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Abstract: By means of computer simulation and analytical theory, we first demonstrated that the
interpolyelectrolyte complexes in dilute solution can spontaneously form hollow spherical particles
with thin continuous shells (vesicles) or with porous shells (perforated vesicles) if the polyions forming
the complex differ in their affinity for the solvent. The solvent was considered good for the nonionic
groups of one macroion and its quality was varied for the nonionic groups of the other macroion.
It was found that if the electrostatic interactions are weak compared to the attraction induced by the
hydrophobicity of the monomer units, the complex in poor solvent tends to form “dense core–loose
shell” structures of different shapes. The strong electrostatic interactions favor the formation of the
layered, the hollow, and the filled structured morphologies with the strongly segregated macroions.
Vesicles with perforated walls were distinguished as the intermediate between the vesicular and the
structured solid morphologies. The order parameter based on the spherical harmonics expansion
was introduced to calculate the pore distribution in the perforated vesicles depending on the solvent
quality. The conditions of the core–shell and hollow vesicular-like morphologies formation were
determined theoretically via the calculations of their free energy. The results of the simulation and
theoretical approaches are in good agreement.
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1. Introduction

Interpolyelectrolyte complexes (IPECs) are formed in solutions by oppositely charged polyions.
IPECs play an important role in nature; for example, polyelectrolyte complexation occurs in chromatine
fiber, formed by DNA and histones [1], and within cells in the interaction between DNA and enzyme
proteins [2]. Water-soluble IPECs are promising for various biomedical applications including drug
encapsulation and targeted delivery, gene therapy, gene transfection [3–9], as well as for applications
in water treatment, agriculture, nanofiltration, etc. [10,11].

The formation of IPECs is driven by electrostatic interactions between the oppositely charged
groups, as well as entropy change upon the release of counterions, which were bound to the free
polyions [12–15]. The morphology and properties of IPECs are, to a large extent, determined by
the density of charges within the macromolecules and the ratio between positive and negative
charges [16–18]. If the charges of one sign prevail, the complexes are called nonstoichiometric. They
form micelles with the charged surface and are water-soluble due to the electrostatic interaction
between water and charged monomer units. Solutions of oppositely charged polyelectrolytes, which
carry an equal amount of positive and negative charges (stoichiometric case), have zero net charge and
reveal macroscopic separation into polymer-rich and dilute phases [7,18–21].

However, in stoichiometric IPECs, phase separation can be avoided if at least one of the
polyelectrolytes contains nonionic hydrophilic groups. That is the case in block-ionomer complexes,
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forming core–shell structures with the polyelectrolyte complex core stabilized by the hydrophilic shell
of the nonionic block [22,23]. In addition, the soluble IPECs of the core–shell structure can be obtained
when the hydrophilic groups are distributed evenly along the linear polyelectrolyte chains: In the
IPECs studied in [24,25], the uncharged groups are hydrophobic in polycations and hydrophilic in
polyanions. The outer part of the resulting complex comprises hydrophilic groups, tending to be
exposed into the solvent and shielding the complex from aggregation, while the inner part consists
of both hydrophilic and hydrophobic units. The theory of such IPECs is proposed in [25]. Within
the framework of this theory, the thickness of the external layer of the IPEC is determined by the
two opposite effects: The energetic gain from hydrophilic groups immersed into the solvent and the
electrostatic attraction between the excess of negative and positive groups in the core and shell of the
IPEC, respectively.

It can be assumed that the core of the complexes can possess some ordered distribution of
the groups as a result of the interaction between the charged groups, as well as the interaction of
hydrophobic and hydrophilic units with the solvent. We have investigated the morphology of such
IPECs by means of computer simulation for the case of strong electrostatic attraction between the
oppositely charged chains and gradual decrease in the solvent quality for one of the chains, while
the solvent quality for the other chain remained good [26]. It was demonstrated that the complexes
acquired a near-spherical shape with the solvophilic outer shell. Upon worsening of the solvent, the
monomer units within the inner part of the complex rearranged so that one could distinguish three
morphology types depending on the solvent quality: The particles with loosely packed monomer
units in the core surrounded by the solvophilic shell, the hollow “vesicle-like” particles, and the
densely structured particles with strongly segregated chains. The transition between the vesicle and
the structured dense particle proceeds via the formation of the hollow structures with the perforated
shells [26].

In the studied IPEC, the macromolecules with different affinities for the solvent are bound
together by strong electrostatic interactions as if they were parts of a single chain [26]. Therefore, the
complex has an amphiphilic nature and resembles an amphiphilic homopolymer [27–29], which has
both solvophilic and solvophobic groups within each monomer unit. It is known that in solution,
amphiphilic homopolymers can form a number of morphologies with the solvophilic shell, including
hollow vesicle-like structures [27–34].

The nanoparticles with a hollow morphology are especially promising as nanocarriers. It was
shown [35] that encapsulation of peptides into hollow nanoparticles instead of solid ones enhances
release and preserves the bioactivity of peptides due to the decrease in the interaction with the
polymer matrix. Amphiphilic molecules are widely used to create hollow capsules. Those are
lipids and various systems with enhanced stability and control: The complexes of lipids with other
molecules, synthetic lipid-like materials, block-copolymer polymersomes [36–39]. Application of
amphiphilic homopolymers [28,29], where the amphiphiles are joined into one chain, instead of
the smaller molecules, suggests more straightforward ways to construct vesicles and control their
morphology. In addition to hydrophobic interactions, electrostatic interactions make a significant
contribution to the self-organization and stability of hollow structures [40–42]. Preparing hollow
IPEC microcapsules nowadays involves complicated techniques such as multilayering [43,44] and
interface encapsulation [45,46]. We assume that the utilization of electrostatic interactions in IPECs
as a tool for effectively “binding” the chains with a different affinity for the solvent and, thus, the
introduction of amphiphilicity opens the way for the development of novel methods to obtain stable
and controllable nanocapsules.

The aim of the present study is to investigate the shape and distribution of monomer units in
stoichiometric interpolyelectrolyte complexes consisting of two chains having different affinities for
the solvent, depending on the length of the chains, solvent quality, and the Bjerrum length; namely,
to obtain the conditions for the emergence of various morphologies, indicate the area of the hollow
structures formation, and quantitatively describe the shapes of these hollow structures.
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2. Computer Simulation

2.1. Model and Simulation Technique

The system under study consisted of two polymer chains of similar length N and a similar degree
of ionization f = 1

2 . Each chain bore N/2 charged and N/2 uncharged monomer units distributed in
an alternating way (Figure 1). The first chain was charged positively while the second chain was
charged negatively. The magnitude of the charges was q = +1 and q = −1, respectively. The length of
the macromolecules was varied from N = 512 to 2048. The complex was immersed into the solvent,
which was considered good for the polyanion and whose quality was varied for the polycation.
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Figure 1. Schematic representation of the studied macromolecules. In all the snapshots, non-charged
and charged groups of the hydrophobic chain (polycation) are depicted by light-red and dark-red
beads, respectively, while non-charged and charged groups of the hydrophilic chain (polyanion) are
shown by light-blue and dark-blue beads, respectively.

