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Embryonic lethal abnormal vision-like (ELAVL) proteins are RNA binding proteins that were
originally discovered as indispensable regulators of the development and functioning of the
nervous system. Subsequent studies have shown that ELAVL proteins not only exist in the
nervous system, but also have regulatory effects in other tissues. ELAVL proteins have
attracted attention as potential therapeutic targets because they stabilize multiple mRNAs
by binding within the 3′-untranslated region and thus promote the development of tumors,
including hepatocellular carcinoma, pancreatic cancer, ovarian cancer, breast cancer,
colorectal carcinoma and lung cancer. Previous studies have focused on these important
relationships with downstreammRNAs, but emerging studies suggest that ELAVL proteins
also interact with non-coding RNAs. In this review, wewill summarize the relationship of the
ELAVL protein family with mRNA and non-coding RNA and the roles of ELAVL protein
family members in a variety of physiological and pathological processes.
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INTRODUCTION

The embryonic lethal abnormal vision-like (ELAVL) proteins in fish, frogs, and mammals are
defined as RNA-binding proteins (RBPs), and they play important roles in post-transcriptional
regulation (Campos et al., 1985). ELAVL proteins were first discovered in Drosophila due to their
ability to interact with AU-rich element (ARE)-containing transcripts (Campos et al., 1985). Each
member of the ELAVL protein family, which includes ELAVL1-4 (HuR HuB, HuC, HuD)
(Figure 1), consists of three similar and conserved RNA recognition motifs (RRM) (Toba and
White, 2008; Colombrita et al., 2013). The sequence of a hinge region between RRMs 2 and 3 differs
among the four family members (Good, 1995), and its presence is key to the ability of these proteins
to shuttle into and out of the nucleus (Fan and Steitz, 1998a).

Biologically, ELAVL proteins were originally discovered as indispensable regulators of nervous
system development and physiological function (Rogulja-Ortmann et al., 2014; Wang et al., 2019a;
Zhao et al., 2020a). Interestingly, subsequent studies have shown that they not only exist in the
nervous system, but also have regulatory effects in other tissues, including hepatocytes (Wang et al.,
2021), fat cells (Siang et al., 2020), vascular smooth muscle cells (Liu et al., 2020a), and intestinal
epithelial cells (Liu et al., 2019).

Previous studies have mainly focused on the relationship between ELAVL proteins and
downstream mRNA transcripts, and less attention has been paid to interactions between
ELAVLs and non-coding RNA (ncRNA) molecules. The regulation and metabolism of ncRNA
is an emerging research topic, and ncRNAs have been shown to play important roles in a variety of
fields, such as cancer (Deschenes-Furry et al., 2007; Schultz et al., 2020), inflammation (Wen et al.,
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2021), and cell differentiation (Chen et al., 2021a). This review
aims to summarize relationships of the ELAVL family of
proteins with mRNAs and ncRNAs and the regulation of
ELAVL family proteins in various physiological and
pathological processes.

MEMBERS OF THE ELAVL FAMILY

ELAVL1, also known as human antigen R (HuR), has been
established as a tumor-specific antigen in colorectal carcinoma
(Wang et al., 2000) and tumors of the central nervous system
(Nabors et al., 2001). This protein is a widely expressed RBP
whose function in many cell types has been elucidated. The gene
encoding human ELAVL1 is localized to chromosome 19p13.2,
and while the protein is mainly localized to the nucleus, it will
translocate to the cytoplasm following stimulation by a variety of
extracellular stimuli (Chand et al., 2017).

The consequences for an mRNA after ELAVL1 binding to its
ARE depend on the mRNA itself and the cell type. When the
target ARE, which usually contains multiple AUUUA repeats,
appears in the 3′-untranslated regions (UTRs) of an mRNA,
ELAVL1 binding often results in mRNA instability (Fan et al.,
1997), and thus selective binding of ELAVL1 to the ARE at the 3′
end of an mRNA can lead to rapid degradation (Myer et al.,
1997). However, in most cases, ELAVL1 plays an important role
in stabilizing the mRNA sequence. Competitive binding to
mRNA in the 3′-UTR by ELAVL1 prevents exonuclease- or
endonuclease-mediated degradation induced by other RBPs
(Chen et al., 1995; Fan and Steitz, 1998b). In one specific case,
ELAVL1 promotes neuronal movement by the stabilizing of
profilin 1 mRNA (Chen et al., 1995). Similarly, ELAVL1
binding extends the half-life of CX43 mRNA in rat liver
epithelial cells (Ale-Agha et al., 2009).

In addition to interacting with the 3′-UTR, ELAVL1 also has
multiple effects in other mRNA regions. For example, ELAVL1
can reduce the activity of the internal ribosome entry site (IRES)
in the initiation of translation by binding to the 5′-UTR of the
mRNA that codes for the insulin like growth factor type 1
receptor (Meng et al., 2005). Conversely, ELAVL1 can
stimulate the initiation of translation of X-linked inhibitor of

apoptosis (XIAP) mRNA by binding to the IRES in the 5′-UTR of
the XIAP mRNA (Durie et al., 2011).

