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ABSTRACT Monoallelic expression of autosomal genes (MAE) is a widespread epigenetic phenomenon
which is poorly understood, due in part to current limitations of genome-wide approaches for assessing it.
Recently, we reported that a specific histone modification signature is strongly associated with MAE and
demonstrated that it can serve as a proxy of MAE in human lymphoblastoid cells. Here, we use murine cells
to establish that this chromatin signature is conserved between mouse and human and is associated with
MAE in multiple cell types. Our analyses reveal extensive conservation in the identity of MAE genes
between the two species. By analyzing MAE chromatin signature in a large number of cell and tissue types,
we show that it remains consistent during terminal cell differentiation and is predominant among cell-type
specific genes, suggesting a link between MAE and specification of cell identity.
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A significant fraction of mammalian genes are under control of epi-
genetic mechanisms that cause their transcription to occur exclusively
or predominantly from one allele. In addition to approximately 1000
X-linked genes that are subject to chromosome-wide X inactivation in
female cells (Morey and Avner 2011) and approximately 100 known
imprinted genes (Morison et al. 2005; Kelsey and Bartolomei 2012),
up to 15% of human and mouse autosomal genes are subject to
mosaic monoallelic expression (MAE) (Savova et al. 2013; Eckersley-
Maslin and Spector 2014). Genes subject to MAE can be expressed from
the maternal allele in one cell and from the paternal allele or from both
alleles in a neighboring cell in the same individual (Gimelbrant et al.
2007). This allelic expression is mitotically stable in clonal cell lines and
independent between loci, enabling vast epigenetic heterogeneity within
cell populations. Furthermore, when the two alleles encode different
products, MAE can profoundly affect cell function. A better understand-
ing of the role and mechanisms of MAE should thus lead to new insights
into the relationship between genotype and phenotype.

We previously showed that genes with gene2body enrichment in
both H3K27me3 and H3K36me3 in human lymphoid cells were
highly likely to be MAE (Nag et al. 2013). Because this chromatin
signature does not require polymorphisms or monoclonal cell culture,
it bypasses limitations of other approaches relying on direct measure-
ment of allelic expression, and allows the investigation of genome-
wide MAE patterns in vivo.

Here, we use the chromatin signature approach for comparative
analysis of MAE in cells and tissues of distinct embryonic origins. We
show that the MAE chromatin signature is conserved in mouse,
orthologous genes tend to share propensity for MAE in mouse and
human, and the same functions are associated with MAE genes in both
species. Comparison of MAE profiles in different mouse cell lineages
also suggests that MAE is established in a lineage-specific manner and
stably maintained throughout terminal cell differentiation.

MATERIALS AND METHODS

Cell culture
Monoclonal cell lines used in this work have been previously
described in (Zwemer et al. 2012) and are listed in Supporting In-
formation, Table S1. For simplification we have renamed the lines as
S1Cs-A5, Abl.1; S1Cs-A7, Abl.2; S1Cs-F1, Fib.1; S1Cs-F2, Fib.2. Cells
were grown at 37� in presence of 5% CO2. Abl.1 and Abl.2 lines were
cultured in Roswell Park Memorial Institute medium (i.e., RPMI)
complemented with 20% fetal bovine serum, 1· penicillin-streptomycin-
glutamine (10378-016; Gibco) and 1· GlutaMAX Supplement (35050-
061; Gibco). Fib.1 and Fib.2 lines were cultured in Dulbecco’s
Modified Eagle Medium complemented with 10% fetal bovine serum,
1· penicillin-streptomycin-glutamine and GlutaMAX Supplement.
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RNA-Seq
PolyA purified RNA was reverse transcribed using random primers to
prepare strand-specific Illumina compatible libraries, following methods
described in Parkhomchuk et al. (2009) and Nag et al. (2013). Libraries
were sequenced using Illumina Hi-Seq platform (SE50).

