FOXO1 was detected by
WB and significantly increased in the ovary (G) and uterus (H). The data are expressed as the
mean ± SEM. Lowercase letters in the column (a, b, c and d) represent the differences between NP5
(n = 10), P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20 (n = 10) in the control group (p < 0.05), and
uppercase letters in the column (A, B, C, D and E) represent the differences between NP5 (n = 10),
P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20 (n = 10) in the stress group (p < 0.05). The value of
NP1 was regard as 1 to be used as the base level of assessment. * p < 0.05 and # p < 0.01 were used to
denote the significance of the stress group compared with the corresponding control group.
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Additionally, the changes seemed to be the same for FOXO4 by FOXO1 and FOXO3.
The mRNA levels of FOXO4 in the ovary increased in each age group, especially at P5
(independent sample t test, 63.67%, p < 0.001), P15 (independent sample t test, 44.14%,
p < 0.001), and P20 (independent sample t test, 41.77%, p < 0.001) (Figure 5E). Similarly,
the mRNA levels of FOXO4 in the uterus increased significantly at NP5 (independent
sample t test, 51.74%, p < 0.001), P5 (independent sample t test, 25.98%, p = 0.016), P15
(independent sample t test, 38.42%, p < 0.001), and P20 (independent sample t test, 73.09%,
p < 0.001) (Figure 5F) (for the specific value, see Table S5 of Supplementary Material). A
two-way analysis of variance showed that both pregnancy age (p < 0.001) and restraint
stress (p < 0.001) affected the change in mRNA levels of FOXO1, FOXO3 and FOXO4.

From the Table S5, the mRNA expression of FOXO1 were higher than FOXO3 and
FOXO4. Meanwhile, FOXO1 is more involved in the stress and reproduction than FOXO3
and FOXO4. Thus, FOXO1 protein expression was detected in the ovary and uterus. A
two-way analysis of variance showed that both pregnancy age (p < 0.001) and restraint
stress (p < 0.001) affected the change in protein levels of FOXO1. The protein expression of
FOXO1 was obviously increased at P5 (independent sample t test, 56.57%, p = 0.005), P10
(independent sample t test, 50.66%, p = 0.001) and P15 (independent sample t test, 57.18%,
p = 0.010) in the ovary (Figure 5G). Furthermore, in the uterus, the protein expression of
FOXO1increased significantly at NP5 (independent sample t test, 204.72%, p = 0.003), P5
(independent sample t test, 40.50%, p < 0.001), P10 (independent sample t test, 28.75%,
p = 0.011), P15 (independent sample t test, 112.56%, p < 0.001), and P20 (independent sample
t test, 28.87%, p = 0.035) (Figure 5H) (for the specific value, see Table S5 of Supplementary
Material). Overall, the levels of FOXO1, FOXO3, and FOXO4 increased in the stress group.

2.6. Effect of Restraint Stress on β2-AR Levels in the Uterus and Ovary of Pregnant Mice

In this study, a two-way analysis of variance showed that the age of pregnancy
(p < 0.001) and restraint stress (p < 0.001) affected the change in mRNA and protein levels
of β2-AR. The mRNA levels of β2-AR increased significantly at NP5 (independent sample t
test, 58.43%, p < 0.001), P5 (independent sample t test, 105.72%, p < 0.001), P10 (independent
sample t test, 71.90%, p < 0.001), and P20 (independent sample t test, 159.03%, p < 0.001)
in the ovary (Figure 6A); in the uterus, the mRNA levels of β2-AR increased significantly
at NP5 (independent sample t test, 18.84%, p = 0.002), P5 (independent sample t test,
79.62%, p < 0.001), P15 (independent sample t test, 21.68%, p = 0.011), and P20 (independent
sample t test, 50.92%, p < 0.001) (Figure 6B). Additionally, the protein expression of β2-AR
was detected in this study. As shown in Figure 6, the protein expression of β2-AR in the
ovary was obviously increased in each age group (independent sample t test, NP5: 71.97%,
p = 0.002; P5: 28.93%, p = 0.006; P15: 272.57%, p < 0.001) (Figure 6C). In the uterus, the
protein levels of β2-AR increased significantly at NP5 (independent sample t test, 61.87%,
p = 0.007), P5 (independent sample t test, 114.72%, p = 0.005), and P20 (independent sample
t test, 32.31%, p = 0.031) (Figure 6D) (for the specific value, see Table S6 of Supplementary
Material). The stimulation of restraint stress caused a significant increase in the protein
expression of β2-AR. Overall, the expression of β2-AR increased under restraint stress.
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Figure 6. Effect of restraint stress on β2-AR in the uterus and ovary of pregnant mice. Oxidative
stress led to a significant increase in mRNA levels and protein expression of β2-AR in the ovary (A,C)
and uterus (B,D) of pregnant mice, suggesting that oxidative stress caused the body’s G-protein
coupled receptors to be activated. The mRNA levels of β2-AR were detected by quantitative real-time
polymerase chain reaction (qRT-PCR), and the protein level of β2-AR was measured by WB. The
data are expressed as the mean ± SEM. Lowercase letters in the column (a, b, c, d) represent the
differences between NP5 (n = 10), P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20 (n = 10) in the
control group (p < 0.05), and uppercase letters in the column (A, B, C and D) represent the differences
between NP5 (n = 10), P5 (n = 10), P10 (n = 10), P15 (n = 10), and P20 (n = 10) in the stress group
(p < 0.05). The value of NP1 was regard as 1 to be used as the base level of assessment. * p < 0.05 and
# p < 0.01 were used to denote the significance of the stress group compared with the corresponding
control group.

2.7. Immunohistochemical Localization of FOXO1

To explore the relationship between β2-AR and FOXO1, we performed immunohisto-
chemical localization of FOXO1 in the uterus at every gestation age. The brownish yellow
portion indicated positive cells. At NP5, P5, P10, P15 and P20, the FOXO1 was located
in the endometrial luminal epithelium cell and in the ESCs. Meanwhile, FOXO1 was
located at the nuclear during pregnancy, which demonstrated that FOXO1 exerted the
transcription regulation function during pregnancy. As shown in Figures 7 and 5H, at P5,
FOXO1 increased under restraint stress, which showed that FOXO1 was not only involved
in pregnancy but also related to restraint stress.
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Figure 7. Immunohistochemical localization of FOXO1. To detect FOXO1 expression in the uterus,
immunohistochemical localization was performed. A large number of positive cells were expressed
in endometrial stromal cells of the uterus at NP5 (A,B), P5 (C,D), P10 (E,F), P15 (G,H), and P20 (I,J).
The negative control (NC) were K (Control group) and L (Stress group). The yellow particles indicate
positive cells. The scale bar is 50 µm.