Computer simulations of the temporal evolution of the system were carried out using the Langevin
molecular dynamics technique applying the LAMMPS software package [47].

The bonds between the monomer units were described by the rigid spring potential:

Ebond = K(ri j − b)2 (1)

where b = 1 is a bond length, and K = 10, 000 is a constant with a numerical value sufficient to ensure
that the bond length deviation does not exceed 1%.

The excluded volume interactions between the non-bonded monomer units were introduced via
the repulsive part of the Lennard–Jones potential:

ELJ(ri j) =

 4εLJ

[(
σ
ri j

)12
−

(
σ
ri j

)6
+ 1

4

]
0, ri j > rc

, ri j ≤ rc (2)

where ri j is the distance between i-th and j-th units, rc =
6√2σ is the cutoff distance of the potential,

εLJ is a parameter controlling the energy scale, and σ determines the length scale. We put εLJ = σ = 1
so all of the results are presented in terms of the parameters εLJ and σ.

The solvent was represented implicitly by a dielectric continuum. Hydrophobic–hydrophilic
intrachain interactions, induced by the solvent, were implicitly accounted for by the Yukawa-type
potential:

EY(αβ)(ri j) =


εαβσ

ri j

(
1−

( ri j
rcY

)2
)2

, ri j ≤ rcY

0, ri j > rcY

(3)

where rcY = 4σ is the cutoff distance and εαβ = (εHH, εPP, εHP) is the energetic parameter of pair
H–H, P–P, and H–P interactions, H and P being monomer units of the first (hydrophobic) and second
(hydrophilic) chains, respectively. The parameter εHH had negative values (εHH < 0), demonstrating
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the effective attraction between the units of the hydrophobic chain due to its low affinity for the solvent.
To simulate the good solvent conditions for the hydrophilic chain, the values of εHP and εPP were set
to zero, i.e., only excluded-volume interactions (Equation (2)) were acting between H–P and P–P pairs.

Electrostatic interactions between the charged units were presented via the Coulomb potential:

EEl(ri j) = kBTlB
qiq j

ri j
(4)

where kBT = 1, ri j is the distance between i-th and j-th units, and lB = e2

4πε0εkBT is the Bjerrum length
(e is an elementary charge, ε is the dielectric permittivity of the medium, ε0 is vacuum permittivity).
For charged monomer units in the first chain, qi = +1, and for those in the second chain, qi = −1.
Electrostatic interactions were calculated using the Ewald summation algorithm [48]. The Bjerrum
length was varied from lB = 0.25 to 10. Bjerrum length is the distance at which the electrostatic energies
of the two charged units become equal to kBT. Therefore, the electrostatic energy of the two charge
interactions can be considered small with respect to the thermal energy if the distance between them is
large enough compared to the Bjerrum length. In the article, for convenience, we refer to small and
large values of lB as “weak” and “strong” electrostatic interactions, respectively.

We consider very dilute solutions of oppositely charged polyelectrolytes. When a compact
stoichiometric complex is formed, the counterions of both polyions are released into the whole solution
volume due to their high translational entropy [12,13]. Therefore, most of the counterions were
assumed to be located far from the complex and their influence was neglected.

The solution temperature T was kept constant using a Langevin thermostat. The equations

of motion were augmented by the Langevin uncorrelated noise term Fr ∼

√
2kBTmb

Ddt and drag force

term F f = −
mb
D v. Here, mb = 1 is the mass of each group, v is its velocity, dt = 0.005σ

√
mb
εLJ

is the

integration step, and D = 100 is the damping coefficient, indicating that the temperature is relaxed
within 100 time steps.

The macromolecules were placed into a large cubic simulation cell of edge L = 1200 or 2400
(depending on chain length) with periodic boundary conditions. Relaxation was carried out at
εHH = εPP = εHP = 0 for 4 × 106 time steps. Then, the parameter εHH of the interaction between the
first chain groups was switched on and changed gradually from εHH = 0 to εHH = −2.0 with step
∆εHH = −0.1, performing an equilibration run of 2 × 106 and production run of 2 × 106 time steps at
each stage.

2.2. Results and Discussion

The characteristic types of morphologies observed in our calculations are shown in Figure 2.
There are spherical (Figure 2a–f), necklace-like (Figure 2g), cylindrical (Figure 2h), and toroidal
micelles (Figure 2i). The spherical micelles either have a homogeneously filled (Figure 2a,b), hollow
(Figure 2c,d), layered (Figure 2e), or structured interior (Figure 2f). The hollow structures can have
a vesicular-like shape with continuous walls (Figure 2c) or a cage-like shape, i.e., porous walls
(Figure 2d). The complexes in good solvent (Figure 2a) possess a structure with homogeneously
intermixed chains. It is seen that the outer layer of all the other structures (Figure 2b–i) and the inner
layer of the hollow morphologies (Figure 2c,d) are built by the hydrophilic chain. The types of the
conformations are similar to those we have observed earlier formed by amphiphilic homopolymers [32].
As we have demonstrated [26], the complexes of the polyions, which have different affinities for the
solvent, bear resemblance to the amphiphilic macromolecules as the hydrophilic and hydrophobic
chains are bound in them by strong electrostatic interactions.
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The types of structures formed by the complex depend on the solvent quality, the length of the
chains, and the strength of the electrostatic interactions expressed by the value of Bjerrum length
lB. We have calculated several quantities determining the structure of the complexes in order to
systematize the results and present them in the form of morphological diagrams.

To distinguish between the spherical, cylindrical, and toroidal morphologies, the shape factors k1

and k2 were calculated. These values are defined as the ratios between the principal moments of the
squared gyration radius (g1 ≤ g2 ≤ g3):

k1 =
g1 + g2

g2 + g3
, k2 =

g1 + g3

g2 + g3
(5)

For the perfect sphere k1 → 1 , k2 → 1 ; for the infinitely thin disk k1 → 0.5 , k2 → 0.5 ; for the
infinitely long cylinder k1 → 0 , k2 → 1 .