Other members of the ELAVL protein family have not been
studied to the extent that ELAVL1 has, but these other family
members have been shown to be important in multiple
physiological and pathological processes. ELAVL2 (also known
as HuB or Hel-N1), ELAVL3 (HuC) and ELAVL4 (HuD) are
mainly distributed in neuronal cells (Ripin et al., 2019). ELAVL2
plays a key role in several processes in the early stages of neuronal
differentiation, such as cell cycle exit (Hambardzumyan et al.,
2009). ELAVL3 has been shown to affect brain function in that
low expression levels of ELAVL3 correlated with impaired spatial
learning ability of mice and led to the down-regulation of
expression of growth associated protein-43 (Quattrone et al.,
2001). In addition, the levels of the ELAVL4 transcript and
protein in the superior cervical ganglion were found to
decrease after the severing of the axon (Deschenes-Furry et al.,
2007). These results show that ELAVL2-4 are involved in the
development and functioning of the nervous system.
Interestingly, however, the functions of these three protein
family members go far beyond the brain. They are also
essential in the maintenance of physiological functions and the
regulation of the occurrence and development of a variety of
diseases (Mazan-Mamczarz et al., 2003; Casolaro et al., 2008;
Beauchamp et al., 2010; Ahuja et al., 2016; Lee et al., 2018; Zhao
et al., 2019).

THEREGULATIONOFELAVL PROTEINSBY
NON-RNA MOLECULES

The regulation of ELAVL proteins by non-RNAmolecules can be
divided into three categories: regulation of protein expression
level, regulation of nucleocytoplasmic shuttling, and regulation of
the binding of ELAVL proteins to the transcripts in cytoplasm. In
gastric tumorigenesis, the activation of AKT serine/threonine
kinase promotes the binding of Nuclear Factor-kappa B to the
ELAVL promoter, which enhances transcription and the stability
of the transcripts (Kang et al., 2008). In addition, the esophageal
cancer related gene 2 protein has been shown to increase
ubiquitination and degradation of ELAVL1 in the colon
cancer-derived RKO cell line and the breast cancer-derived
MCF7 cell line, but this protein failed to produce similar
effects on several non-ubiquitinable mutant forms of ELAVL1
(Lucchesi et al., 2016).

In response to proliferative signals, the phosphorylation of
ELAVL1 protein by cyclin-dependent kinase 1 at S202 prevents
its translocation to the cytoplasm, resulting in the inhibition of its
pro-proliferation and anti-apoptotic effects (Kim et al., 2008).
Upon cessation of the external signal, two mechanisms serve to
promote relocalization to the cytoplasm. One mechanism
involves polyADP-ribosylation of ELAVL1 by poly (ADP-
ribose) polymerase 1 (Ke et al., 2017), and a second
mechanism is mediated by p38 mitogen-activated protein
kinase (Farooq et al., 2009). In another enzyme-controlled
mechanism of regulation, sulfhydration by cystathionine γ
lyase prevents the homodimerization of ELAVL1, which

FIGURE 1 | Structure of the human ELAVL proteins. Each ELAVL protein
consists of three similar and conserved RNA recognition motifs (RRMs). The
numbers indicate amino acid positions.
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ultimately leads to decreases in activity to levels insufficient to
increase the expression level of downstream genes in mouse
endothelial cells (Bibli et al., 2019).

INTERACTIONS BETWEEN ELAVL
PROTEINS AND VARIOUS CLASSES OF
RNA MOLECULES
Interactions Between ELAVL Proteins and
mRNAs
One of the main functions of the ELAVL protein family is to
regulate the stability and half-life of downstream mRNA.
Therefore, their regulatory effects on cells almost entirely
depend on the function of downstream mRNAs and the
direction of regulation. The most common binding sites where
ELAVL proteins interact with mRNAs, AREs in the 3′-UTR, are
found in up to 8% of human genome transcripts (Bakheet et al.,
2006). These AREs are often regarded as regulatory elements that
promote mRNA decay; most RBPs that bind to this region, such
as tristetraprolin, butyrate response factor 1, AU-binding factor 1,
and KH-type splicing regulatory protein, greatly reduce the half-
life of the target RNA (Gherzi et al., 2004; Lykke-Andersen and
Wagner, 2005; Gratacós and Brewer, 2010). In most cases,
however, the effect of the binding of ELAVL proteins to a
downstream mRNA supports stability (Barreau et al., 2005).
Previously discovered mRNAs that have been found to bind to
the ELAVL family are shown in Supplementary Table 1.

Interactions Between ELAVL Proteins and
ncRNAs
Micro RNA (miRNA)
Various miRNA molecules can bind to the 3′-UTRs of mRNA
to decrease the stability of the mRNA. Therefore, the

regulation of miRNAs to the ELAVL protein family is mainly
reflected in the stability of mRNAs of the latter (Table 1). For
example, miR-133, which targets the ELAVL1mRNA and is sponged
by long intergenic non-protein coding RNA, muscle differentiation 1
(linc-MD1), regulates the expression of ELAVL1. The ELAVL1
protein in turn promotes the interaction between linc-MD1 and
miR-133 in the early stages of myogenesis (Legnini et al., 2014).
Through targeting AREs in ELAVL1mRNA, miR-155-5p negatively
regulates the protein level of ELAVL1 and thus the migration of
tumor cells in colorectal cancer (Al-Haidari et al., 2018). In breast
cancer, miR-125a inhibited cell proliferation and promoted apoptosis
by downregulating ELAVL1 which was highly expressed in cancer
cells, and this effect was partially rescued by ELAVL1 overexpression
(Guo et al., 2009). In normal human dermal fibroblasts, the
overexpression of miR-520d-5p has been shown to down-regulate
ELAVL2 and restore cell proliferation; down-regulation of ELAVL2
with small interfering RNA alone achieved the same effect (Ishihara
et al., 2014). In mutant motor neurons, decreased expression of miR-
375 resulted in increased expression of its downstream targets, which
include ELAVL4 as well as p53. These changes promoted the
apoptosis and fragility of mutant motor neurons in amyotrophic
lateral sclerosis (De Santis et al., 2017).