2.8. Relativity Analysis among FOXO1, p-NF-κB p65, and β2-AR

In view of the above, we isolated and cultured the ESCs of the uterus at P5 to ex-
plore the relationship between FOXO1, p-NF-κB p65, and β2-AR. The protein levels of
β2-AR increased after adding the agonists of β2-AR compared with control cells (inde-
pendent sample t test, 88.81%, p = 0.010) (Figure 8A,B). Interestingly, the protein levels of
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FOXO1 were also obviously increased when β2-AR was activated (independent sample
t test 69.19%, p = 0.001) (Figure 8A,C). However, the protein levels of FOXO1 decreased
significantly when Butoxamine hydrochloride (Butox) was added to the cultured cells
(independent sample t test, 33.14%, p = 0.001) (Figure 8A,C). It is worth noting that the
protein expression of p-NF-κB p65 did not change when β2-AR was activated, but it in-
creased obviously when β2-AR was blocked by Butox (independent sample t test, 61.64%,
p = 0.009) (Figure 8A,D). Furthermore, the expression decreased significantly when FOXO1
was inhibited by AS1842865 (independent sample t test, 47.53%, p = 0.022) compared with
Butox treatment (Figure 8A,D). Next, in vivo, the target gene of p-NF-κB p65, including
IL-2 (independent sample t test, 44.94%, p = 0.021), Interleukin-6 (IL-6) (independent sam-
ple t test, 177.14%, p = 0.001), and the target gene of FOXO1, tumour necrosis factor-alpha
(TNF-α) (independent sample t test, 322.70%, p < 0.001), increased significantly in the
restraint stress group compared with control group. However, they decreased when the
FOXO1 was inhibited in the restraint stress group (independent sample t test, IL-2, 30.25%,
p = 0.032; IL-6, 55.95%, p = 0.001; TNF-α, 73.08%, p < 0.001) (Figure 8E) compared with
restraint stress group. Meanwhile, the protein levels of p-NF-κB p65/t- NF-κB p65 were
obviously facilitated (independent sample t test, 99.77%, p < 0.001) in the restraint stress
group. However, it decreased when the FOXO1 was inhibited (independent sample t
test, 40.09%, p < 0.001) (Figure 8F) (for the specific value, see Table S7 of Supplementary
Material). Therefore, FOXO1 may be a critical mediator in the crosstalk between β2-AR
and p-NF-κB p65 in ESCs.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 8. β2-AR activates FOXO1 and FOXO1 induced the expression of p-NF-κB p65/t-NF-κB p65 
protein and its downstream inflammation genes. These protein bands of β2-AR, FOXO1, p-NF-κB 
p65, and t-NF-κB p65 in ESCs were tested by adding agonist and blocking agents (A). The protein 
levels of β2-AR increased after adding the agonists of β2-AR compared with the control cells (B). 
Interestingly, the protein levels of FOXO1 were obviously increased when β2-AR was activated but 
were significantly decreased when Butox was added to the cultured cells (C). It is worth noting 
that the protein expression of p-NF-κB p65/t-NF-κB p65 did not change when β2-AR was acti-
vated, but it increased when β2-AR was blocked by Butox, and it decreased significantly when 
FOXO1 was inhibited by AS1842865 (D). (E) The mRNA levels of IL-2, IL-6, and TNF-α in the 
uterus of pregnant mice at P5 after restraint stress and adding AS. (F) Protein band and quantita-
tive analysis of p-NF-κB p65/t-NF-κB p65. Formoterol hemifumarate (For) is a selective agonist of 
β2-AR. Butox is the blocking agent of β2-AR, and AS1842865 is an inhibitor of FOXO1. Pyrrolidine 
dithiocarbamate ammonium (PDTC) is an inhibitor of NF-κB. DMSO is the solvent for the drugs. 
These data are expressed as the mean ± SEM. *p < 0.05 and **p < 0.01 were used to denote the signif-
icance of the other groups compared with the corresponding control group (B). ++p < 0.01 were 
used to denote the significance of other groups compared with the corresponding For group. $p < 
0.05 was used to denote the significance of other groups compared with the cell+For+Butox+AS 

Figure 8. Cont.



Int. J. Mol. Sci. 2021, 22, 1478 12 of 25

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 8. β2-AR activates FOXO1 and FOXO1 induced the expression of p-NF-κB p65/t-NF-κB p65 
protein and its downstream inflammation genes. These protein bands of β2-AR, FOXO1, p-NF-κB 
p65, and t-NF-κB p65 in ESCs were tested by adding agonist and blocking agents (A). The protein 
levels of β2-AR increased after adding the agonists of β2-AR compared with the control cells (B). 
Interestingly, the protein levels of FOXO1 were obviously increased when β2-AR was activated but 
were significantly decreased when Butox was added to the cultured cells (C). It is worth noting 
that the protein expression of p-NF-κB p65/t-NF-κB p65 did not change when β2-AR was acti-
vated, but it increased when β2-AR was blocked by Butox, and it decreased significantly when 
FOXO1 was inhibited by AS1842865 (D). (E) The mRNA levels of IL-2, IL-6, and TNF-α in the 
uterus of pregnant mice at P5 after restraint stress and adding AS. (F) Protein band and quantita-
tive analysis of p-NF-κB p65/t-NF-κB p65. Formoterol hemifumarate (For) is a selective agonist of 
β2-AR. Butox is the blocking agent of β2-AR, and AS1842865 is an inhibitor of FOXO1. Pyrrolidine 
dithiocarbamate ammonium (PDTC) is an inhibitor of NF-κB. DMSO is the solvent for the drugs. 
These data are expressed as the mean ± SEM. *p < 0.05 and **p < 0.01 were used to denote the signif-
icance of the other groups compared with the corresponding control group (B). ++p < 0.01 were 
used to denote the significance of other groups compared with the corresponding For group. $p < 
0.05 was used to denote the significance of other groups compared with the cell+For+Butox+AS 