The dependencies of the shape factors on the solvent quality parameter εHH for the case of low
electrostatic interactions (lB = 0.5) are demonstrated in Figure 3. As is seen, in good solvent, their values
are k1 ≈ 0.55, k2 ≈ 0.85 for short chains (Figure 3a) and k1 ≈ 0.65, k2 ≈ 0.90 for long chains (Figure 3b)
and strongly fluctuate. With the decrease in the solvent quality, the value of k1 diminishes and k2

remains the same, which indicates elongation of the complex. A further decrease in solvent quality
for the short chains leads to the growth of both k1 and k2 up to k1 ≈ k2 ≈ 0.9, corresponding to the
spherical micelles. The long macromolecules demonstrate coexistence of the toroidal and cylindrical
morphologies (Figure 3b).
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Figure 3. Shape factors and snapshots of the complexes with N = 512 (a) and N = 2048 (b). lB = 0.5.

On the snapshots (Figure 3), it is seen that the coil transforms into the cylinder via the stage of the
necklace formation. The beads in the necklace are strongly entangled and, visually, they are the areas
with the dense cores of polycation groups and the shells of polyanion groups. The necklace region was
found by calculation of <Mmax>, the size of the maximal cluster formed by nonionic groups of the
polycation. The cluster is a group of units, where the distance rij between each pair does not exceed
the critical value rc = 1.4σ. Figure 4 shows the dependencies of 2<Mmax>/N on the values of εHH.
The chain length does not significantly affect the shape of the curves. In good solvent, the clusters of
maximal size are very small and each of them comprises ~2% of all nonionic groups of the polycation.
Upon worsening of the solvent, the value of <Mmax> increases abruptly within the narrow region
of εHH and reaches the plateau 2<Mmax>/N→ 1. The point, where most of the units join the cluster
of maximal size (2<Mmax>/N→ 1), shifts to the area of the poor solvent as the lB value grows until
the curves converge at lB ≥ 4. The morphology belongs to the necklace region if the point on the
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aggregation number dependency falls into the range of the abrupt 2<Mmax>/N rise, and the shape is
intermediate between the sphere and the cylinder according to k1, k2 values.
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Calculations of the shape factors k1 and k2 reveal that with the increase in electrostatic interactions,
the shape of the complex remains spherical in a wide range of solvent qualities. In the spherical
morphologies, the distribution of the charged and non-charged groups of both polyions relative to the
center of mass was calculated (Figure 5).

In good solvent, the distribution is uniform for all the types of groups (Figure 5a). The worsening
of the solvent quality leads to the redistribution of the monomer units. The fact that aside from the
strong attraction between the groups of different polyions, the groups of the polycations prefer to be
surrounded by the units of the same chain, leads to the emergence of layers within the complex.

Figure 5b–d show how the structure evolves with the worsening of the solvent quality for
the polycation groups. The layering begins at the periphery of the complex, where the shell with
a predominance of the hydrophilic groups emerges (Figure 5b). Beneath this shell, there is a layer
where the hydrophobic groups prevail. In the central part of the complex, the units are distributed
uniformly. With the increase in the hydrophobic interactions, segregation within the central part of the
complex takes place (Figure 5c). There, the local concentration of the groups of the hydrophilic chain
rises, and the local concentration of the groups of the hydrophobic chain decreases. The radius of that
inner core is approximately equal to the thickness of the hydrophobic layer.

As a result of the further worsening of the solvent quality, the density of the polycation groups
falls to zero in the central part of the complex. Depending on the length N of the chains, the central
part can be hollow (N = 1024, Figure 5d) or can be filled with the groups of the hydrophilic chain
(N = 512, Figure 5e). The complexes of the longest chains studied (N = 2048) with the decrease in the
solvent quality transfer into the hollow morphology via the stage where they have the additional layer.
In that case, inside the central hydrophilic region, there is a core enriched by the hydrophobic groups
(Figure 5f). This layered morphology is called the “onion-like” structure.

In poor solvent (the highest attraction |εHH | between the groups of the hydrophobic chain),
the hollow morphologies turn into solid micelles with distinctly segregated units of different polyions
(Figure 1f). In those micelles, the space previously occupied by the cavity is filled with the units of the
hydrophilic chain.

Besides the vesicle-like structures with a continuous shell of unaltered thickness, a number of
other hollow morphologies were observed. These morphologies occupy the area between the vesicles
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and the so-called structured solid particles. The hollow particles with porous shells are reported
in numerous studies of amphiphilic systems and referred to as cage-like micelles, stomatosomes,
or perforated vesicles [49–53].Polymers 2020, 12, x FOR PEER REVIEW 8 of 24 
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εHH = −1.5 (c), εHH = −1.8 (d), N = 512, lB = 6, εHH = −1.4 (e), N = 2048, lB = 4, εHH = −1.5 (f). r is
the distance from the center of mass. The color of the curves corresponds to the types of the groups.

Figure 6 shows snapshots of the vesicles with perforated shells. As is seen, the shells of the
particles undergo shape transitions. The size of the cavities inside the perforated vesicles reduces with
the worsening of the solvent [26] and their shapes are maintained for the structured solid particles,
which emerge in poor solvent.

We introduce the order parameter Ql to describe the shape of the hollow particles with perforated
shells and the structured solid particles. First, we calculate the number w(θ,ϕ) of groups of polycations
within the region with spherical coordinates [θ,ϕ ; θ+ ∆θ,ϕ+ ∆ϕ], ∆θ = ∆ϕ = π/18:

w(θ,ϕ) =
N∑

i=1

δ(cos θ− cos θi)δ(ϕ−ϕi) (6a)
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The parameter Ql is calculated based on the spherical harmonics expansion of w(θ,ϕ):

w(θ,ϕ) =
∞∑

l=0

l∑
m=−l

wm
l Ym

l (θ,ϕ) (6b)

where Ym
l (θ,ϕ) are spherical harmonics:

Ym
l (θ,ϕ) =

√
2l + 1

4π
(l−m)!
(l + m)!