In turn, ELAVL proteins can regulate miRNAs maturation or
co-regulate downstream with miRNAs. In another mode of
regulation for miR-199a, hypoxia-induced expression of
ELAVL1 prevents the maturation of pre-miR-199a, thereby
promoting enhancement of glycolysis through impacts of miR-
199a on hexokinase 2 and pyruvate kinase 2 expression in the
tumor microenvironment (Zhang et al., 2015). It has been shown
that miR-27 targets the mRNA encoding zinc finger protein 36
mRNA in macrophages, but ELAVL1 and miR-27 compete for
binding to the 3′-UTR of this mRNA to regulate its stability (Lu
et al., 2014). These examples indicate that there is significant
crosstalk among RBPs, miRNAs and mRNAs, and that the
regulation is not limited to a few isolated cases.

TABLE 1 | MiRNAs interacting with ELAVL proteins.

Member
of protein family

miRNA Interaction and effect PMID

ELAVL1 miR-199a Prevent pre-miR-199a from maturing 26346275

miR-27 Competitively bind downstream mRNA 25533351

miR-133 Inhibit ELAVL1 mRNA 24440503
miR- 155-5p 29471005
miR-125a 19875930
miR-519 19088191
miR-582-3p 32600329
miR-291b-3p 30106126
miR-326 32968928
miR-514a-5p 32370736
miR-3127-5p 30317610
miR-23c 27964927
miR-146b-5p 27166258

ELAVL2 miR-520d Inhibit ELAVL2 mRNA 25303886

ELAVL4 miR-375 Inhibit ELAVL4 mRNA 28988989
miR-129-5p 32335272
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Long Non-coding RNA (lncRNA)
Themechanisms by which lncRNAs regulate mRNA activity through
the ELAVL protein family, especially ELAVL1, include 1) direct
binding to ELAVL1 and promotion of its binding to downstream
mRNA, 2) inhibiting of the expression of ELAVL1, 3) stabilizing
ELAVL1 protein, 4) direct binding to ELAVL1 and blocking of its
binding to downstreammRNA, and 5) promoting the translocation of
ELAVL1 from the nucleus to the cytoplasm (Table 2).

First, LINC00707 has been reported as a malignant factor in the
progression of lung adenocarcinoma and gastric cancer.
LINC00707, which is highly expressed in tumor tissues, has
been shown to form a complex with ELAVL1 protein. This
complex increases the expression of downstream proteins, such
as vav guanine nucleotide exchange factor 3/F11 receptor, and
ultimately leads to tumor progression and a poorer tumor
prognosis (Xie et al., 2019). In a similar way, lncRNA RMST
enhances the binding of ELAVL1 to the mRNA of the target gene
DNMT3B, thereby increasing the expression of DNMT3B and
global levels of DNA methylation (Peng et al., 2020).

Second, ELAVL1 interacts with lncRNA OCC-1, which acts as a
protective factor in colorectal cancer, inhibits the growth of tumor cells
in vivo and in vitro. This inhibition is achieved by sensitizing ELAVL1
to ubiquitination and making it prone to degradation (Lan et al.,
2018). In the third type of regulation, up-regulated FAM83H-AS1

binds to ELAVL1 and stabilizes it, which can induce cell metastasis
and resistance to radiotherapy in ovarian cancer (Dou et al., 2019). As
described in the fourth mode of regulation, pull-down assays and
RNA immunoprecipitation have confirmed the binding relationship
between CAAlnc1 and ELAVL1, which blocked the binding of
ELAVL1 tomRNAs associated with fat production (Shen et al., 2019).

According to multiple reports, lncRNA MAARS, which is
positively correlated with the progression of atherosclerosis
disease, interacts with ELAVL1 and reduces its cytoplasmic
localization, which reduces the apoptosis of macrophages and
delays the course of the disease (Simion et al., 2020).

Circular RNA (circRNA)
The class of circRNAs includes closed circular ncRNA
molecules that are not easily degraded and have been
shown to regulate the progression of various diseases (Li
et al., 2015). For example, circRHOBTB3 is expressed at
relatively low levels in hepatocellular carcinoma, and it has
been reported that over-expression of circRHOBTB3 can lead
to degradation of ELAVL1 and thus inhibition of the
expression of the ELAVL1 target gene PTBP1 (Chen et al.,
2021b). ELAVL1 also interacts competitively with circDLC1 to
negatively regulate the expression of the gene encoding matrix
metalloproteinase 1 (Liu et al., 2021); this mechanism occurs

TABLE 2 | LncRNAs that regulate ELAVL proteins.

Member
of protein family

LncRNA Interaction and effect PMID

ELAVL1 LINC00707 Binds to ELAVL1 and stabilizes downstream mRNA 30502359
RMST 31636039
B4GALT1-AS1 30182452
MIR100HG 30102375
lincRNA-UFC1 25449213
HMS 34302808
lAK136714 34015766
AGAP2-AS1 33273726
TUG1 33047284
TSLNC8 32951177
ZEB1-AS1 31922280
HOXB-AS1 31886581
SNHG7 31026094
EGFR-AS1 30770799
LINC00707 30502359
LINC00324 29915327
SPRY4-IT1 27853262
APOA4-AS 27131369

lncRNA OCC-1 Inhibit the expression of ELAVL1 29931370
ASB16-AS1 33219221
AK058003 28035067

FAM83H-AS1 Stabilize ELAVL1 30831080

CAAlnc1 Blocks ELAVL1 from binding downstream 30807648
FENDRR 31180580
OIP5-AS1 26819413
OSER1-AS1 33113263
RPSAP52 31831098
tie1AS 29724820
MALAT1 27197265

lncRNA MAARS Binds to ELAVL1 and promotes its translocation to the cytoplasm 33262333
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in a similar manner with regard to circPPM1F and its target
gene PPM1F (Zhang et al., 2020) and circPABPN1 and its
target gene ATG16L1 (Li et al., 2020).