A single-nucleotide polymorphism (SNP)-masked reference for
129CASTF1 transcriptome was generated from mm9 mouse genome
assembly, using an in-house pipeline implemented in Awk, by removing
nontranscribed regions based on GTF annotation and masking SNP loci
imputed from parental strain genome. The libraries from Abl.1 and Abl.2
lines yielded 43 million and 28.4 million reads, respectively, whereas the
libraries from Fib.1 and Fib.2 lines had 41 million and 61 million reads.
All reads were mapped against the SNP-masked reference using Bowtie 2,
with default parameters. To counteract disparities in duplication
rate and potential allele-specific artifacts, only unique reads were
used. Mapped read counts for the maternal and paternal allele of
each SNP were obtained using Samtools (Li et al. 2009) and custom
Perl scripts. Allelic bias was statistically identified from the result-
ing SNP allelic counts with in-house Matlab analysis pipeline (Nag
et al. 2013). Briefly, false-discovery rate corrected binomial p-value
lower than 0.05, together with 2:1 bias, were considered evidence for
monoallelic expression, whereas a positive equivalence test was evi-
dence for biallelic expression. Results from allelic expression bias
analysis are presented in Table S3.

ChIP-Seq
Chromatin immunoprecipitation sequencing (ChIP-Seq) on clonal
cell line Abl.1 was performed as described previously (Bernstein et al.
2006; Mikkelsen et al. 2007; Nag et al. 2013). In summary, cells were
fixed with 1% formaldehyde for 5 min at 37�. Fragmentation was
performed using Covaris sonicator. An aliquot of sheared chromatin
was saved as input control. Immunoprecipitation was performed with
Anti-H3K27me3 antibody (ABE44; Millipore, Billerica, MA) and anti-
H3K36me3 antibody (AB9050; Abcam, Cambridge, MA and UK),
using Protein-A Sepharose beads. ChIP-Seq libraries were prepared
using NEBNext ChIP-Seq library prep reagent set for Illumina (NEB
E6200S) following manufacturer’s instructions. Barcoded libraries
were sequenced using Illumina HiSeq platform (SE50).

The H3K27me3, H3K36me3 and input control reads were mapped
to the mm9 genome using Bowtie 2 with default parameters (Langmead
and Salzberg 2012). Library sizes were of 32, 46, and 57 million unique
reads, respectively, with alignment rate of 92% in each case. Duplicate
reads were removed in accordance with standard practice for ChIP-Seq
data (Carroll et al. 2014).

MaGIC
To calculate gene-body signal for H3K27me3 and H3K37me3, files
listed in Table S1 were first converted to wig format by the use
of a combination of custom Perl script, the bigWigToBedGraph utility
from UCSC (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/)
(Kent et al. 2010), Samtools (Li et al. 2009), and the rsem-bam2wig
program (Li and Dewey 2011). Gene-body signal was calculated, for
each mark and the corresponding input, by summing signal over the
length of the longest transcript for each autosomal gene. Signals for
H3K27me3 and H3K36me3 were normalized to input signal, or to the
transcript length if input was not available. Signal from various rep-
licates was averaged when necessary. After discarding transcripts
with no input signal, quantile rank was calculated for each normal-
ized signal, using average rank in case of tie.

The alternating decision tree classifier was trained on the human
GM12878 dataset using the same training set for allelic expression and

using Weka 3.7.3 (Hall et al. 2009) with the same settings (neutral
classifier) as described previously (Nag et al. 2013). The only no-
table differences were that we used an updated version of the
GM12878 dataset that includes three instead of two replicates
(Table S1) and, more importantly, that we trained the classifier on
the quantile rank instead of the base 2 logarithm of normalized gene-
body signal. As expected with an alternating decision tree classifier,
genes predicted as MAE in GM12878 showed only minor changes
compared to our previous study, consistent with the use of slightly
different ChIP-Seq datasets. To note, in this context, the use of
quantile rank is equivalent to quantile normalization, but without
requiring a reference dataset. Consequently, the newly trained clas-
sifier can be readily applied to other datasets with gene2body
signal expressed as quantile-rank, even when absolute values are
on different scales due to experimental or data processing differ-
ences, as illustrated on Figure S1.