Pm
l (cos θ) exp(imϕ) (6c)

Pm
l (cos θ) are Legendre polynomials, wm

l is the expansion coefficient:

wm
l =

N∑
i=1

Y∗ml (θi,ϕi) (6d)

i is the number of a monomer unit within the polycation chain.
According to the addition theorem of spherical harmonics [54]:

Pl(cosγi j) =
4π

2l + 1

l∑
m=−l

Y∗ml (θi,ϕi)Ym
l (θ j,ϕ j) (7)

Here, γi j is the angle between the vectors (θi,ϕi) and (θ j,ϕ j): cosγi j = cos θi cos θ j +

sin θi sin θ j cos(ϕi −ϕ j).
The order parameters Ql, which are invariant under rotation of the coordinate system, are defined

as:

Ql =
1

2l + 1
4π
N

l∑
m=−l

wm
l w∗ml =

1
N

N∑
i=1

N∑
j=1

Pl(cosγi j) (8)

We calculate the parameters up to l = 10.
Spherical harmonics expansion is applicable to measure the symmetry of noncrystallographic

clusters (e.g., in the models of glasses and intermetallic compounds [55–58]) and estimate the lateral
ordering of the micelles surface [59–61].

In accordance with our definition of Ql, a spherical shell with a homogeneous distribution of
monomer units should have approximately equal values of the order parameter Ql for different l.
The value of Q2 corresponds to the elongation of the micelle. The other Ql are related to the preferred
density distribution in the vertices of some polyhedron, whereas the pores in the vesicular walls are
located on the faces of that polyhedron. Ql can be compared to the order parameters for standard
geometric shapes, which can be easily calculated. For example, the shapes with cubic symmetry have
non-zero values of Q2, Q4, and Q8, and icosahedral symmetry gives non-zero values of Q6 and Q10.
A tetrahedron has the following non-zero Ql (in decreasing order of magnitude): Q3, Q10, Q7, Q9, and
Q4. The appearance of additional non-zero Ql values is useful to distinguish the transitions between
symmetric and slightly distorted structures.

Figure 6 demonstrates the dependencies of Ql on the solvent quality parameter εHH for different
chain lengths. In good solvent, the shape of the complex is very fluid and varies with time from
spherical to oblate, which leads to elevated Q2 values.

In Figure 6a (lB = 4, N = 1024), it is seen that the magnitudes of Ql for various l are comparable to
each other and have low values in the range of εHH where either spheres or the vesicles with a solid,
continuous shell are formed. With the decrease in solvent quality (εHH ≤ −1.7), some of the Ql values
differ significantly in magnitude from the others. In the range of −1.9 ≤ εHH ≤ −1.7, the values of
Q3 and Q4 prevail. First (εHH = −1.7; εHH = −1.8), Q4 has the highest value; then (εHH = −1.9),
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the magnitudes of Q3 and Q4 become comparable. The further decrease in the solvent quality leads
to the decline in Q4, significant growth in Q3, and moderate growth in Q2. That corresponds to the
transition of the perforated vesicle from the symmetry most close to the cubic one, with the gradual
distortion in a narrow solvent quality range. The number of pores in the shell decreases and the
resulting shape of the hollow particle has three pores arranged in the vertices of the triangle, and the
value of Q3 significantly exceeds all the other Ql. This symmetry is maintained both for the hollow
particles (εHH = −2.2; εHH = −2.3) and the structured solid particles (εHH ≤ −2.4).

For the long chains (N = 2048), the values of Ql remain small in the area of isotropic vesicles with
a continuous shell (−1.6 ≤ εHH ≤ −1.5), except for Q2, corresponding to the elongation of the vesicle
(Figure 6b). However, the worsening of the solvent quality reveals the growth of Q6 (−2.0 ≤ εHH ≤ −1.7):
There, the perforated capsule has the shape of a regular polyhedron with 20 vertices and 12 faces
(dodecahedron). At εHH = −2.0, Q5 has a noticeable value along with Q6, which corresponds to the
distorted dodecahedron. The further decrease in solvent quality is accompanied by the growth in Q5

and the decline in Q6 and leads to the transition to the region, where Q5 has the largest value, the value
of Q4 is smaller but also prominent, and Q6 is very low. There, the pores in the perforated vesicle shell
are arranged so that they are located within the square and pentagonal faces of the polyhedron with
14 vertices and 9 faces.

Thus, for the chains of different length, the order parameter Ql reveals the rearrangement and
reduction of the amount of pores in the shell of the perforated vesicles. The symmetry the shell
has when the size of the inner cavity is minimal is maintained in the poor solvent, where the cavity
completely disappears.

Polymers 2020, 12, x FOR PEER REVIEW 10 of 24 

have non-zero values of Q2, Q4, and Q8, and icosahedral symmetry gives non-zero values of Q6 and 
Q10. A tetrahedron has the following non-zero Ql (in decreasing order of magnitude): Q3, Q10, Q7, Q9, 
and Q4. The appearance of additional non-zero Ql values is useful to distinguish the transitions 
between symmetric and slightly distorted structures. 

Figure 6 demonstrates the dependencies of Ql on the solvent quality parameter HHε  for 
different chain lengths. In good solvent, the shape of the complex is very fluid and varies with time 
from spherical to oblate, which leads to elevated Q2 values. 

In Figure 6a (lB = 4, N = 1024), it is seen that the magnitudes of Ql for various l are comparable to 
each other and have low values in the range of HHε  where either spheres or the vesicles with a 
solid, continuous shell are formed. With the decrease in solvent quality ( 1.7HHε ≤ − ), some of the Ql 
values differ significantly in magnitude from the others. In the range of 1.9 1.7HH− ≤ ε ≤ − , the values 
of Q3 and Q4 prevail. First ( 1.7; 1.8HH HHε = − ε = − ), Q4 has the highest value; then ( 1.9HHε = − ), the 
magnitudes of Q3 and Q4 become comparable. The further decrease in the solvent quality leads to the 
decline in Q4, significant growth in Q3, and moderate growth in Q2. That corresponds to the 
transition of the perforated vesicle from the symmetry most close to the cubic one, with the gradual 
distortion in a narrow solvent quality range. The number of pores in the shell decreases and the 
resulting shape of the hollow particle has three pores arranged in the vertices of the triangle, and the 
value of Q3 significantly exceeds all the other Ql. This symmetry is maintained both for the hollow 
particles ( 2.2; 2.3HH HHε = − ε = − ) and the structured solid particles ( 2.4HHε ≤ − ). 

For the long chains (N = 2048), the values of Ql remain small in the area of isotropic vesicles with 
a continuous shell ( 1.6 1.5HH− ≤ ε ≤ − ), except for Q2, corresponding to the elongation of the vesicle 
(Figure 6b). However, the worsening of the solvent quality reveals the growth of Q6 
( 2.0 1.7HH− ≤ ε ≤ − ): There, the perforated capsule has the shape of a regular polyhedron with 20
vertices and 12 faces (dodecahedron). At 2.0HHε = − , Q5 has a noticeable value along with Q6, which
corresponds to the distorted dodecahedron. The further decrease in solvent quality is accompanied
by the growth in Q5 and the decline in Q6 and leads to the transition to the region, where Q5 has the
largest value, the value of Q4 is smaller but also prominent, and Q6 is very low. There, the pores in
the perforated vesicle shell are arranged so that they are located within the square and pentagonal
faces of the polyhedron with 14 vertices and 9 faces.