The complex between circ-CCND1 and ELAVL1 promotes the
expression of the gene encoding cyclin D1 and ultimately leads to the
malignant proliferation of laryngeal squamous cell carcinoma (Zang
et al., 2020). A similar mechanism has been found in the relationship
among CircAGO2/ELAVL/AGO2 (Chen et al., 2019). Further studies
have shown that circRNA-mediated positive regulation of
downstream mRNAs may be achieved by promoting the
cytoplasmic relocation of ELAVL1; thus, circBACH1 binds directly
to ELAVL1 and mediates its translocation from the nucleus, thereby
increasing its binding to the mRNA encoding p27 (Liu et al., 2020b).
At the level of transcription, nuclear-localized circ-HuR derived from
ELAVL1 can bind to the transcription factor cellular nucleic acid-
binding protein to block this protein from binding to the ELAVL1

promoter, resulting in a decreased expression of ELAVL1 (Yang et al.,
2019). In another regulatory mechanism, direct binding of
Hsa_circ_00074854 to the ELAVL1 protein improves the stability
of the protein, and ultimately promotes hepatocellular carcinoma
migration, invasion and epithelial-mesenchymal transition (Wang
et al., 2021). The interaction between ncRNA and ELAVL proteins is
shown in Figure 2.

ELAVL PROTEINS IN PATHOLOGICAL AND
PHYSIOLOGICAL PROCESSES

ELAVL Proteins in Cancers
ELAVL1
ELAVL1 is indispensable to life. For example, the ELAVL1 gene is
expressed during mouse embryonic development and growth

FIGURE 2 | The interaction of ELAVL proteins with mRNAs and ncRNAs. In response to external stimuli like UV irradiation, gemcitabine or hypoxia, ELAVL1 is
transported from the nucleus to the cytoplasm. And ELAVL2-4 are mainly localized in the cytoplasm. (A) ELAVL proteins inhibit mRNAs’ degradation and stabilize them
by binding the 3′-UTR. In another regulation mode, ELAVL proteins can promote or inhibit mRNAs’ translation by binding the 5′-UTR; (B)miRNAs and ELAVL proteins
co-regulate downstream mRNAs, and some miRNAs can regulate the expression of ELAVL proteins by binding their mRNAs. (C) circRNA and lncRNAs promote
ELAVL proteins’ degradation or stabilize them by binding to them. And circRNAs and lncRNAs can also promote or inhibit the binding of ELAVL proteins to downstream
mRNAs. Created with BioRender.com.
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cycle (Gouble and Morello, 2000), and the knockout of mouse
ELAVL1 leads to hematopoietic failure, loss of intestinal villi, and
death within 10 days (Ghosh et al., 2009). Thus, ELAVL1 protein
is necessary in the maintenance of normal life processes. On the
other hand, dysregulation of the expression of the ELAVL1 gene
or the activity of the protein can also lead to aberrant cellular
growth and cancer. A schematic of the relationships between
ELAVL1 and cancer is shown in Figure 3.

Colorectal Cancer
The functions of ELAVL1 in colorectal cancer have been
studied extensively. Importantly, studies have connected
ELAVL1 to cyclooxygenase 2 (COX-2), which has been
shown through in vivo and in vitro studies to be a key
factor in the malignant progression of colorectal cancer. As
noted, ELAVL1 typically distributes mainly to the nucleus, but
β-catenin can promote the cytoplasmic translocation of
ELAVL1 (Lee and Jeong, 2006). Enrichment of ELAVL1 in
the cytoplasm prolongs stabilization of the mRNA that
encodes for COX-2 by binding with an ARE in the 3′-UTR,
causing an increase in COX-2 protein levels (Dixon et al.,
2001). Accordingly, the cytoplasmic localization of ELAVL1
has been shown to be significantly positively correlated with
tumor stage (Denkert et al., 2006).

Interactions with the cell cycle also explain involvement of
ELAVL1 in colorectal cancer. For example, ELAVL1 positively
regulates the cell division 6 protein, which is highly expressed in
colorectal cancer and which drives both the malignant behavior
of colorectal cancer and its resistance to oxaliplatin (Cai et al.,
2019). It has been reported that in the colorectal carcinoma RKO
cell line, the levels of ELAVL1 in the cytoplasm increase during
the late G1, S, and G2 phases of the cell cycle, and it binds to the 3′-
UTR of mRNAs encoding cyclins A and B1, resulting in enhanced
stability of these mRNAs and increased expression of the
proteins, ultimately leading to increased cell proliferation
(Wang et al., 2000). In animal experiments, overexpressing
ELAVL1 in RKO cells results in increased tumor sizes upon
injection into nude mice (de Silanes et al., 2003).