Figure 8. β2-AR activates FOXO1 and FOXO1 induced the expression of p-NF-κB p65/t-NF-κB p65
protein and its downstream inflammation genes. These protein bands of β2-AR, FOXO1, p-NF-κB
p65, and t-NF-κB p65 in ESCs were tested by adding agonist and blocking agents (A). The protein
levels of β2-AR increased after adding the agonists of β2-AR compared with the control cells (B).
Interestingly, the protein levels of FOXO1 were obviously increased when β2-AR was activated but
were significantly decreased when Butox was added to the cultured cells (C). It is worth noting
that the protein expression of p-NF-κB p65/t-NF-κB p65 did not change when β2-AR was activated,
but it increased when β2-AR was blocked by Butox, and it decreased significantly when FOXO1
was inhibited by AS1842865 (D). (E) The mRNA levels of IL-2, IL-6, and TNF-α in the uterus of
pregnant mice at P5 after restraint stress and adding AS. (F) Protein band and quantitative analysis of
p-NF-κB p65/t-NF-κB p65. Formoterol hemifumarate (For) is a selective agonist of β2-AR. Butox is
the blocking agent of β2-AR, and AS1842865 is an inhibitor of FOXO1. Pyrrolidine dithiocarbamate
ammonium (PDTC) is an inhibitor of NF-κB. DMSO is the solvent for the drugs. These data are
expressed as the mean ± SEM. * p < 0.05 and ** p < 0.01 were used to denote the significance of the
other groups compared with the corresponding control group (B). ++ p < 0.01 were used to denote
the significance of other groups compared with the corresponding For group. $ p < 0.05 was used to
denote the significance of other groups compared with the cell+For+Butox+AS group. Independent
sample t test was performed, * p < 0.05 and # p < 0.01 were used to denote the significance of the
stress group compared with the corresponding control group (E and F).

3. Discussion
3.1. Restraint Stress Disturbs Neuroendocrine Signalling in Pregnant Mice

Stress can cause neuroendocrine disorders and a range of reproductive diseases.
For example, long-term chronic prenatal stress can lead to postpartum depression [24],
pregnancy obesity syndrome [25], endometriosis, cancer, recurrent pregnancy loss, and
pregnancy complications associated with pre-term birth [26]. The mechanism of stress on
reproduction involved the HPA and hypothalamic–pituitary–gonadal (HPG) axis. Restraint
stress can induce psychological stress, which induces the activation of the HPA axis [27].
Activation of the HPA axis by various stressors primarily inhibits reproductive function
and is able to alter foetal development, inducing biological stress in the uterus [28]. CORT,
NE, and blood glucose levels in mice are generally regarded as stress makers [29,30].
CORT can reduce the amount of oestradiol in the body and can cause damage during
the reproductive process [31]. Therefore, restraint stress exacerbates this negative effect
during pregnancy by activating the HPA axis. In this study, CORT, NE, and blood glucose
levels increased significantly in stress mice, and E2 concentration decreased significantly
at P5 and P15 (Figure 3). Disordered E2 affects eating, energy expenditure, and body
adiposity [32]. Meanwhile, anxiety can induce weight loss [33]. In this study, the loss of
body weight significantly increased after restraint stress at different ages compared with
the control group. Elevation of CORT and NE caused by restraint stress reduced the spleen
index in mice and induced an involution of red pulp and an expansion of white pulp.
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This phenomenon is also involved in the alterations of spleen immune cell subsets [34].
In summary, we believe that restraint stress disrupted hormone levels and resulted in
malnutrition during pregnancy.

It was well known that E2 is important to embryo implantation and supports the
growing foetus and counteract pregnancy stresses [35]. Generally, oxidative stress is
accompanied by a decrease in E2 levels, and E2 treatment can maintain the redox balance.
Therefore, oxidative stress is one of the reasons for the decrease in E2 levels [36]. Related
studies have shown that oxidative stress can cause a variety of reproductive diseases,
including endometriosis [37,38], foetal growth restriction [39], and intrauterine immune
disorders [13,40]. In this work, restraint stress induced the oxidative stress. T-AOC level
decreased at NP5 and throughout pregnancy (P5-P20) under restraint stress. In particular,
T-SOD and GSH-Px decreased in the implantation (P5), post-implantation (P10), and
childbirth periods (P20). The levels of MDA were significantly increased throughout
pregnancy (P5-P20) (Figure 4). SOD, T-AOC, and GSH-Px, biomarkers of antioxidation,
are decreased under oxidative stress. MDA, a biomarker of oxidative stress reflected by
oxidation level, is increased under oxidative stress [41]. Stress not only stimulates the
HPA axis but also disrupts the balance between oxidative and antioxidative stress [42].
Therefore, we considered that restraint stress threatened the intracellular equilibrium
between oxidants and antioxidants.

Oxidative stress is closely related to the immune response. The indexes of the spleen
and thymus, the lymphatic organs used in this study, decreased in stressed mice, showing
that restraint stress leads to immune disorders in pregnant mice (Figure S1 and Figure 2).
Our previous study suggested that restraint stress disturbed the balance of the uterine
immune microenvironment during the implantation period, which altered the number of
uterus natural killer cell (uNK) and mast cells, decreased the CD3+CD4+ T/CD3+CD8+
T cell ratio and the proliferative activities of T and B lymphocytes, and increased the
IL-2/IL-4 ratio [5]. In our study, the uterus index was also decreased in the implantation
(P5) and childbirth periods (P20) (Figure S1 and Figure 2). Therefore, we speculated that
restraint stress may disrupt the immune environment of pregnant mothers and may limit
uterine cell proliferation.

3.2. The FOXO Family is Involved in the Oxidative Stress Induced by Restraint Stress

FOXO, an evolutionarily conserved subfamily of Forkhead transcription factors, has
emerged as a master regulator of cell fate decisions capable of integrating a variety of stress,
growth factor and cytokine signalling pathways with the transcription machinery [43].
FOXO transcription factors function mostly as transcriptional activators, and their activity
is inhibited by the phosphatidylinositol 3-kinase-serine/threonine kinase (PI3K-AKT)
signalling pathway, resulting in FOXO exclusion from the nucleus and repression of
transcriptional activity in order to resist oxidative stress [44]. There have also been reports
that FOXO ablation in myeloid cells increases the generation of ROS [45], and that FOXO1
enhances the antioxidant capacity under normal physiological conditions [30]. Treatment
with either FOXO1 small interfering RNA (siRNA) or resveratrol, a sirt1 agonist, results
in oxidative stress in QBC939 cells [46]. FOXO also plays a critical role in the induction of
human uterine decidualization [47]. The capabilities of trophoblast adhesion and migration
are inhibited by silencing FOXO1 or oxidative stress with H2O2 [48].