As part of the Monoallelic Gene Inference from Chromatin
(MaGIC) procedure, after applying the classifier to a new dataset,
we filtered out genes shorter than 2.5 kb, for which chromatin
signature was not reliable, and low expressed genes, using median
expression as the threshold (Figure S2). For gene length, we used the
length of the longest transcript in mm9 or mm8 genome assembly,
depending on which assembly had been used for the alignment (Table
S2). To calculate relative transcript abundance and estimate the me-
dian expression, we integrated transcript signal over the length of the
longest transcript for each gene and normalized to transcript length by
using the same pipeline as for H3K27me3 and H3K36me3 gene-body
signal. Alternatively, for clone Abl.1, we used FPKM values calculated
using Rsem software as a measure of transcript abundance (Li and
Dewey 2011). Expression rank was used instead of RPKM values
because the biological meaning of the RPKM measure can vary be-
tween cell types (Mortazavi et al. 2008). To put it in the context of our
previous analysis, in the human GM12878 cells, median expression
corresponded to RPKM�1 (Nag et al. 2013).

For subsequent analysis, we only kept datasets that passed a simple
test to ensure minimal dynamic range of ChIP-Seq enrichment
(Figure S3). Using median H3K27me3 and H3K36me3 enrichment
as the threshold, we divided genes in four groups on the basis of the
relative enrichment of these two marks (low H3K27me3 and high
H3K36me3, high H3K27me3 and low H3K36me3, low H3K27me3
and low H3K36me3, and high H3K27me3 and high H3K36me3). We
then asked that the number of genes in the first two groups is at least
50% greater than the number of genes in the two remaining groups.
Datasets matching this criteria show a distribution of genes that
appears visually similar to that in the human lymphoblastoid cells
used to train the classifier.

Comparison of monoallelically expressed genes
between mouse and human
MAE genes were identified from mouse CD432 B cells and human
peripheral blood mononuclear cells datasets using the MaGIC pipeline
(Table S1, Table S2, and Table S4). Orthologous mouse and human
genes were determined using the HomoloGene database (Sayers et al.
2011). In this database, some genes in one species are mapped to
multiple genes in the other species. For consistency and simplicity,
only genes that had a single ortholog in each species were considered.
Hypergeometric distribution was calculated with the online tool
http://www.geneprof.org/GeneProf/tools/hypergeometric.jsp and
used to assess the conservation of MAE as detailed in the main
text. The list of conserved MAE genes uncovered by this analysis is
shown in Table S5.
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GO analysis
Gene Ontology (GO) analysis was performed using GeneTrail
(http://genetrail.bioinf.uni-sb.de/index.php) (Backes et al. 2007).
Over-/underrepresentation analysis of GO categories was performed
using only manually curated GO annotations. For a category to qualify
as being significant, a minimum of 3 genes from that category had to
be in the test dataset. The test dataset included genes predicted to be
MAE and the background dataset included both genes predicted to
be MAE and BAE. For each of these analyses, false-discovery rate
(Benjamini and Hochberg) adjustment was performed (Benjamini
and Hochberg 1995). Full analysis is reported in Table S6.

Comparison of monoallelic expression profiles
and clustering
To compare MAE profiles across tissues, Gower distance was
computed using the Vegan package in R (Dixon 2003), based on
the subset of genes that were expressed in both samples. Hierarchical
clustering was performed using the “hstat” function from the R sta-
tistics package (RCoreTeam 2014), with the “average” (UPGMA)
method.

Correction for classifier accuracy
To correct for imperfect accuracy when inferring the number of MAE
genes in a given number of samples (Figure S5B), we first computed
for each gene, using simple combinatorial probability, the probability
to be MAE in any number of samples given the number of samples
where it was predicted to be MAE and the MAE prediction accuracy.
We used a MAE prediction accuracy of 0.73, as calculated for the
Abl.1 clone. We then summed, for each possible number of samples,
the probability to be MAE of all genes. Each sum gives an estimate of
the number of genes that are MAE in a particular number of samples;
if it was smaller than 1, we considered that no gene was MAE.