Ovarian Cancer
ELAVL1 can promote the expression level of COX-2 in ovarian
cancer as well as in colorectal cancer, and COX-2 is also positively
correlated with poor prognosis and high-grade of ovarian cancer.
When the nuclear translocation of ELAVL1 is suppressed, the
expression of COX-2 decreases in vitro (Erkinheimo et al., 2003).
Accordingly, it has been found that levels of ELAVL1 in the
cytoplasm of cells in ovarian cancer tissues was significantly
increased relative to levels in borderline tumors or normal

FIGURE 3 | The role of ELAVL1 in tumors. ELAVL1 affects tumor biology by either (1) promoting proliferation, (2) inhibiting apoptosis, (3) promoting migration, (4)
inducing drug resistance, (5) promoting angiogenesis, or (6) reducing DNA damage. Created with BioRender.com.
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ovaries (Denkert et al., 2004). Another interaction with ovarian
cancer involves miR-519, which targets the 3′-UTR of ELAVL1
mRNA, inhibiting its translation and slowing cell division of
A2780 cells, a human ovarian cancer cell line, in vitro
(Abdelmohsen et al., 2008). Also, in A2780 cells, glucose
deprivation has been shown to enhance ELAVL1-dependent
TUBB3 expression at the mRNA and protein levels, resulting
in tumor invasion (Raspaglio et al., 2010).

Breast Cancer
ELAVL1 affects the development of breast cancer by regulating
the mRNAs associated with a variety of proteins. Accordingly,
among familial non-BRCA1/2 breast cancer patients, ELAVL1
can be used as an independent prognostic factor, associated with
low survival rate and high tumor malignancy (Heinonen et al.,
2007). Mechanistically, ELAVL1 promotes the expression of
interleukin (IL)-8, which has clear connections with the
progression of breast cancer, via binding to the 3′-UTR of the
mRNA encoding IL-1β (Suswam et al., 2005). In addition, the
abnormal expression of cyclin E1, Wnt-5a, thrombospondin 1
and the colony stimulating factor receptor is directly related to the
increased expression of ELAVL1 in breast cancer models (Guo
and Hartley, 2006; Leandersson et al., 2006; Mazan-Mamczarz
et al., 2008; Woo et al., 2009). When ELAVL1 is silenced, the
programmed death of tumor cells increases and invasion is
inhibited (Heinonen et al., 2011). ELAVL1 is also regulated by
upstream factors in breast cancer. Levels of miR-125 are
negatively correlated with ELAVL1; miR-125 may thus act as
an inhibitor of ELAVL1 to decrease translation by binding with
its mRNA (Guo et al., 2009).

Pancreatic Cancer
The role of ELAVL1 in pancreatic cancer remain controversial.
Overexpression of ELAVL1 in pancreatic cancer cells has been
shown to increase the sensitivity of patients to gemcitabine
treatment. The mechanism of this effect involves the binding
of ELAVL1 to and the promotion effect of the mRNA that
encodes deoxycytidine kinase whose products can activate
gemcitabine (Costantino et al., 2009). In another report,
ELAVL1 was also shown to be involved in the apoptosis of
pancreatic cancer cells exposed to gemcitabine. ELAVL1
translocates to the cytoplasm after gemcitabine treatment, where it
binds to the mRNA of retinoic acid-induced protein 3, which acts as
an oncogene, leading to an increase of it at the initial stage of drug
treatment (Zhou et al., 2016). Hypoxia in the tumor
microenvironment can similarly induce nucleocytoplasmic
shuttling of ELAVL1, which then promotes the expression of the
PIM1 serine/threonine kinase, which leads to resistance to oxaliplatin
(Blanco et al., 2016). In pancreatic ductal adenocarcinoma, ELAVL1
promotes the translation of poly (ADP-ribose) glycohydrolase
mRNA, leading to enhanced DNA repair and resistance to the
PARP inhibitor olaparib (Chand et al., 2017).

Other Types of Cancer
ELAVL1 has been found to play important roles in multiple kinds
of tumors. For instance, ELAVL1 has been found to be highly
expressed in prostate cancer, and it thus acts as an independent

predictor positively correlating with tumor staging and
metastasis. ELAVL1 promotes cell proliferation and migration
of cells of the prostate cancer lines LNCaP and PC-3 by targeting
vascular endothelial growth factors A and C and COX-2
(Barbisan et al., 2009; Mitsunari et al., 2016).

In hepatocellular carcinoma cells, the highly expressed
lincRNA-UFC1 directly binds to ELAVL1, leading to an
increase of β-catenin mRNA and protein and finally increased
cell proliferation and decreased apoptosis (Cao et al., 2015).
Similarly, hsa_circ_0074854 promotes the migration and
invasion of hepatocellular carcinoma cells by stabilizing
ELAVL1 (Wang et al., 2021). On another hand, ELAVL1
binds pre-miRNA-199a to prevent its maturation, leading to
enhanced glycolytic metabolism in hepatocellular carcinoma
cells in response to hypoxia (Zhang et al., 2015).

In glioblastoma multiforme and adjacent tissues, high
expression of ELAVL1 can also be detected (Nabors et al.,
2001). In glioblastoma, pyruvate kinase M2, which is up-
regulated, binds to ELAVL1 and promotes its cytoplasmic
localization, prompting tumor cells to enter a dividing state
and promoting cell growth (Mukherjee et al., 2016). In a nude
mouse model of glioblastoma, knockdown of ELAVL1 reduced
tumor growth and proliferation, and prolonged survival time
(Wang et al., 2019b).

Generally speaking, ELAVL1 often appears as a malignant factor.
On the one hand, it is indispensable in life activities. On the other
hand, the tumorigenic effects of high expression of ELAVL1 acts as
an important contributor to the progression and invasion of many
types of tumor through various pathways. Therefore, ELAVL1 may
be a potential drug target with universal applicability.

ELAVL2-4
The three other family members, ELAVL2, ELAVL3 and
ELAVL4, initially received much attention as neuroendocrine
markers for small cell lung cancer (SCLC) (King, 1997;
D’Alessandro et al., 2008). Among them, ELAVL4 received the
most attention in SCLC, because it was found to be expressed
in 100% of SCLC cells and more than 50% of neuroblastoma
cells, and treatment targeting ELAVL4 can reduce tumor
progression in nude mouse models (Ohwada et al., 1999;
Ehrlich et al., 2014). As the antigen target of autoreactive
CD4+ T cells, ELAVL4 may directly participate in cell-
mediated anti-tumor immunity and nervous system damage
(Benyahia et al., 1999).