In this work, mRNA levels of FOXO1, FOXO3, and FOXO4 were detected in the
uterus and ovary, and all of them were significantly elevated under restraint stress during
pregnancy. As stated previously, it is well known that FOXO1, FOXO3, and FOXO4
differ only in tissue specificity. FOXO1, FOXO3, and FOXO4 proteins are localized in the
cytoplasm during embryo development and are located in the nucleus in embryos with
developmental delay [49]. In the setting of growth factor stimulation, FOXO1, -3, and -4
are subject to Akt-mediated phosphorylation, which results in their nuclear export and
the inhibition of FOXO-mediated transcription [44]. Therefore, we performed a protein
assay of FOXO1 to illustrate the effect of restraint stress on the FOXO family. Interestingly,
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although FOXO family members, especially FOXO1, were activated by restraint stress,
the antioxidation levels decreased in the stress group. Similar reports, in which a vicious
cycle of oxidative stress results in insulin resistance (InsRes), promoting sustained FOXO
activity and the induction of apoptosis, have been made [50]. Oxidative stress may promote
the transcriptional activity of FOXO proteins, resulting in hyperglycaemia and a further
increased production of ROS [51]. Therefore, the decline in antioxidant capacity confirms
the excessive increase in ROS, indicating that ROS are promoted by FOXO and result in a
vicious cycle.

Overall, there are two sides to the FOXO response to oxidative stress. Short-term
stress promotes the upregulation of protective mechanisms. However, oxidative stress is
not addressed, and associated damage is continuously activated. As a result, FOXO may
lead to an induction of apoptosis. For instance, FOXO1 is a positive regulator of bone
formation by resisting oxidative stress and favouring protein synthesis in osteoblasts [52].
However, continuously active FOXO1 overexpression induces apoptosis associated with
the altered expression of genes regulating cell cycle and survival in rheumatoid arthritis
fibroblast-like synoviocytes [53].

3.3. Restraint Stress Promotes the β2-AR Pathway

β2-AR belongs to the G protein-coupled receptor. It promotes or inhibits the expression
of cyclic adenosine monophosphate (cAMP) in combination with Gs [54] and Gi [55,56].
β2-AR is closely related to the secretion of oestradiol and progesterone in mothers during
pregnancy, and it may be involved in the process of embryo implantation [57]. As is well
known, endogenous catecholamines such as EPI and NE are released from the adrenal
gland and sympathetic nervous system under stress. The adrenergic system plays a central
role in stress signalling, and excessive stress has been found to be associated with increased
production of ROS [58].

NE and EPI stimulate cell surface α- (α1A, α1B, α1D, α2A, α2B, and α2C) and β- (β1,
β2, and β3) adrenergic receptors (ARs) with differing affinities [59]. The expression of
adrenergic receptor mRNA in the uterus of E4 mice has been detected using reverse
transcription-polymerase chain reaction (RT-PCR), and it was found that the expression
of β2-AR mRNA was much higher than in other subtypes [9]. In our study, the mRNA
levels and protein expression levels of β2-AR increased significantly in the ovary and
uterus under restraint stress. This implied that restraint stress activated β2-AR (Figure 6).
β2-AR often mediates intracellular and extracellular signalling during stress [60]. Sym-
pathetic nervous system activation and immune suppression occur due to the chronic
stress of caregiving. β2-AR contributes to the stress-induced loss of immune-cell func-
tion [61]. Stress-induced elevation of EPI levels results in the activation of β2-AR on
keratinocytes [62]. A study showed that β2-AR mediated the effect of chronic stress on
lesions and exacerbated endometriosis-associated generalized hyperalgesia, thus accel-
erating the development of endometriosis [63]. In the development of pancreatic cancer,
psychological stress is considered to be a risk factor associated with β2-AR [64].

3.4. FOXO1 Mediates the β2-AR and p-NF-κB p65 Signalling Pathways

In vivo studies have shown that FOXO1 and β2-AR undergo significant changes
under restraint stress conditions. In current studies, we investigated whether FOXO1 and
β2-AR mediated NF-κB p65. The immunohistochemical results showed that FOXO1 was
expressed in ESCs at every gestation age, so this study selected ESCs to explore signal
transduction (Figure 7).

In recent years, the relationship between β2-AR and NF-κB has been studied by a
large number of researchers, and many achievements have been made in inflammation and
apoptosis. In this work, we focused on the relationship between β2-AR, FOXO1, and NF-κB;
we also added a selective agonist of β2-AR (formoterol hemifumarate), which activates the
intracellular signalling pathway, and added a blocker or inhibitor of β2-AR (butox), FOXO1
(AS1842865), and NF-κB (PDTC) to explore the relationship between the three factors.
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However, we found a more interesting phenomenon in cultured cells in vitro. Although
FOXO1 was activated with formoterol hemifumarate, the phosphorylation of NF-κB p65
did not change. This was consistent with related reports. In some studies, β2-AR inhibited
the degradation of inhibitor of NF-κB (IκB) [65–67], thereby impeding NF-κB entry into the
nucleus and reducing inflammation [68,69]. This was related to β-arrestin 2, which prevents
the inflammation of NF-κB p65 [70]. Gao et al. proved that β2-AR promoted IκB binding
to NF-κB p65 to prevent it from entering the nucleus in order to increase the expression of
IL-6, interleukin-8 (IL-8), tumour necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-
1β) [71]. However, many studies have suggested that isoproterenol (ISO) activates NF-κB
DNA binding activity and induces myocardial and systemic elaboration of interleukin-
18 (IL-18) via β2-AR signalling, thereby promoting inflammation [72,73]. These results
were different from our conclusion, which was considered to be due to the different
agonists used. These previous studies used ISO (non-selective of β2-AR), but we used
formoterol hemifumarate (a specific agonist of β2-AR). The difference might also be caused
by pathways other than β2-AR.