RESULTS

Chromatin signature in mouse primary cells identifies
genes subject to MAE
To assess whether the H3K27me3/H3K36me3 gene-body chromatin
signature is correlated with MAE in mouse, we compared results from
a ChIP-Seq analysis (the “chromatin signature”) and a traditional
analysis of allelic expression bias in clonal cell lines. We performed
ChIP-Seq and RNA-Seq in a mouse B-lymphoid clonal cell line de-
rived from 129S1/SvImJ · CAST/EiJ F1 mice, and immortalized with
Abelson murine leukemia virus (clone Abl.1). The high density of
SNPs between the two parental genomes allows for high-resolution
allele-specific expression analysis (see the sectionMaterials and Methods).
Importantly, because of Abl.1’s monoclonal composition, this analysis
provides an upper-bound estimate of how accurate is the correspon-
dence between MAE called by chromatin signature and by allelic
expression bias.

The classifier, trained on human datasets from our previous study,
was applied to ChIP-Seq data as described (Nag et al. 2013), with
several improvements to data processing and filtering (see the section
Materials and Methods). We refer to the whole analytic pipeline con-
sisting of the human-trained classifier and subsequent filters as the
aforementioned Monoallelic Gene Inference from Chromatin (MaGIC).

In Abl.1 clone, 4077 genes were assessable as either MAE or BAE
by the use of both chromatin signature and allelic expression data. Of
492 genes classified as MAE with MaGIC, 73% were confirmed as true
positive by RNA-Seq analysis, whereas of the remaining 3585 genes
classified as BAE, 75% were confirmed as true negative [Figure 1A,

Table S2, and Table S3; Fisher exact P , 2.2E-16; odds ratio (OR) =
8.2]. We conclude that the H3K27me3/H3K36me3 gene body chro-
matin signature is an informative proxy of monoallelic expression in
mouse clonal B lymphoid cells and the MaGIC pipeline is up to 73%
accurate for inferring MAE.

We next set out to evaluate whether MaGIC is accurate for
inferring MAE in mouse non-clonal cells. RNA-Seq, however, cannot
be used to directly measure MAE in nonclonal cell populations,
because opposite allelic biases in different cells cancel out. We thus
used RNA-Seq measurement of MAE in multiple clonal lines as the
benchmark to approximate MAE in nonclonal cells of the same type:
a gene was considered MAE if it was called MAE in at least one clone
and BAE if it was called BAE in at least one clone and was not called
MAE in any one clone. Note that due to the limited number of clones
assessed and biological differences originating in the derivation
process or the F1 genetic background (Table S1), the comparison with
MaGIC provides a lower-bound estimate of the method’s potential
accuracy in complex cell populations.

Using this approach, we assessed the accuracy of the MaGIC
analysis in freshly isolated CD43‒ B cells, primary mouse embryonic
fibroblasts, and in vitro differentiated neuronal progenitors. In B cells
(of pure C57BL/6 background), MAE was inferred using ENCODE
ChIP-Seq and RNA abundance data (Table S2), then compared to
allele-specific analysis of RNA-Seq from the clone Abl.1 and a similar
clonal line Abl.2 (from an independent 129S1/SvImJ · CAST/EiJ F1
cross; Table S3). Of 235 genes classified as MAE with MaGIC, 56%
were confirmed by RNA-Seq, whereas of 3575 genes classified as BAE,
67% were confirmed, indicating that the MaGIC pipeline is also in-
formative in freshly isolated cells of the B-lymphoid lineage (Figure
1B, Table S2, and Table S3; Fisher exact P , 1.5E-11; OR = 2.5).

Similarly, in mouse embryonic fibroblasts (129Sv-C57BL/6 back-
ground), MAE was inferred using ChIP-Seq (Mikkelsen et al. 2007)
and ENCODE RNA abundance data, then compared with allele-
specific analysis of RNA-Seq in two independent clones from
129S1/Sv · CAST/EiJ F1 SV40-immortalized fibroblasts, Fib.1 and
Fib.2 (Table S1). Of 518 genes classified as MAE with MaGIC, 65%
were confirmed by RNA-Seq, whereas of 5593 genes classified as
BAE, 68% were confirmed, indicating that MaGIC is informative in
primary fibroblasts (Figure 1C, Table S2, and Table S3; Fisher exact
P-value , 2.2E-16; OR = 3.9).