Thus, for the chains of different length, the order parameter Ql reveals the rearrangement 
and reduction o

(a) (b)

Figure 6. The order parameter Ql depending on HHε . lB = 4, N = 1024 (a), N = 2048 (b). 

Morphological diagrams in coordinates “solvent quality vs. Bjerrum length” (N = 1024) and 
“Bjerrum length vs. chain length,” summarizing the obtained results, are presented in Figure 7. 
Figure 7b is plotted for the case of poor solvent quality for the hydrophobic chain ( 2.0HHε = − ). 

Figure 6. The order parameter Ql depending on εHH. lB = 4, N = 1024 (a), N = 2048 (b).

Morphological diagrams in coordinates “solvent quality vs. Bjerrum length” (N = 1024) and
“Bjerrum length vs. chain length,” summarizing the obtained results, are presented in Figure 7.
Figure 7b is plotted for the case of poor solvent quality for the hydrophobic chain (εHH = −2.0).

In good solvent (−0.2 ≤ εHH ≤ 0), all the complexes have a spherical shape. The spherical
morphologies with the filled interior are denoted in the diagram by black circles. For the higher values
of lB, the inner core remains filled in the wider range of εHH (Figure 7a). In the diagram, the black
circles designate the structures with a homogeneous core (Figure 5a,b) and those having the layers,
where the difference in the concentration of the groups of different polyions is small (Figure 5c).

Upon worsening of the solvent quality, if the electrostatic interaction is weak, i.e., the values
of lB are low, shorter macromolecules form spherical complexes with the dense core and loose shell
(Figure 7, circles with a cross), and longer chains form cylindrical (Figure 7, blue dashes) and toroidal
(Figure 7, purple rhombi) morphologies. The increase in the chain lengths leads to the narrowing of
the torus region.
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If the electrostatic interactions are strong, the region of the spherical conformations, including
filled and hollow ones, enlarges. This region spreads from the good solvent area and gradually
broadens upon lB growth until it occupies the whole studied solvent quality range (Figure 7a). In this
case, the hollow structures emerge in the poor solvent. First, upon the worsening of the solvent quality,
the vesicle-like morphologies are formed (Figure 7, red circles). With the further decrease in the solvent
quality, they transform into the hollow structures with the porous shell (Figure 7, red rhombi), and
finally into the structured solid particles, where the groups of the polyanion and the polycation are
segregated. That can be either a morphology that maintains the distribution of the pores like in the
perforated vesicles (Figure 7, half-shaded blue circles), or a torus.
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The shorter chains have a relatively narrow area of the vesicles on the diagram (Figure 7b).
There (N = 512), the vesicles and perforated vesicles have extremely small cavities inside with a size
comparable to that of the monomer unit. Similar to amphiphilic homopolymers [30,31], this value of N
is about the minimal chain length at which the formation of the vesicle is possible.

For the longer chains, vesicles can be formed at weaker electrostatic interactions, and the area
of the vesicles (and perforated vesicles) on the diagram extends for the poor solvent conditions
(Figure 7b). The region of the hollow structures with the porous shell is very small for the short chains
and significantly enlarges for the long chains. With the increase in chain length, the region of the
layered, so-called onion-like structures (see Figure 5f), denoted on the diagram by half-shaded black
circles, emerges.

For all the obtained morphologies, a fraction of the groups participating in the formation of the
ion pairs was calculated: ψb = nb/N (nb is the number of ion pairs). The oppositely charged groups
are considered to form an ion pair when the distance r between them does not exceed a certain value
rb. The chosen critical value is 1.5 of bond length (rb = 1.5b), which, assuming a typical monomer
length of about 0.3 nm, corresponds to ~0.5 nm—a reasonable minimum charge-to-charge distance
in IPECs. The ψb(εHH) dependencies are shown in Figure 8 for N = 1024. The shape of the curves
at each value of lB does not significantly depend on N. For small lB, the value of ψb grows with the
decrease in the solvent quality and then reaches a plateau. That corresponds to the spherical core–shell,
cylindrical, and toroid morphologies that have moderateψb values. For the spherical structures “dense
hydrophobic core–loose hydrophilic shell,” ψb does not exceed 0.25, and for cylindrical morphologies,
it does not exceed 0.4. The stronger the electrostatic interactions, the higher the curve is located. For the
strong electrostatic interactions (lB ≥ 4), the curves are located more densely with the increase in lB.
For lB = 4, the value of ψb grows, reaches the maximum of ψb ≈ 0.95, and then decreases to the plateau
of ψb ≈ 0.85. The highest values of ψb are achieved when the complex has either a vesicle-like or the
layered structure. The slight decrease in ψb is related to the deformation of the vesicle shell and the
subsequent transfer of some hydrophilic groups into the volume of the cavity.
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3. Analytical Theory

3.1. Model

In the framework of the analytical theory, all the conformational states of the IPEC obtained by
computer simulation can hardly be described using only one approach. Therefore, we focus on the
possibility of vesicle formation and a “spherical core–shell”—“vesicle” morphological transition.
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As in the computer simulation study, we consider a stoichiometric complex comprising two
macromolecules of the same length N (N >> 1) and ionization degree f in a selective solvent, which
is very good for the polyanion and extremely poor for the polycation. Ionized monomer units are
uniformly distributed along the polymer chains and carry (in absolute value) elementary charge q.
Let υP be the volume and aP be the size of a monomer unit of a hydrophilic polyanion, and υS be the
volume of solvent molecules. The volume and size of the monomer units of hydrophobic polycations
are denoted by υH and aH, respectively. Here, υP = υH = υ, aP = aH = a.

The strong short-range attraction between the monomer units of the polycation causes the
formation of a dense globule (not necessary of a spherical shape) with a constant polymer concentration
and a uniform distribution of charged groups. Meanwhile, the hydrophilic polymer chain is adsorbed
onto the surface of the globule due to electrostatic interactions (Figure 9).Polymers 2020, 12, x FOR PEER REVIEW 14 of 24 
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Figure 9. The schematic representation of spherical core–shell (a) and vesicular structures (b) considered
in the framework of the analytical theory. The red circles depict monomer units of the polycations; the
polyanions are shown by blue circles. The dashed lines represent the boundaries of the hydrophobic
region. The radius of the spherical hydrophobic core is denoted by D, whereas the radius of the cavity
equals R and the thickness of the spherical layer is D.