Notably, when butox, the blocking agent of β2-AR, was added, the phosphorylation
of NF-κB p65 was significantly increased. We speculated that there may be another way to
activate p-NF-κB p65. Freddolino et al. reported that β2-AR had a number of residues for
agonist and antagonist binding, including Asp-113; Ser-203, -204, and -207, Asn-293, Ile-169,
Val-117, and Phe-290. Butox acted as an antagonist interacting with Ser-203, Ser-204, Asn-
293, and Phe-290 of β2-AR and was considered to be a strong β2-AR-selective antagonist
because of its strong binding to Asn-293, but it did not bind to the more potent Ser-207 [74].
Therefore, we speculated that the Butox may only block the site that can activate β-arrestin
2 to promote the activity of NF-κB. Thus, it made the formoterol hemifumarate able
to activate p-NF-κB p65. The mechanism is unclear in current studies. Therefore, we
speculated that β2-AR may also have promoted the increase in NF-κB to a certain extent.

In this work, it was found that β2-AR could significantly activate the protein levels of
FOXO1. Furthermore, a study reported that administration of β2-AR agonists in mouse
skeletal muscle induced expression of FOXO1 [21]. Both insulin resistance and oxidative
stress may promote the transcriptional activity of FOXO proteins, resulting in a further
increased production of ROS [51]. However, Zhang et al. proved that β2-AR was able to
mediate PI3K-AKT signalling to inhibit the protein levels of FOXO1 in a mouse model of
acute cardiac ischaemia-reperfusion [75]. In summary, we believe that when acute stress
occurs, EPI or NE acts on β2-AR, which plays a protective role on the body; however,
when the body is unable to cope with stress, we believe that FOXO1 will have sustained
activation.

In addition, we found that the p-NF-κB p65 level was significantly reduced after the
addition of AS1842865, which was the blocking agent of FOXO1 (Figure 8). There is little
indirect evidence for the relationship between FOXO1 and NF-κB. It has been reported
that the NF-κB pathway is activated by TNF-α and is significantly reduced by FOXO1
knockdown [76]. Other articles have suggested that, under the same condition, both
FOXO1 and NF-κB tend to increase or decrease in parallel. For example, RELA (NF-κB
p65) has a similar role to FOXO1, and both may prevent signal transducers and activators
of transcription 3 (STAT3)-mediated leptin activation of a pro-opiomelanocortin (Pomc)
promoter [77]. Patients with muscle atrophy from type 2 diabetes mellitus show increased
expression of NF-κB and higher expression of the atrophy transcription factor FOXO1
in skeletal muscle [78]. Our study provides evidence that will assist in the study of the
relationship between FOXO1 and NF-κB. In summary, we believe that FOXO1 may play a
mediating role between β2-AR and NF-κB.

4. Materials and Methods
4.1. Animal Treatments

A total of 150 female ICR mice and 50 male mice (being used for mating, 8 weeks
of age; Vital River Laboratory Animal Technology Co. Ltd., Beijing, China) were housed
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under conventional conditions (at a relative humidity of 50 ± 10% and a temperature of
21 ± 1 ◦C) with a regular 10 h dark/14 h light cycle (with lights on at 7:00 a.m.). First, the
mice were maintained in a room for a week in order to adapt to the environment. Oestrus
mice were placed with a sexually experienced male at night, and females with vaginal
sperm plugs were then considered to be P1 (Pregnancy Day 1) on the next morning. Mice
were divided into control (n = 50) and restraint stress groups (n = 50), each group were
sacrificed on NP5 (Non-pregnancy, n = 10), P5 (n = 10), P10 (n = 10), P15 (n = 10), and
P20 (n = 10). Restraint stress female mice were individually placed into transparent and
ventilated plastic centrifuge tubes (they were able to breathe freely but were unable to
escape) to limit their movements for 4 h (from 8:00 a.m. to 12:00 p.m.), and the female mice
of the control group were freedom in the cage. Restraint stress and control conditions were
initiated on NP1 (Non-Pregnancy Day 1, during the dioestrus period), P1 (Pregnancy Day
1), P6 (Pregnancy Day 6), P11 (Pregnancy day 11), and P16 (Pregnancy Day 16) until the
mice were sacrificed on NP5 P5, P10, P15, and P20. The weight of the female mice was
measured daily. The definition of body weight gain was the final weight minus the weight
before stress. After the mouse was dissected, the liver, spleen, kidney, heart, ovary, uterus,
and thymus were weighed. The organ index was expressed as the ratio of the weight of
the organ to the body weight. 20 normal pregnancy mice (P5) were used to isolate ESCs
to explore the signal pathway in vitro. Finally, 30 normal pregnant mice were divided
into control group (n = 6), stress group (n = 8), control + AS group (n = 8), and stress+ AS
group (n = 8) on P1. Stress+ AS group were treated by subcutaneous injection with FOXO1
inhibitor (AS1842856 (AS), 25 mg/kg at 6 p.m. every day until P5) and restraint stress.
All animal procedures were approved by the China Agricultural University Institutional
Animal Care and Use Committee (AW18079102-3-2).

4.2. Plasma and Tissue Preparations

Females mice were anaesthetized with 2% pentobarbital (4 mL/kg body weight, i.p.)
on NP5, P5, P10, P15, and P20 immediately following the treatment. Plasma samples
with eyeball extraction were collected to detect CORT, NE, and E2. Some of the uterine
specimens were rapidly dissected, excluding the embryos, and stored in liquid nitrogen for
protein analysis and mRNA analysis. Some of the uterine was immediately fixed in 4%
paraformaldehyde for 48 h.