Finally, in neuronal progenitors (129Sv-C57BL/6 background),
MAE status was inferred using available ChIP-Seq and RNA abundance
datasets (Tippmann et al. 2012), then compared with allele-specific
analysis of RNA-Seq in eight neuronal progenitor clones from
129/Sv · CAST/EiJ F1 genetic background [(Gendrel et al. 2014); Table
S1]. MaGIC classification as MAE was consistent with RNA-Seq for
60% of 1488 genes, whereas the classification as BAE was consistent for
83% of 7039 genes, indicating that MaGIC is informative in nonclonal
neuronal progenitor cells differentiated in vitro (Figure 1D, Table S2,
and Table S3; Fisher exact P-value , 2.2E-16; OR = 7.4).

Overall, these results show that the H3K27me3/H3K36me3
gene2body chromatin signature is an informative proxy of MAE in
nonclonal cell populations from the lymphoid, mesenchymal, and
neuroectodermal lineages. Conservatively, the MaGIC pipeline can
be used to infer MAE in these lineages with 56–74% accuracy and
BAE with 67–75% accuracy (OR between 2.5 and 8.2). The lower
estimated accuracy in nonclonal cells may be partially due to the
limited number of immortalized clones used for allelic expression
analysis, especially compared with clonal complexity of primary cells.
This factor likely accounts for the greater enrichment of confirmed
MAE genes in MaGIC analysis of neuronal progenitors (8 clones;
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OR = 7.4) compared with lymphoblasts (two clones; OR = 2.5) and
fibroblasts (two clones; OR = 3.9). Another source of both false-pos-
itive and false-negative calls could be potential influence of genetic
background on the propensity of genes to be subject to MAE. Accord-
ingly, when ChIP-Seq and RNA-Seq data were obtained on the same
background (Figure 1A), the correspondence between chromatin sig-
nature and allelic bias was closer than otherwise (Figure 1, B2D).
Discrepancies between MaGIC and RNA-Seq calls may also result
from the confounding effect of particular expression patterns, as de-
tailed in the Discussion section.

Also, note that CD43‒ B cells had pronounced chromatin signature
of MAE despite being of pure genetic background, which indicates that
the epigenetic states used by MaGIC analysis are independent of genetic
differences between the two alleles. This finding is consistent with the
detection of MAE using RNA-fluorescence in situ hybridization in pure
genetic background, reported by Gendrel et al. (2014).

More generally, our analysis suggests that the chromatin signature
is a molecular feature consistently associated with MAE in a wide
variety of cell types across mammals.

Chromatin signature of MAE is associated with
orthologous genes and related functions in mouse
and human
With both mouse and human genes exhibiting monoallelic expression,
we examined the extent to which genes that show evidence of MAE in
one species also display MAE in the other. Because MAE genes tend to
have cell type-specific expression (Nag et al. 2013), such comparisons
should be made on the basis of closely related cell types. We pre-
viously compared MAE between mouse and human immortalized
lymphoid cells using low-resolution maps; 29 orthologous gene pairs
could be assessed, nevertheless showing significant MAE conservation
(Zwemer et al. 2012). The MAE chromatin signature allows us to
carry out this comparison for a larger number of genes and in freshly
isolated cells, avoiding possible artifacts due to cell culture.