At the level of post-transcriptional regulation, ELAVL4
regulates RNA as an RBP, but in tumorigenic neuroblasts,
ELAVL4 also takes part in the nuclear processing and stability
of the pre-mRNA of the proto-oncogenic transcription factor
N-myc (Lazarova et al., 1999). ELAVL4 has also been shown to
interact with both the 3′-UTR and 5′-UTR regions of the p27
mRNA to promote its translation leading to tumor suppression,
but ELAVL4 and p27 levels are both reduced in pancreatic
neuroendocrine tumors (Kim et al., 2018). Outside of SCLC,
ELAVL2 has been shown to be an independent risk factor in
esophageal squamous cell carcinoma, and it increases the
resistance of these tumor cells to paclitaxel and cisplatin (Zhao
et al., 2019).
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There are also notable cancer-related interactions between
members of the ELAVL family. A combination of ELAVL2 and
ELAVL1 has been shown to localize to the nucleus and to be
indispensable in the activation of several proto-oncogenes,
including v-fos, v-ets, and v-myc (Hatanaka et al., 2019). Also,
by binding with a structure containing an AU-rich sequence,
ELAVL2 and ELAVL4 together inhibit the assembly of the core
complex of telomerase to reduce its activity and cell growth in
human neuroblastoma cells; notably, the activity of this complex
antagonizes the function of ELAVL1 (Cheng et al., 2021).
Surprisingly, considering the importance of the other ELAVL
family members, few reports link ELAVL3 to tumor development
or progression.

ELAVL Proteins in Disorders of the Nervous
System
The ELAVL protein family was originally best known for its
associations with the nervous system (Akamatsu et al., 1999). In
the development of the neocortex, the deletion of ELAVL1
reduces the phosphorylation of eIF2a and eEF2 and the
formation of polysomes, ultimately leading to the mis-
localization of mRNAs. The lack of ELAVL1 reduces the
stability of PFN1 mRNA and affects actin polymerization,
resulting in the mis-localization of neurons in the neocortex
(Kraushar et al., 2014; Zhao et al., 2020a). It also participates in
cellular metabolism and protection from oxidation-induced
neurodegeneration (Skliris et al., 2015).

With regard to various disease states, ELAVL1 has either
protective or damaging effects, depending on the
circumstances. In spinal muscle atrophy, ELAVL1 stabilizes
survival motor neuron transcripts, which leads to
accumulation of the protein products, thus alleviating the loss
of alpha motor neurons that otherwise lead to progressive muscle
atrophy (Farooq et al., 2009). In the occurrence and progress of
neurodegenerative diseases, including age-related macular
degeneration, ELAVL1 promotes the early elevation and
accumulation of P62 in response to the early activation of
autophagy, clearing protein multimers and alleviating
neurodegenerative effects (Marchesi et al., 20182018).

On the other hand, ELAVL1 has been found to play
deleterious roles in Huntington’s disease and amyotrophic
lateral sclerosis. In Huntington’s disease, which is caused by
mutations in the HTT gene and abnormal accumulation of the
HTT protein, the HTT protein itself induces ELAVL1 to stabilize
HTT mRNA, forming a positive feedback loop (Zhao et al.,
2020b). Moreover, inhibition of ELAVL1 has been shown to
block the chronic activation of microglia in amyotrophic lateral
sclerosis and to delay the course of this disease (Matsye et al.,
2017).

In neurons, ELAVL2, ELAVL3, and ELAVL4 function in
stages. ELAVL2 protein is expressed in early neuron
progenitor cells through to mature neurons, while ELAVL3
and 4 are expressed later than ELAVL2 and function mainly
in cortical neuron development (Yano et al., 2016). Multiple
studies have linked ELAVL4 to neuron development and
plasticity (Bronicki et al., 2012; Loffreda et al., 2020). ELAVL4

is engaged in stabilization of tau microtubule-associated protein
transcripts and maintains axon development in neuronal cells.
Accordingly, the inhibition of ELAVL4 results in the cessation of
axonal growth (Aranda-Abreu et al., 1999; Fukao et al., 2009; Hao
le et al., 2017), and a deficiency of ELAVL4 in mice leads to
transient impaired cranial nerve development during the
embryonic period in vivo (Akamatsu et al., 2005).

Similar to ELAVL1, ELAVL4 is indispensable for establishing
neocortex and hippocampal circuits and maintaining the
function of these circuits (DeBoer et al., 2014). Furthermore,
in the adult subventricular zone neural stem and progenitor cells,
ELAVL4 promotes neuronal differentiation through special AT-
rich sequence-binding protein 1 (SATB1). A lack of SATB1
affects the maturation of neuronal stem cells, and the
overexpression of SATB1 in ELAVL4-suppressed cells can
restore the neuronal differentiation phenotype (Wang et al.,
2015). ELAVL2 promotes the exit from the cell cycle during
the neuronal stem cell maturation, and overexpression of
ELAVL2 restricts the proliferation of neuronal stem cells
(Hambardzumyan et al., 2009). For ELAVL3, a low level of
ELAVL3 leads to the impairment of spatial learning ability of
mice with lowered expression of growth-associated protein 43
(Quattrone et al., 2001).