4.3. Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted using TRIzol reagent (CW0580A, CoWin Biotech Co., Inc., Bei-
jing, China). The concentration and purity of RNA was measured with a NanoPhotometer
(P330, Implen, Munich, Germany). The concentration of RNA was 1500–1800 ng/µL. After-
ward, 2 µg of total RNA were mixed with reverse transcriptase, and other reagents from
the cDNA were synthesized using the GoScriptTM Reverse Transcription System (A5001,
Promega, Madison, WI., USA). The cDNA was diluted 10 times to conduct polymerase
chain reactions. Primers were synthesized by Invitrogen Trading of Shanghai. We used the
following primers: FOXO1 primer (forward, 5′-GTGAAGAGCGTGCCCTACT-3′; reverse,
5′-GATTGAGCATCCACCAAGAAC-3′); FOXO3 primer (forward, 5′-CTCTCAGGCTC
CTCACTGTA-3′; reverse, 5′-ATGAGTTCACTACGGATGAT-3′); FOXO4 primer (forward,
5′-TCATCAAGGTTCACAACGAGGC-3′; reverse, 5′-AGGACAGACGGCTTCTTCTTGG-
3′); β2-AR primer (forward, 5′-TCACTCAGGAACGGGACGAAG-3′; reverse, 5′-CAGCAC
ACGCCAAGGAGATTATG-3′); IL-2 primer (forward, 5′-TGAACTTGGACCTCTGCG -3′;
reverse, 5′-AGGGCTTGTTGAGATGATGC-3′); IL-6 primer (forward, 5′- CTGCAAGA-
GACTT CCATCCAG-3′; reverse, 5′-AGTGGTATAGACAGGTCTGTTGG-3′); TNF-α primer
(forward, 5′-CAGGCGGTGCCTATGTCTC-3′; reverse, 5′-CGATCACCCCGAAGTTCAGTA
G-3′); β-actin primer (forward, 5′-TGCTGTCCCTGTATGCCTCTG-3′; reverse, 5′-TTGATGT
CACGCACGATTTCC-3′). β-actin was used as the housekeeping gene. qRT-PCR ampli-
fication was performed by Roche LightCycler480 (Roche, Basel, Switzerland). Primers
of qRT-PCR efficiency with one specific melting peak were used for the analysis. In this
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experiment, we used a 20 µL system containing 0.4 µL of forward primers, 0.4 µL of re-
verse primers, a 10 µL SYBR Green qPCR Master Mix kit (without ROX) (Q121-02, Vazyme
Biotech Co., Ltd., Nanjing, China), 7.2 µL of nuclease free water, and 2 µL of cDNA. Relative
target gene expression was obtained by normalizing the result to β-actin. The calculation
method of mRNA expression was 2−4Ct. The value of NP5 was regarded as 1 and was
used as the base level for assessment. Each sample was tested in triplicate.

4.4. Measurement of Plasma CORT, NE, Blood Glucose, and E2 Concentration

Total plasma CORT and NE concentrations were measured using a competitive
enzyme-linked immunosorbent assay, the Mouse CORT enzyme linked immunosorbent
assay (ELISA) Kit (LBTR-EL-1490, Beijing Limbo Terry Technology Development Co., Ltd.,
Beijing, China) and Mouse NE ELISA Kit (LBTR-EL-1487, Beijing Limbo Terry Technology
Development Co., Ltd., Beijing, China). All of the tests were performed according to the
manufacturers’ instructions. The antigen and antibodies were combined with biotinylated
secondary antibodies and bound with streptavidin-horseradish peroxidase (HRP). The
immune complex was formed and incubated at 37 ◦C for 60 min. After the colour was
developed at 37 ◦C, the OD value was measured with a microplate reader, and the NE
and CORT contents of the sample were calculated according to the standard curve (NE:
y = 274.79x−22.276, R2 = 0.9908; CORT: y = 34.542x−3.782, R2 = 0.9886). The limit of
detection for the NE assay ranged from 5 to 1000 ng/L. The limit of detection for the CORT
assay ranged from 0.5 to 100 ng/mL. Five plasma samples were included in each group.
Each sample was tested in triplicate.

E2 was detected via radioimmunoassay (RIA). Radioimmunoassay is a labelled im-
munoassay that uses radionuclides as a marker for the quantitative determination of
antigens in a sample to be tested. The labelled antigen (Ag*) and the non-labelled anti-
gen (Ag) compete with the specific antibody (Ab) for the binding reaction. The fitting
was performed using a logarithmic measure-log pair logarithm (log(dose)~logit (Bi/B0))
mathematical model or a four-parameter mathematical model. Afterward, the percent
binding rate of each tube was calculated: S0 (number of cpm) was B0, each calibration
tube Si (number of cpm) was Bi, and the percent binding ratio of each tube was obtained.
Using logX ~ logitY regression, the formula was obtained (logitY = 3.3388–0.6342logX). The
content of the sample can be obtained by the formula. Five plasma samples were included
in each group. Each sample was tested in triplicate.

Blood glucose was measured with a blood glucose meter (GC14906201, ACCU-CHEK,
Basel, Switzerland, Germany), and the blood was collected through the tail vein. Five
blood samples were included in each group. Each sample was tested in triplicate.

4.5. Measurements of Oxidative Stress-Related Enzymes

Immediately after the mice were sacrificed, the uterus was rapidly dissected, and the
embryos were removed, frozen in liquid nitrogen, and stored. The uterus with removed
embryos was weighed and placed in a 0.9% saline solution (1:9) to prepare a uterine
homogenate. Finally, supernatants were extracted by centrifugation (2000× g, 20 min). The
total protein concentration was measured using a BCA Protein Assay Kit (CW0014S, CoWin
Biotech Co., Inc., Beijing, China). Total antioxidant capacity (T-AOC) (A015), SOD (A001-1),
GSH-Px (A005), and MDA (A003-1) assay kits were purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). GSH-Px and SOD are well-known scavenger
enzymes that protect cells from oxidative stress. SOD was detected by the xanthine
oxidase method, and GSH-Px was determined by the rate at which it was converted to
the enzymatic reaction of oxidized glutathione disulfide (GSSG). T-AOC was detected
by converting Fe3+ to Fe2+. Those values were expressed as U/mg of protein. MDA is
responsible for inducing oxidative stress, and it reacts with thiobarbituric acid to form a red
complex and is expressed as nmol/mg of protein. These results were detected at specific
wavelengths (T-SOD: 550 nm, GSH-Px: 412 nm, T-AOC: 520 nm, and MDA: 532 nm). Five
tissue samples were included in each group, and each sample was tested in triplicate.
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4.6. Western Blotting