The total free energy is expressed as a sum of six terms:

F = Fvol + W + Fsur f + Fel−st + Fexc + Fcon f (9)

where Fvol is the free energy of the short-range interactions in the volume of the globule, W is the
electrostatic energy of the globule, Fsur f is the surface free energy of the globule, Fel−st describes
electrostatic interactions of oppositely charged macromolecules, Fexc accounts for excluded volume
interactions of polyanion monomer units, and Fcon f is the conformational energy of polyanion.

The first term is written in the framework of the Flory–Huggins model and describes
non-electrostatic interactions in the globule (here and below β = 1

kBT ):

βFvol = Nχ(1−ϕH) + nS ln(1−ϕH) (10)

Here, ϕH is the volume fraction of hydrophobic groups; ns is the number of solvent molecules
in the globule: ns = N υH

υS

1−ϕH
ϕH

, and χ is a Flory–Huggins parameter of pair interactions between the
polycation and the solvent molecules.

The electrostatic self-energy of the globule can be represented in terms of the electric field in
the form:

W =
εε0

2

∫
E2dV (11)
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where E is the electric field in the globule; and ε and ε0 are the medium permittivity and the vacuum
permittivity, respectively. The integration in Equation (11) is performed over the volume of the globule.

We consider the case of a very poor solvent quality (χ >> 1) for polycations, so almost all solvent
molecules leave the globule, the volume fraction of polycation is close to unity, ϕH ≈ 1, and the
thickness of the surface boundary layer, δ, is of the order of monomer size, δ ~aH. In this case,
the conformational entropy of the chain makes a minor contribution to the surface energy as compared
to the polymer–solvent interactions at the interface. As the surface free energy is defined as a difference
between the energy of monomer units in the δ surface layer and inside the globule, one can estimate
the surface free energy in the following form (see Appendix in [32]):

βFsur f =
aH

υH
χϕ2

HS (12)

where S is the total surface area of the globule.
The energy of excluded volume interactions between the monomer units of a soluble polyanion,

described by the second virial coefficient B, is

βFexc =

∫
1
2

Bc2
PdV (13)

wherein the concentration cP of monomer units of the polyanion near the globule is assumed to be
quite small.

The electrostatic energy of the interaction between the adsorbed polyanion and the globule formed
by the polycation can be expressed as [62]

Fel−st =

∫ (
−
εε0

2

(
→

∇ψ
)2
+ ρPψ

)
dV (14)

whereψ is an electrostatic potential outside the globule; the charge density around the globule is related
to the concentration of polyanions: ρP = −q f cP. The first term in the parentheses of Equation (14)
corresponds to the self-energy of the electric field, whereas the second one is the electrostatic energy of
the ionized groups of the macromolecules.

The conformational loss due to the inhomogeneous distribution of monomer units of the polyanion
is calculated as [13,63,64]

βFcon f =
a2

P
6

∫ (
→

∇cP

)2

cP
dV (15)

In the present theory, it is assumed that B >> υP, and the fraction of the charged groups in the
chains is high (f ~ 0.5). Under these conditions, the electrostatic attraction (Equation (14)) between the
polyanion and oppositely charged globule is stabilized by the excluded volume interactions (Equation
(13)) between the monomers of the polyanion. Let us estimate the electrostatic energy Fel−st in the
case of the spherical core–shell structure. The electrostatic interaction energy is proportional to N2

D

and the size of the globule D ∼ N
1
3 , whereas Fcon f exhibits a linear dependence on N. Then, the terms

(Equation (13)) and (Equation (14)) are much greater than the conformational free energy (Equation
(15)) if N2

D ∼ N
5
3 >> N. Thus, the term (Equation (15)) can be neglected at N >> 1 when the total free

energy (Equation (9)) is varied with respect to the concentration of polyanions, cP (see Appendix A).

3.1.1. The “Core–Shell” Structure

Firstly, let us consider the case when a polycation forms the spherical globule (Figure 9a), while
the polyanion adsorbs onto it due to electrostatic interactions. The complex has a “core–shell” structure.
The radius of the spherical globule is D; its volume and surface area are equal to VC−S = 4π

3 D3 and
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SC−S = 4πD2, respectively. The volume fraction of uniformly distributed monomers in the globule is
ϕH = NυH/VC−S.

The sum of electrostatic and excluded volume interactions can be found in Appendix A (A21):

βFel−st + βFexc = −
1
2

lB f 2N2

D(1 + κD)
(16)

where κ is the inverse screening, κ =

√
4π f 2lB

B ; lB = q2/(4πεε0kBT) is the Bjerrum length.
The electrostatic self-energy of the globule per monomer unit equals (see Appendix B,

expression (A25))

βW =
1
10

lB f 2N2

D
(17)

Thus, the total free energy per monomer unit for the “core–shell” structure is

βFC−S = Nχ(1−ϕH) + N
υH

υS

1−ϕH

ϕH
ln(1−ϕH) +

1
10

lB f 2N2

D
+

4πD2aH

υH
χϕ2

H −
1
2

lB f 2N2

D(1 + κD)
(18)

The free energy (18) for the core–shell structure is minimized with respect to the globule radius, D.

3.1.2. Vesicle

Now, let us turn to the vesicular structure. The inner radius of the vesicle is denoted as Rin = R,
and the external radius is Rout = R + D, where D is the thickness of the spherical layer (Figure 9b).
Then, the inner and outer surface areas are equal to Sin = 4πR2 and Sout = 4π(R + D)2, while the
volume of the spherical layer is defined by Vves =

4π
3

(
(R + D)3

−R3
)
. The volume fraction of monomer

units of the polycation is given by ϕH = NυH/Vves.
The sum of electrostatic and excluded volume interactions for the inner and outer surfaces of the

vesicle is derived in Appendix A (Equation (A20)):

βFel−st + βFexc = −
1
2

lB f 2N2(1−y)2

(R+D)(1+κ(R+D))
−

−
κlB f 2N2 y2

4(κR cosh(κR)−sinh(κR))2

(
sinh(2κR) − 1

κR (cosh(2κR) − 1)
) (19)

where the fraction y of monomer units of the polycation in the inner surface layer of thickness aH is
y = ϕHSinaH/(NυH).