ELAVL Proteins in Other Physiological and
Pathological Process
In addition to cancer and processes involving the nervous system,
the ELAVL protein family is also involved in muscle
differentiation (Beauchamp et al., 2010), aging (Lee et al.,
2018), inflammation (Casolaro et al., 2008), stress events
(Mazan-Mamczarz et al., 2003; Ahuja et al., 2016) and other
processes. Figure 4 shows how tumors and other different
diseases interact with ELAVL proteins.

The impact on muscle differentiation involves a novel
proteolytic cleavage of ELAVL1. When transferred to the
cytoplasm in myoblasts, some ELAVL1 is cleaved into two
fragments, cleavage products (CP) 1 and 2, of sizes 24 and
8 kDa, respectively. CP1 forms a complex with ELAVL1
import factor transportin-2 (TRN2), allowing uncleaved
ELAVL1 to remain in the cytoplasm. The other fragment,
CP2, promotes myogenesis (Beauchamp et al., 2010).

The known impact of ELAVL1 on aging involves interactions
with the telomeric protein TIN2. ELAVL1 binding destabilizes
TIN2 mRNA to decay quickly. Therefore, when ELAVL1 is
inhibited, the expression of TIN2 protein in the mitochondria
are increased. These factors correlate with increased levels of
ROS, ultimately leading to cell senescence (Lee et al., 2018).

Inflammatory stimuli lead to poly ADP-ribosylation of D226
of ELAVL1. Modified ELAVL1 oligomerizes in the presence of
PARP1, resulting in the protection of pro-inflammatory mRNA
from degradation induced by miRNA and other factors.
Therefore, treatments targeting ELAVL1 alleviate the
lipopolysaccharide-induced accumulation of inflammatory cells
in the airways of mice (Ke et al., 2021). In another inflammatory
disease, pterygium, the activation of matrix metalloproteinase 9
by ELAVL1 amplifies the pro-inflammatory effect of IL-1β (Cui
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et al., 2020). The combination of ELAVL1 and matrix
metalloproteinase 9 also appears in the inflammatory
infiltration of cardiomyocytes in acute myocardial infarction.
IL-10 can inhibit this combined effect to alleviate fibrosis and
inflammation, and ultimately reduce damage to left ventricular
function (Krishnamurthy et al., 2009).

Under the influence of different stressors, the function of
ELAVL1 changes accordingly. Low-level UV irradiation induces
the translocation of ELAVL1 to the cytoplasm, where it interacts
with and preserves transcription products by binding with
them after the formation of DNA damage. At the same time,
the transcription process is inhibited to prevent the
generation of false transcripts. In this mode, ELAVL1 is
beneficial to cell survival (Mazan-Mamczarz et al., 2003).
On the other hand, after ionizing radiation, ELAVL1 is
separated from almost all mRNAs, including proliferation-
related and apoptosis-related proteins. While this
mechanism is different from that associated with UV
irradiation, it similarly contributes to a better survival
outcome for cells (Masuda et al., 2011). However, when
cells are subjected to high pressure stress, ELAVL1 is
translocated to the cytoplasm and where it is cleaved by
caspases at A226, and this action amplifies apoptotic signals
(Mazroui et al., 2008).

INHIBITORS OF ELAVL1

Research on the inhibitors of ELAVL proteins has mainly
focused on ELAVL1. In view of the positive regulation of
ELAVL1 in tumor promotion, the research and

development of inhibitors is of significance. At present, the
effects of inhibitors on ELAVL1 are mainly focused in four
directions: inhibiting its nucleocytoplasmic trafficking,
blocking its binding to mRNA, suppressing its dimerization/
multimerization and downregulating its expression. As shown
in Figure 5, MS-444 (Meisner et al., 2007), dehydromutactin
(Meisner et al., 2007), okicenone (Meisner et al., 2007),
eltrombopag (Zhu et al., 2020) and SRI-42127 (Filippova
et al., 2021) inhibit the dimerization/multimerization of
ELAVL1; 5-aza-2′-deoxycytidine (AZA) (Hostetter et al.,
2008), trichostatin A (TSA) (Hostetter et al., 2008),
pyrvinium pamoate (Guo et al., 2016) and Rottlerin
(Latorre et al., 2012) inhibite ELAVL1’s nucleocytoplasmic
trafficking; Dihydrotanshinone-I (Lal et al., 2017), azaphilone-
9 (AZA-9) (Kaur et al., 2017), quercetin (Chae et al., 2009), b-
40 (Chae et al., 2009), suramin (Kakuguchi et al., 2018), KH-3
(Wu et al., 2020) and CMLD1 (Wu et al., 2015) block
ELAVL1’s binding to mRNA; CMLD2 downregulates
ELAVL1’s expression (Muralidharan et al., 2017) and blocks
its binding to mRNA (Wu et al., 2015). Among these
inhibitors, MS-444, dehydromutactin, okicenone, SRI-42127,
AZA-9, b-40, KH-3, CMLD1 and CMLD2 are specific
inhibitors of ELAVL1, while others are not. For example,
eltrombopag often acts as a thrombopoietin (TPO) receptor
agonist (Bussel et al., 2019), AZA as a DNA methyltransferase
inhibitor (Song et al., 2022) and TSA as a histone deacetylase
inhibitor (He et al., 2022). Pyrvinium pamoate (Faheem et al.,
2022), Rottlerin (Hufnagel et al., 2009), dihydrotanshinone-I
(Sun et al., 2022), quercetin (Zaragozá et al., 2022) and
suramin (Zhang et al., 2022) all have effects on other
physiological or pathological processes.