Whole-tissue lysates were prepared from tissue, and protein concentrations were
measured using a BCA protein assay reagent (CW0014S, CoWin Biotech Co., Inc., Beijing,
China). These proteins were separated by 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), followed by electrotransfer onto a polyvinylidene fluoride
membrane (Millipore, Billerica, MA, USA). The membrane was blocked with 5% skim
milk/0.5% Tween-20 in TBST for 2 h at room temperature. The primary antibody was
probed with an anti-β-actin antibody (1:4000; CW0096M, CoWin Biotech Co., Inc., Beijing,
China), an anti-FOXO1 antibody (1:1000, 2880T, Cell Signalling Technology, Beverly, MA,
USA), an anti-RELA antibody (1:1000, total-NF-κB p65 (t-NF-κB p65), A1115, ABclonal
Biotech Co., Ltd., Cambridge, MA, USA), an anti-phospho-RELA-S536 antibody (1:500,
p-NF-κB p65, AP0475, ABclonal Biotech Co., Ltd., Cambridge, MA, USA), and an anti-
ADRB2 antibody (1:1000, β2-AR, A1295, ABclonal Biotech Co., Ltd., Cambridge, MA,
USA) overnight at 4 ◦C. Afterward, the membranes were washed in TBST, followed by a
horseradish peroxidase-conjugated goat anti-mouse IgG (1:6000; CW0102M; CoWin Biotech
Co., Inc., Beijing, China) for β-actin or goat anti-rabbit IgG (1:6000; CW0103M; CoWin
Biotech Co., Inc., Beijing, China) for FOXO1, β2-AR, p-NF-κB p65, and t-NF-κB p65 for
2 h at room temperature. Immunoblotting was visualized with an ECL Western Blot Kit
(CW0049M, CoWin Biotech Co., Inc., Beijing, China). The bands obtained in the blots were
scanned and analysed with ImageJ (National Institutes of Health, Bethesda, MD, USA).
The data are expressed as the integral optical density (IOD) of the bands, normalized to the
IOD of the corresponding β-actin bands. Five tissue samples were included in each group.
Each sample was repeated three times.

4.7. Immunohistochemistry

FOXO1 was localized by immunohistochemistry. The uterus taken at P5 was processed
into paraffin sections. All sections (5 µm) were routinely dewaxed in xylene and rehydrated
with graded concentrations of ethanol. Afterward, all slides were subjected to antigen
retrieval by 0.01 M sodium citrate hydrochloric acid buffer. Tissue sections were washed
3 times with phosphate-buffered saline (PBS, pH 7.0) for 5 min each. Endogenous peroxi-
dase activity was blocked with 3% H2O2 for 30 min. Non-specific staining was blocked
with 5% normal goat serum for 30 min. The sections were incubated at 4 ◦C overnight with
anti-FOXO1 antibody (1:100, 2880T, Cell Signalling Technology, Beverly, MA, USA). Next,
the slides were washed with PBS and incubated sequentially with 1:400 biotin-conjugated
goat anti-rabbit IgG (Beijing CoWin Biotech Co., Ltd., Beijing, China) for 2 h. The slides
were washed with PBS and incubated sequentially with 1:400 HRP-streptavidin (Beijing
CoWin Biotech Co., Ltd., Beijing, China) for 2 h. The immunoreactivity was revealed by
diaminobenzidine (DAB) treatment, and nuclei were counterstained with haematoxylin for
5 min. The sections incubated with PBS instead of primary antibody served as negative
controls. Images were acquired using an upright DP72 microscope (Olympus, Tokyo,
Japan).

4.8. Cell Culture with Drug Treatment

ESCs taken during mouse pregnancy (P5) were cultured according to a reported
method [79]. The uterus was placed in Hanks balanced saline solution (HBSS) containing
1% penicillin–streptomycin to clean the uterus. Afterward, the uterus was digested in a
mixed digestive solution containing 2.5% pancreatin and 0.25% trypsin for 1 h in a 4 ◦C
shaker; afterward, the uterus was left to stand at 25 ◦C for 45 min and at 37 ◦C for 15 min.
The uterus was then moved and placed in DMEM medium containing 10% foetal bovine
serum for 5 min and then placed in cold HBSS and vortexed for 10 s; this step was repeated
twice. The uterus was placed in a mixed digestive solution containing 0.05% trypsin-EDTA
and 0.1% collagenase I and shaken at 37 ◦C for 30 min. The uterus was washed in cold
HBBS, and the uterus was placed into a DMEM/F12 medium containing 10% foetal bovine
serum and vortexed for 10 s. The cells collected with DMEM/F12 complete medium were
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passed through a 40 µm sieve to collect single cells with 500 g centrifugation for 7 min.
Resuspended cells were cultured in a 12-well plate at 1 × 106 cells/well. The cells were
cultivated in a 37 ◦C, 5% CO2 incubator for 45 min; afterward, the non-adherent cells were
discarded, and the DMEM/F12 complete medium was added to the cells to cultivate for
24 h. Finally, the cells were starved for 6 h with DMEM/F12 basic medium.

Addition of drugs: Formoterol hemifumarate (For) (10−8 M, 1448, Tocris Bioscience,
Minneapolis, MN, USA) is a selective agonist of β2-AR. Butoxamine hydrochloride (Butox)
(10−6 M, B1385, Sigma, St. Louis, MO, USA) is the blocking agent of β2-AR, but its
specific mechanism of action is not yet clear. AS1842865 (8 × 10−7 M, HY-100596, Med
Chem Express, Brea, CA, USA) is an inhibitor of FOXO1. Pyrrolidine dithiocarbamate
ammonium (PDTC) (10−6 M, 5108-96-3, Tocris Bioscience, Minneapolis, MN, USA) [80] is
an inhibitor of NF-κB, as it prevents an increase in NOS mRNA. The cells were cultured with
different drugs and named Cell+For (F), Cell+For+Butox (F+B), Cell+For+AS1842865 (F+A),
Cell+For+PDTC (F+P), Cell+For+AS1842865+PDTC (F+A+P), Cell+For+Butox+AS1842865
(F+B+A), Cell+For+Butox+PDTC (F+B+P), Cell, and 0.02% DMSO. The inhibitor was added
for 30 min, followed by the addition of For or not for 24 h [80]. Cells were collected with
protein lysate and subjected to ultrasonic vibration. The supernatant was collected by
centrifugation at 14,000 rpm for 10 min to detect the protein levels of FOXO1, β2-AR, and p
NF-κB p65/t-NF-κB p65 in different groups. The same experiment was performed four
times, and each sample was tested in triplicate.