The electrostatic self-energy of this structure per monomer unit is calculated in Appendix B
(Equation (A24)):

βW =
1
2

lB f 2N2(1− y)2

(3R2D + 3RD2 + D3)2

(
D3R3

R + D
+ 2D3R2 + D4R +

D5

5

)
(20)

The total free energy of the vesicle is

βFves = Nχ(1−ϕH) + N υH
υS

1−ϕH
ϕH

ln(1−ϕH)+

+ 1
2

lB f 2N2(1−y)2

(3R2D+3RD2+D3)2

(
D3R3

R+D + 2D3R2 + D4R + D5

5

)
+

+
4π((R+D)2+D2)aH

υH
χϕ2

H −
1
2

lB f 2N2(1−y)2

(R+D)(1+κ(R+D))
−

−
κlB f 2N2 y2

4(κR cosh(κR)−sinh(κR))2

(
sinh(2κR) − 1

κR (cosh(2κR) − 1)
) (21)

Minimization of the free energy of the vesicle (Equation (21)) is performed with respect to the
cavity radius R and its thickness D.
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3.2. Analytical Results

To find the regions of stability of the considered structures, one should minimize the free
energies FC−S (Equation (18)) and Fves (Equation (21)) and compare their equilibrium values for
various parameters.

The structure of the complex is mainly defined by the balance between the electrostatic and
short-range hydrophobic interactions. For sufficiently small values of N and lB, the formation of
a core–shell structure is favorable, as the surface energy (hydrophobic interactions) and excluded volume
interactions of hydrophilic macromolecules play the main role. However, if one increases the degree
of polymerization or/and the Bjerrum length, the attraction of oppositely charged macromolecules
becomes stronger and the complex transformation into the spherical layer is accompanied by the
growth of the surface area of the hydrophobic core. The vesicle cavity diameter, 2R, is greater than the
monomer size of the polyanion, 2R≈ 10aP at the transition line and grows with the further increase in the
parameters N and lB. The decrease in the degree of ionization is related to the lowering of electrostatic
interactions, which results in an increase in the core–shell region in the diagram (cf. Figure 10, curves b
and c). When the second virial coefficient of polycation–solvent interactions increases, the transition
line shifts toward higher N and lB (cf. Figure 10, curves a and b). In addition, the excluded volume
interactions dominate and the hydrophilic polymer chain becomes more swollen. In this case, vesicle
formation is possible if electrostatic interactions become stronger (larger N and lB), as part of the
polyanions adsorbed onto the inner surface of the core is trapped in the cavity and, therefore, the
excluded volume free energy is high.
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Figure 10. The morphological diagram of the complex in the coordinates “polymerization degree–Bjerrum
length” for different degrees of ionization and second virial coefficients: f = 0.5, B/υH = 3 (a); f = 0.5,
B/υH = 4 (b); f = 0.45, B/υH = 4 (c). Other parameters: υH/υS = 1, χ= 6, υH/a3

H = 1.

In the theoretical consideration, we only investigate the possible formation of morphologies
having spherical symmetry. In fact, in computer simulations, the transition from a spherical core–shell
structure to a non-spherical one (cylinder, torus), rather than directly to the vesicle, happens (Figure 7b,
dashed lines). Nevertheless, the present analytical theory gives insights into physical reasons for such
a transition and provides favorable parameters for the self-assembly of the spherical layer. The region
of stability of the spherical core–shell structures is located at the lower left corner of the diagrams,
whereas the vesicle region corresponds to the higher values of N and lB and enlarges with the increase
in N, which is in perfect agreement with the analytical results (cf. Figures 7b and 10). It should be
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stressed that, in theory, we suppose large values of the second virial coefficient (B/υP >> 1) to obtain
a solution of the Poisson equation in a closed form. In addition, the calculations show that higher B
values are related to longer macromolecules at the transition point when the other parameters are fixed.
However, the computer simulation deals with the moderate values of B (B ∼ υP) determined by the
Lennard–Jones potential (Equation (2)). For example, at N = 512, the vesicle is formed with a very
small cavity that is almost completely filled by polyanion monomer units. This situation is opposite to
the theoretical assumption of low concentrations of the adsorbed macroion. Therefore, the choice of
relatively high N compared to the computer simulation is dictated by original assumptions of large
values of the second virial coefficient and a small concentration of the adsorbed polyanion.

4. Conclusions

In the present study, by means of computer simulation, morphological diagrams of the
interpolyelectrolyte complexes containing polyions with different affinities for the solvent were
built. The morphologies taken by the complex in dilute solution depend on the solvent quality for
one of the polyions, the length of the chains, and the Bjerrum length. Formation of the various
morphologies is due to both the hydrophobic and electrostatic interactions. Groups of the polyions
with hydrophobic units tend to be surrounded mostly by groups of the same chain, and the hydrophilic
groups tend to be exposed into the solvent. The electrostatic interactions play the role of the “bonds”
holding the whole complex together. Therefore, at sufficiently strong electrostatic interactions, there is
a range of the parameter εHH, related to the hydrophobic interactions between the units of one of the
polyions, where the complex can take the shape of the hollow particle.

Along with the vesicle-like structures with the continuous walls of uniform thickness, perforated
vesicles with the symmetric distribution of the pores were observed. The number of the pores decreases
and the type of symmetry changes with the worsening of solvent quality. Such perforated vesicles
transform into solid structures with strongly segregated symmetrically arranged chains.

An approach to the estimation of the pore distribution in the perforated vesicles was proposed.
It is based on the spherical harmonics expansion of the vesicle wall thickness.

The analytical theory was applied to study the vesicle structure and the core–shell-to-vesicle
transition. It was shown that the shorter macromolecules form a core–shell structure, while the
appearance of vesicles is preferable at sufficiently large degrees of polymerization and Bjerrum length
that can correspond to low values of medium permittivity. The increase in the degree of ionization
also promotes vesicle formation. The theoretical results corroborated that with the increase in the
electrostatic interactions and the length of the macroions, the hollow morphologies are more favorable
than the core–shell ones.
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Appendix A

To find the equilibrium value of the free energy (Equation (9)) at a fixed volume fraction of
polycation ϕH, one should minimize the following function with respect to the concentration of
polyanion cP(r) and the electrostatic potential ψ(r):

βF(c(r),ψ(r)) = const +
∫ −βεε0

2

(
→

∇ψ
)2
+ βρPψ+

1
2

Bc2
P +

a2
P
6
(
→

∇cP)
2

cP

dV (A1)

As discussed in the main text, in the present theoretical consideration, we neglect the last term in
Equation (A1). The variation in the free energy with respect to cP(r) gives us the relationship between
the concentration of the adsorbed polymer chain cP and electrostatic potential ψ(r):

cP(r) =
βq fψ(r)

B
(A2)

The charge density around the globule equals (“minus” sign is related to negatively charged groups)

ρP(r) = −q f cP(r) = −
βq2 f 2ψ(r)

B
(A3)

The variation in the free energy (A1) with respect to ψ gives the Poisson equation:

∆ψ = −
ρP
εε0

(A4)

Substituting (A3) in (A4), we finally obtain

∆ψ = κ2ψ (A5)

Here, we introduce the inverse screening radius κ =

√
4π f 2lB

B ; lB = q2/(4πεε0kBT) is the Bjerrum
length. The inverse screening radius is the ratio of magnitudes of the electrostatic and excluded volume
interactions. The higher the second virial coefficient B, the less effective the screening.