We compared MAE genes inferred using MaGIC in mouse CD432

B cells and human peripheral blood mononuclear cells, both of the
lymphoid lineage (Figure 2A). There were 7429 unambiguous orthol-
ogous gene pairs between the two genomes, for which MAE or BAE
could be inferred in both mouse and human cells (Table S5). Of these,
563 mouse genes (pmouse = 563/7429 = 0.076) and 580 human genes
(phuman = 0.078) were classified as MAE. If the identities of MAE
genes were completely independent between mouse and human, we

Figure 1 Chromatin signature is an informative proxy of mosaic
monoallelic expression (MAE) in mouse cells from different lineages.
(A) MAE state was inferred for genes with a particular combination of
gene body signal for H3K27me3 and H3K36me3 ChIP-Seq, by applying
the MaGIC pipeline in Abelson lymphoblast clone 1 from 129Sv/ImJ ·
CAST/EiJ F1 mouse (GSE67384; Table S1 and Table S2). Red line
demarcates the area the classifier recognizes as being enriched with
MAE genes (see Materials and Methods). Genes (represented as dots)
are colored according to allelic expression analysis in the same clonal
cell line: monoallelic (blue) or biallelic (gold) (Table S3). Genes with

indeterminate allelic bias are shown as gray dots. The accuracy of the
inference is summarized in the right panel, where genes are called
monoallelic (blue) or biallelic (gold) on the basis of allele-specific anal-
ysis of RNA-Seq. (B2D) Same analysis as in (A), but with different
sources of ChIP-Seq and RNA-Seq data, as indicated. (B) ChIP-Seq
and RNA abundance data used in MaGIC pipeline were from
CD432 B cells (GSE31039; Table S1 and Table S2), and allele-specific
RNA-Seq analysis was performed on two independent clonal cell lines
from 129Sv/ImJ · CAST/EiJ F1 mice: Abl.1 and Abl.2 (GSE67384;
Table S1 and Table S3; see main text for details). (C) ChIP-Seq and
RNA abundance data from MEF cells (GSE12241; Table S1 and Table
S2); allele-specific RNA-Seq analysis on two fibroblast clonal lines from
129Sv/ImJ · CAST/EiJ F1 mice: Fib.1 and Fib.2 (GSE67384; Table S1
and Table S3; see main text). (D) ChIP-Seq and RNA abundance data
from neuronal progenitor cells (GSE33252; Table S1 and Table S2);
allele-specific RNA-Seq analysis on eight clonal neuronal progenitor
cell lines from 129Sv/ImJ · CAST/EiJ F1 mice (GSE54016; Table S1
and Table S3; see main text).
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would expect 44 of these genes (pmouse · phuman · 7429) to be MAE in
both species. Instead, we observed 240 orthologous gene pairs in
which MAE was conserved (Figure 2A; hypergeometric P = 3.9E-
131). This finding suggests that the propensity of genes for MAE is
largely conserved between human and mouse.

Using chromatin signature, we then inferred MAE in multiple
mouse tissues for which ChIP-Seq and gene expression datasets were
available, and compared over- and underrepresented GO categories to
those previously reported (Nag et al. 2013) for MAE genes in human
lymphoblasts (Figure 2B and Table S6). As in human, terms associated
with embryonic development and cell surface proteins were preferen-
tially enriched in MAE genes, whereas terms associated with house-
keeping functions were depleted (Figure 2B).

Extensive commonalities between MAE in the human and mouse
genomes imply that molecular mechanisms underlying this mode of
gene regulation and possibly its functional impact(s) have been
generally conserved since the last common ancestor of primates and
rodents, 70280 million years ago (Foote et al. 1999). This conserva-
tion suggests that experiments using the mouse model will further our
understanding the role of MAE in human.

Chromatin signature profiles are consistent with
lineage-specific establishment and stable maintenance
of MAE
The process of MAE establishment is poorly understood. Although
MAE maintenance can be extremely stable (Gimelbrant et al. 2005), it

is not clear how cell differentiation affects the MAE state. Recent
studies, using clonal embryonic stem cells from highly polymorphic
mice, indicated that in a neuronal lineage, MAE is already established
by the progenitor stage and, for a limited number of tested genes,
maintained in neurons (Eckersley-Maslin et al. 2014; Gendrel et al.
2014). We hypothesized that chromatin signature analysis of multiple
cell lineages would shed light on the genome-wide patterns of MAE in
developmental transitions.