4.9. Statistical Methods

The data were analysed with SPSS 18.0 (SPSS Inc., Chicago, IL, USA). To analyse
the effects of restraint stress and different gestational stages on the experimental data, a
two-way analysis of variance was performed. A one-way analysis of variance (ANOVA)
was performed, followed by Duncan’s post hoc test, to analyse the differences of all indexes
at different age in the control and stress group. Different uppercase letters (A, B, C, D,
and E) represent the differences between NP5, P5, P10, P15 and P20 in the stressed group,
and different lowercase letters (a, b, c, d, and e) represent the differences between NP5,
P5, P10, P15 and P20 in the control group. Treatment groups are significantly different
from each other if no labelling letter (a to e or A to E) is shared between groups. The
significant difference between the control and stress mice at the same gestational stage
were evaluated by an independent sample t test (two-tailed test). The data are expressed as
the mean ± standard error of mean (SEM). In this result, the percentage ((Value Stress-Value
Control)/Value Control) represented that the ratio of increase or decrease in stress group
compared with control group in vivo. * p < 0.05 was used to indicate that the difference was
significant, and # p < 0.01 indicated that the difference was extremely significant compared
with the corresponding control group. In vitro, the stimulate index of ESCs (see Figures S2
and S3 of Supplement Material 1) was calculated as follows:

SI = OD570 treatment group/OD570 control group

where * represents the difference compared with the For group; + represents the difference
compared with the For+Butox group. $ represents the difference compared with the
For+Butox+As group. A single symbol indicates that the difference was significant, and a
double symbol indicates that the difference was extremely significant, compared with the
corresponding groups.

5. Conclusions

In vivo, restraint stress triggered the generation of oxidative stress, resulting in a state
of imbalance between levels of oxidative and antioxidative stress, and leading to the loss
of body weight in pregnant mothers. Restraint stress effected the index of organs and
promoted an increase in CORT, NE, and blood glucose levels and a decrease in E2, leading
to neuroendocrine disorders. Furthermore, β2-AR and FOXO in the uterus and ovary were
activated. In vitro, FOXO1 may be a critical mediator in the crosstalk between β2-AR and
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p-NF-κB p65 in ESCs (Figure 9). This finding also provides evidence to support the study
of human pregnancy-related diseases.
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difference between the control and stress mice at the same gestational stage were evalu-
ated by an independent sample t test (two-tailed test). The data are expressed as the mean 
± standard error of mean (SEM). In this result, the percentage ((Value Stress-Value Con-

trol)/Value Control) represented that the ratio of increase or decrease in stress group compared 
with control group in vivo. *p < 0.05 was used to indicate that the difference was signifi-
cant, and #p < 0.01 indicated that the difference was extremely significant compared with 
the corresponding control group. In vitro, the stimulate index of ESCs (see Figure S2 and 
S3 of Supplement Material 1) was calculated as follows: 

SI = OD570 treatment group/ OD570 control group 
Where * represents the difference compared with the For group; + represents the dif-

ference compared with the For+Butox group. $ represents the difference compared with 
the For+Butox+As group. A single symbol indicates that the difference was significant, 
and a double symbol indicates that the difference was extremely significant, compared 
with the corresponding groups. 

5. Conclusion 
In vivo, restraint stress triggered the generation of oxidative stress, resulting in a state 

of imbalance between levels of oxidative and antioxidative stress, and leading to the loss 
of body weight in pregnant mothers. Restraint stress effected the index of organs and pro-
moted an increase in CORT, NE, and blood glucose levels and a decrease in E2, leading to 
neuroendocrine disorders. Furthermore, β2-AR and FOXO in the uterus and ovary were 
activated. In vitro, FOXO1 may be a critical mediator in the crosstalk between β2-AR and 
p-NF-κB p65 in ESCs (Figure 9). This finding also provides evidence to support the study 
of human pregnancy-related diseases. 

 

Figure 9. The antioxidative levels and relative protein levels and the mediating role of FOXO1 in
p-NF-κB p65 and β2-AR. Restraint stress caused disorder in the endocrine system, leading to a
significant increase in levels of the oxidative stress-related factors FOXO and β2-AR and suggesting a
cascade of oxidative stress in pregnant mothers under oxidative stress. β2-AR affected the activity of
FOXO1 while inhibiting the activity of p-NF-κB p65 and then inhibited the target gene of p-NF-κB
p65. FOXO1 may play an important mediating role between β2-AR and NF-κB p65. The upward
arrow represents an increase, while the downward arrow represents a decrease.
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Abbreviations

BWG Body weight gain
Butox Butoxamine hydrochloride
cAMP Cyclic adenosine monophosphate
CORT Corticosterone
CRH Corticotropin-releasing hormone
HBSS D’Hanks balanced saline solution
DAB Diaminobenzidine
ESCs Endometrial stromal cells
EPI Epinephrine
FOXO Forkhead transcription factor class O
For Formoterol hemifumarate
GSH-Px Glutathione peroxidase
GnRH Gonadotropin releasing hormone
HRP Horseradish peroxidase
HPA Hypothalamic-pituitary-adrenal
HPG Hypothalamic-pituitary-gonadal
IκB Inhibitor of NF-κB
InsRes Insulin resistance
IOD Integral optical density
IL-18 Interleukin 18
IL-6 Interleukin-6
IL-8 Interleukin 8
IL-1β Interleukin -1 beta
IUGR Intrauterine growth restriction
ISO Isoproterenol
MDA Malondialdehyde
NE Norepinephrin
NP1 Non-pregnancy Day 1
NP5 Non-pregnancy Day 5
NF-κB Nuclear factor-kappa B
E2 Oestradiol
ANOVA One-way analysis of variance
GSSG Oxidized glutathione disulphide
P1 Pregnancy Day 1
P10 Pregnancy Day 10
P15 Pregnancy Day 15
P20 Pregnancy Day 20
P11 Pregnancy Day 11
P16 Pregnancy Day 16
P5 Pregnancy Day 5
P6 Pregnancy Day 6
PI3K-AKT Phosphatidylinositol 3-kinase-serine/threonine kinase
Pomc Pro-opiomelanocortin
PDTC Pyrrolidine dithiocarbamate ammonium
qRT-PCR Quantitative real-time polymerase chain reaction
ROS Reactive oxygen species
RT-PCR Reverse transcription-polymerase chain reaction
STAT3 Signal transducers and activators of transcription 3
siRNA Small interfering RNA
SAS Sympathetic-adrenal medullary system
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SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM Standard error of mean
TNF-α Tumor necrosis factor-alpha
T-AOC Total antioxidant capacity
T-SOD Total superoxide dismutase
uNK Uterus natural killer cell
β2-AR β2-adrenergic receptor
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