It is worth noting that the constraint ∫
cPdV = N, (A6)

holds automatically. Indeed, integrating Equation (A4) and using boundary conditions (see below), one
can prove that the volume charge near the surface of the globule, formed by hydrophobic polycations,
is equal to the amount of charge that creates the electrostatic field E0 at the surface of the globule.
Hence, the total charge of the complex is zero, from which it follows that the equality (A6) holds.

Let us introduce the following integrals:

I1 = −β

∫
εε0

2

(
→

∇ψ

)2
dV, (A7)

I2 = β

∫
ρPψdV (A8)

Then,
βFel−st = I1 + I2 (A9)
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Using (A2), one can show that

I2 =

∫
ρPψdV = −2Fexc. (A10)

Therefore, the sum of electrostatic and excluded volume interactions is equal to

βFel−st + βFexc = I1 +
1
2

I2 (A11)

The fraction of monomer units on the inner surface (its area is Sin = 4πR2) of the globule in the
layer of thickness aH is y = SinaHϕH/(NυH) = 3R2aH/

(
3R2D + 3RD2 + D3

)
. The number of monomer

units on the inner surface can be estimated as Nin = Ny. Then, the amount of charge on the inner
surface is Qin = q f Nin = q f Ny. The remaining charge Qout = q f N −Qin = q f N(1− y) is assumed to
be uniformly distributed in the volume of the spherical layer.

The vesicle has inner and outer surfaces, so one should, therefore, solve corresponding interior
and exterior boundary problems in the case of spherical geometry.

First, we consider the exterior boundary problem for the Poisson equation:
d2ψout

dr2 + 2
r

dψout
dr = κ2ψout

ψout(∞) = 0

−
dψout(r)

dr

∣∣∣∣
r=Rout

= Eout

(A12)

The electrostatic field at the outer surface of the vesicle is Eout =
Qout

4πεε0R2
out

. Using the first condition,

we can conclude that the solution of the equation is a decaying function: ψout(r) = C e−κr

r . From the
second boundary condition, we obtain the constant C:

ψout(r) =
q f N(1− y)

4πεε0(1 + κRout)

eκ(Rout−r)

r
(A13)

The evaluation of the integrals (A7) and (A8):

I1 = −β

∞∫
Rout

εε0

2

(
→

∇ψ

)2
dV = −

1
2
κlB f 2N2(1− y)2

(1 + κRout)
2

(1
2
+

1
κRout

)
, (A14)

I2 = β

∞∫
Rout

ρPψdV = −
1
2
κlB f 2N2(1− y)2

(1 + κRout)
2 . (A15)

In the case of the interior boundary problem, we have:
d2ψin

dr2 + 2
r

dψin
dr = κ2ψin∣∣∣ψin(0)

∣∣∣ < ∞
dψin(r)

dr

∣∣∣∣
r=Rin

= Ein

(A16)

Here, Ein = Qin
4πεε0R2

in
is the electrostatic field at the outer surface of the vesicle. The condition∣∣∣ψin(0)

∣∣∣ < ∞ gives a solution of the equation in the form: ψin(r) = C sinh(κr)
r .

Note that there is no “minus” sign in front of dψin(r)
dr

∣∣∣∣
r=Rin

, as r−Rin ≤ 0 for an interior boundary

problem (cf. (A12)). From the second boundary condition, we obtain the constant C:
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ψin(r) =
Qin

4πεε0(κRin cosh(κRin) − sinh(κRin))

sinh(κr)
r

. (A17)

One can evaluate integrals (A6) and (A7):

I1 = −β
Rin∫
0

εε0
2

(
→

∇ψin

)2
dV = −

κlB f 2N2 y2

2(κRin cosh(κRin)−sinh(κRin))
2 .,

.
(

1
2κRin +

1
4 sinh(2κRin) −

1
2κRin

cosh(2κRin) +
1

2κRin

) (A18)

and

I2 = β

Rin∫
0

ρPψindV = −
κlB f 2N2y2

(κRin cosh(κRin) − sinh(κRin))
2

(1
4

sinh(2κRin) −
1
2
κRin

)
. (A19)

Finally, we obtain the sum of excluded volume and electrostatic free energies:

βFexc + βFel−st = −
1
2

lB f 2N2(1−y)2

(R+D)(1+κ(R+D))
−

−
κlB f 2N2 y2

4(κR cosh(κR)−sinh(κR))2

(
sinh(2κR) − 1

κR (cosh(2κR) − 1)
) (A20)

When there is no cavity (R = 0), we recover Fexc + Fel−st for the spherical core–shell structure:

βFexc + βFel−st = −
1
2

lB f 2N2(1− y)2

D(1 + κD)
. (A21)

Appendix B

The charge density in the spherical layer is equal to ρH =
f N(1−y)

4π
3 (3R2D+3RD2+D3)

. The electric field

E(r) in the globule volume can be found from Gauss’s law:

E(r) =
ρH

3εε0
(r−

R3

r2 ). (A22)

In particular, the electrostatic field at the outer surface is equal to

E(Rout) =
Qout

4πεε0R2
out

= Eout, (A23)

which gives a boundary condition for the exterior boundary problem (A12).
Then, the electrostatic self-energy of the spherical layer is equal to

βW = β
εε0

2

R+D∫
R

4πr2E2dr =
1
2

lB f 2N2(1− y)2

(3R2D + 3RD2 + D3)2

(
D3R3

R + D
+ 2D3R2 + D4R +

D5

5

)
. (A24)

To obtain the similar electrostatic energy for the spherical globule, one should set the radius of the
vesicle cavity to zero, R = 0. Thus, the electrostatic self-energy becomes

βW = β
εε0

2

D∫
0

4πr2E2dr =
1

10
lB f 2N2

D
. (A25)
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