We reasoned that if, once established in progenitor cells, MAE is
stably maintained during differentiation, then cell types originating
from the same progenitors should have more similar MAE profiles
compared with each other than compared with cell types originating
from different progenitors. Clustering based on the similarity of MAE
profiles should, therefore, recapitulate embryonic lineage. Conversely,
if genes that are MAE in progenitors frequently become BAE upon
differentiation, then there should not be a strong relationship between
MAE profile and embryonic lineage (Figure 3A).

Using chromatin signature, we mapped MAE profiles in 20 mouse
organs and cell types, representing all three germ layers, obtained in
most cases from inbred animals, and, with the exception of Abl.1
clone, consisting of nonclonal cell populations (Figure 3B, Table S1,
and Table S2). Hierarchical clustering of MAE profiles showed that
cell or tissue types of similar embryonic origin are more similar to
each other than to those from distinct lineage. This is the case for
lymphoid (CD43‒ B cells, CH12 cells, spleen, thymus), myeloid (mega-
karyocytes, erythroblasts, G1E and G1E-ER cells), other mesodermic

Figure 2 Common features of genes with
mosaic monoallelic expression (MAE) chro-
matin signature in mouse and human. (A)
Comparison of MAE in human and mouse
genomes. The MAE state of orthologous
genes was inferred in primary cells of the B
lymphoid lineage using MaGIC pipeline. The
number of genes that are MAE in only one or
in both species is shown (bottom), as well as
the expected distribution if the propensity of
orthologous genes to be MAE were indepen-
dent between species (top, see main text
for details). The distributions are significantly
different (hypergeometric p � 0), indicating
that the propensity of genes to be MAE is
conserved. (B) Gene Ontology (GO) cate-
gories over-represented (red) and under-
represented (green) among mouse genes
with MAE chromatin signature. The catego-
ries that were over- and under-represented
in human B-cells (Nag et al. 2013) are
shown for a variety of mouse tissues and
organs. Complete results of GO analysis are
in Table S6. FDR (Benjamini and Hochberg
1995) corrected –log10p-values are plotted.
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(MEF, heart, and C2C12 cells) and endodermic (liver, small intestine)
cells. Interestingly, neuronal progenitor cells were more similar to the
embryonic stem cells from which they were differentiated than to the
neurons derived from them.

Notably, samples from related tissues processed by different
laboratories clustered together, suggesting that clustering reflects
biological similarities rather than potential technical variation. Bi-
ological replicates for the same cells or tissue are also more similar
to each other than to distinct cell or tissue types, indicating that

differences in MAE related to lineage are more important than those
caused by inter-individual or technical variability (Figure S4 and Table
S7). Overall, our observations support lineage-specific establishment
of MAE and its stable maintenance in differentiated tissues, while the
precise timing of MAE establishment may vary depending on genes
and cell types.

Consistent with lineage specificity of MAE, we also observed that
a majority of cell-type specific genes display a MAE chromatin
signature, but very few ubiquitously expressed genes do so (Figure 3C

Figure 3 Comparison of mosaic monoallelic
expression (MAE) chromatin signature pro-
files across tissues and cell types in mouse.
(A) Schematic showing the hypothetical clus-
tering of cell types (represented by different
shapes) based on similar MAE state for a
particular gene, in the case where MAE is
stable throughout differentiation, and in the
case where it is not. (B) Comparison of MAE
profiles inferred from chromatin signature
across analyzed tissues and cell types. Simi-
larity scores were calculated for each pairwise
comparison using only genes informative in
both samples (similarity score scale at the
bottom). Average-linkage clustering was
performed using Gower’s distance (see the
section Materials and Methods). Sample
lineages are reflected in the color of the sam-
ple name, as follows: endodermic (yellow),
ectodermic (cyan), lymphoid (purple), mye-
loid (red), other mesodermic (orange), and
embryonic stem cells (black). The expected
clustering of these lineages according to
their embryonic origin is also shown (bottom).
Laboratories that generated the ChIP-Seq
datasets are indicated in parenthesis:
ENCODE/LICR (EL), ENCODE/PSU (EP),
Bernstein (BB), ENCODE/Caltech (EC),
Schübeler (DS), and this work (AG). (C)
Proportion of MAE genes inferred from chro-
matin signature among cell-type specific and
ubiquitously expressed genes. Genes were
grouped by the number of tissues where they
are expressed. Then, in each bin, the propor-
tion of MAE genes was calculated for each
tissue and plotted individually (circles) and
overall (Tukey boxplot).
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and Figure S5A). This trend also is observed after applying a correction
for the imperfect accuracy of the MaGIC pipeline (Figure S5B) and is
in agreement with the GO terms associated with MAE (Figure 2B),
notably the underrepresentation of housekeeping activities. Alto-
gether, our observations imply that MAE is linked to cell identity.
This leads us to speculate that MAE plays an active role in determin-
ing cell identity, extending the principle behind two well-studied
examples: allelic exclusion in immunoglobulin loci (Pernis et al.
1965) and monoallelic expression of olfactory receptor genes (Chess
et al. 1994).