FIGURE 4 | Diseases or pathophysiological processes related to ELAVL proteins. Diseases related to ELAVL proteins are included in the figure.
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CONCLUSION AND PERSPECTIVE

This review summarizes the role of ELAVL proteins in various
pathophysiological processes and in regulating mRNA and
ncRNA. Given the ubiquity of ELAVL proteins existence and
their role in a variety of diseases, it is logical to develop innovative
small molecules. Based on the interaction mechanism between
ncRNA and ELAVL proteins, the development of ncRNA analogs
to promote the degradation of ELAVL proteins or inhibit the
translation of their mRNAs is worth discussing. Developing
chemically inactive analogs of ELAVL proteins to interfere with
their synergy or competition with ncRNA in a competitive
manner may also provide a new perspective to reduce the
functionality of the protein family. Notably, although the
ELAVL proteins have promising potential as a therapeutic
target, many questions still need to be further explored.
Interfering with ELAVL proteins seems to be a new strategy;
however, considering that they are an integral part of life
activities and interact with too many RNA molecules,
whether their intervention will cause other unexpected side
effects needs to be handled carefully. Is it better to use it
alone or in combination with other drugs? According to
previous reports, inhibition of ELAVL1 sensitized tumors to
treatment with platinum-based drugs, including oxaliplatin and
cisplatin (Young et al., 2009). What about drugs other than
platinum-based drugs? In addition, considering ELAVL2-4

participating in many pathological processes and the
similarity of the structure between ELAVL2-4 and ELAVL1,
substantial study is imminent to fill the lacunae in the
development of ELAVL2-4 inhibitors.
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GLOSSARY

AGAP2 ArfGAP with GTPase domain, ankyrin repeat and PH domain 2

AGAP2-AS1 AGAP2 antisense RNA 1

AGO2 Argonaute 2

APOA4-AS Rho GTPase activating protein 21

ARE AU-rich element

ASB16 ankyrin repeat and SOCS box containing 16

ASB16-AS1 ASB16 antisense RNA 1

ATG16L1 Autophagy Related 16 Like 1

B4GALT1-AS1 B4GALT1 Antisense RNA 1

BRCA breast cancer;

CAAlnc1 cachexia-related anti-adipogenesis lncRNA 1

CircAGO2 circular RNA Argonaute 2

circBACH1 circular RNA BTB Domain and CNC Homolog 1

circ-CCND1 circular RNA Cyclin D1

circDLC1 circular RNA DLC1

circ-HuR circular RNA ELAV Like RNA Binding Protein 1

circRHOBTB3 circular RNA RHOBTB3

circRNA circular RNA

COX-2 cyclooxygenase 2

CP cleavage products

CX43 Connexin 43

DNMT3B DNA methyltransferase 3B

eEF2 Eukaryotic Translation Elongation Fa

EGFR epidermal growth factor receptor

EGFR-AS1 EGFR antisense RNA 1

eIF2a Eukaryotic Translation Initiation Factor 2A

ELAVL proteins Embryonic lethal abnormal vision-like proteins

FAM83H-AS1 family with sequence similarity 83memberH antisense RNA 1

FENDRR FOXF1 adjacent non-coding developmental regulatory RNA

HCT116 human colon cancer cells 116

Hel-N1 human elav-like neuronal protein 1

HMS HOXC10 mRNA stabilizing factor

HOXB homeobox B cluster

HOXB-AS1 HOXB cluster antisense RNA 1

HTT Huntingtin

HuB human antigen B

HuC human antigen C

HuD human antigen D

HuR human antigen R

IL interleukin

IRES internal ribosome entry site

lincRNA-UFC1 long intergenic noncoding RNA UFC1

lncRNA Long non-coding RNA

MAARS Macrophage-Associated Atherosclerosis

MALAT1 metastasis associated lung adenocarcinoma transcript 1

MD1 muscle differentiation 1

MIR100HG mir-100-let-7a-2-mir-125b-1 cluster host gene

miRNA micro RNA

mRNA message RNA

ncRNA non-coding RNA

NF-κB Nuclear Factor-kappa B

OCC-1 Overexpressed in colon carcinoma-1

OIP5 Opa interacting protein 5

OIP5-AS1 OIP5 antisense RNA 1

OSER1 oxidative stress responsive serine rich 1

OSER1-AS1 OSER1 antisense RNA 1

p27 protein 27

p53 protein 53

P62 protein 62

PARP1 poly(ADP-ribose) polymerase 1

PFN1 profilin 1

PIM1 Pim-1 Proto-Oncogene, Serine/Threonine Kinase

PPM1F Protein Phosphatase, Mg2+/Mn2+ Dependent 1F

PTBP1 Polypyrimidine Tract Binding Protein 1

RBP RNA-binding protein

RMST habdomyosarcoma 2-Associated Transcript

ROS reactive oxygen species

RPSAP52 ribosomal protein SA pseudogene 52

RRM RNA recognition motif

SATB1 sequence-binding protein 1

SCLC small cell lung cancer

SNHG7 small nucleolar RNA host gene 7

SPRY4 sprouty RTK signaling antagonist 4

SPRY4-IT1 SPRY4 intronic transcript 1

tie1AS tie1 locus-tie1 antisense

TIN2 TRF1-interacting nuclear protein 2

TRN2 transportin-2

TSLNC8 Tumor suppressor long noncoding RNA on chromosome 8p12

TUBB3 Tubulin Beta 3 Class III

TUG1 aurine up-regulated 1

UTR untranslated region

UV Ultraviolet Rays

Wnt-5a Wnt Family Member 5A

XIAP X-linked inhibitor of apoptosis

ZEB1 zinc finger E-box binding homeobox 1

ZEB1-AS1 ZEB1 antisense RNA 1.
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