DISCUSSION
Using a combination of experimental and computational approaches,
we showed that the presence of the H3K27me3/H3K36me3 gene–
body chromatin signature is an informative proxy of MAE in mouse
cells of lymphoid, mesenchymal, and neuroectodermal lineages. Com-
bined with our studies in human cells, our findings suggest that the
chromatin signature is an informative proxy of MAE in many, per-
haps all, mammalian somatic cell types.

The accuracy of the MaGIC approach makes it suitable to identify
candidate MAE genes for functional or mechanistic studies, as well as
to investigate genome-wide trends associated with MAE genes. The
analyses made in this article thus provide a valuable resource for
future studies on monoallelic expression. It should be noted, however,
that a significant fraction of MAE genes is not identified by the
H3K27me3/H3K36me3 chromatin signature. We, therefore, expect
that a more inclusive chromatin signature may be revealed by ad-
ditional datasets for distinct chromatin marks, which might delineate
subgroups of MAE genes with distinct properties. In support of this
possibility, among MAE genes identified by RNA-Seq, genes with the
H3K27me3/H3K36me3 chromatin signature (true positives) are en-
riched in GO terms related to cell-membrane proteins compared to
MAE genes without this signature (false negatives); furthermore,
genes in the true positive group tend to be expressed at a lower level
compared with genes in the false negative group (not shown).

In addition, genes that are highly expressed in a subset of cells but
repressed in others may display, at the cell population level, a
chromatin signature similar to that of MAE genes. This is also the
case of genes with dynamic expression, if changes in expression are
reflected by variations in gene-body H3K27me3 or H3K36me3
enrichment. Such patterns of expression could partly explain differ-
ences between chromatin signature and allelic expression measure-
ments, in addition to the technical considerations listed in the Results
section. Although concerning a minority of genes, this possible con-
founding effect should be taken into consideration when interpreting
MaGIC results. Orthogonal approaches, such as RNA-fluorescence in
situ hybridization or knock-in reporters, should be used for confir-
mation of MAE status of specific genes of interest.

That the MAE status of a mouse gene is predictive of its human
ortholog’s MAE status (and vice versa) strongly suggests that the
propensity for MAE is encoded in the DNA sequence—no other
transmission mechanism is likely to persist over the evolutionary span
separating rodents and primates. It further suggests that MAE is either
conserved for its own functional effect, or is a consequence of another
conserved property of these genes.

The identification of genetic elements controlling MAE could take
advantage of the fact that the MAE chromatin signature is informative
in mouse cells of inbred genetic background. For instance, chromatin
signature could be used to identify genes that are MAE in one
particular mouse strain but not another, which could be linked to
sequence differences within regulatory elements between the two

strains. These elements could then be tested by targeted mutagenesis,
opening the way to precise investigation of MAE mechanism and role.

Our analyses showed that genes subject to MAE tend to have
tissue-specific expression and encode cell surface proteins, including
diverse signaling molecules. We thus expect that MAE primarily
affects processes at the interface between cells and their environment,
which includes neighboring cells, signaling molecules, and infectious
agents. Accordingly, we further propose that an important biological
consequence of MAE is generation of substantial functional mosai-
cism involving otherwise similar cells within mammalian tissues.
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