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Abstract: The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin,
and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or
indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the
mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance
transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong
to one of the largest superfamilies of transcription factors, the members of which regulate secondary
cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among
them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall
biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription
factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs,
hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary
wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB
transcription factors and their regulation of lignin polymerization and secondary cell-wall formation
during wood formation.

Keywords: secondary cell wall biosynthesis; MYB transcription factors; lignification; classification;
MYB46/83

1. Introduction

The thickening of the secondary cell wall (SCW)—that is, its lignification, is crucial in
the development of secondary xylem, and its structure determines the characteristics of
plant cells and organ development [1,2]. Cell wall formation of xylem cells involves the
synthesis and deposition of secondary wall components, including cellulose, xylan, cell
wall proteins and lignin [3]. After the lignin monomer is synthesized in the cytoplasm or
near the endoplasmic reticulum, it passes through the cell membrane from the synthesis
site into the developing cell wall through a series of transport mechanisms and promotes
biosynthesis of the secondary wall [4]. Therefore, it is important to analyze the mechanism
of SCW formation to improve wood properties and yield.

Numerous transcription factors (TFs) involved in SCW formation have been identified
by gene editing and transgenic technologies in the model plant Arabidopsis (Arabidopsis
thaliana) [5,6]. TFs are classified according to the structure of their DNA-binding domain,
such as bZIP (basic region-leucine zipper), bHLH (basic helix-loop-helix), NAC [NAM
(No apical meristem), ATAF1 (Arabidopsis transcription activation factor 1), ATAF2, CUC2
(Cup-shaped cotyledon 2)], MYB (v-myb avian myeloblastosis viral oncogene homolog),
AP-1 (activator protien-1), WRKY (named because of its special heptapeptide conserva-
tive sequence WRKYGOK), TCP [TEOSINTE BRANCHED 1 (TB1), CYCLOIDEA (CYC)
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and PROLIFERATING CELL FACTORS (PCFs)], and AP2/ERF (APETALA2/ethylene-
responsive factor). In plants, the MYB superfamily is one of the most abundant classes of
TFs and is indispensable for SCW biosynthesis [7]. It has been a hotspot in the study of the
plant transcription factor’s function because of its large number of genes, functions and
different types [8]. MYB transcription factors are involved in regulating almost all aspects
of plant growth, development and metabolism during the whole of the plant’s life. They
mainly regulate plant responses to biotic and abiotic stresses, cell proliferation and differ-
entiation, histomorphogenesis, organ formation and the contents and types of primary
and secondary metabolites of plant metabolic pathways [7–14]. Here we review MYB-
mediated SCW formation with emphasis on recent insights into this process, highlighting
new concepts and areas that remain to be explored.

This review is divided into three sections—in the first section, we discuss the mech-
anism of SCW biosynthesis—wood formation, lignin production, and deposition. In
the second section, we discuss MYB TFs in plants—their classification and roles in SCW
production. Finally, we discuss the importance of MYB TFs for SCW formation during
wood formation.

2. Mechanism of Secondary Wall Biosynthesis
2.1. Wood Formation

Wood is produced by the activity of the vascular cambium, and requires a complex
developmental program involving the proliferation of vascular cambium cells, xylem cell
differentiation and expansion, formation of the SCW, lignification and programmed cell
death and, finally, mature secondary xylem (including xylem parenchyma cells, vessel, tra-
cheary elements and et al.) formation [15,16]. The specific procedures for wood formation
are as follows.

The earliest (primary) meristems are of embryonic origin. These meristems produce
the primary plant body, including the primary vasculature. Meristematic cells are small,
cytoplasmic, and undifferentiated. As these cells divide, the outermost cells are pushed
away from the meristem, where they cease division, initiate turgor-driven cell expansion,
and differentiate into specialized cell types [17]. The growth of secondary xylem depends
on the division of cells in the vascular cambium. Genome-wide expression profiling of the
xylem and phloem formation layers in Arabidopsis root hypocotyls indicates that the G2-like,
NAC, AP2, MADS (MCMl, AGAMOUS, DEFICIENS, SRF), and MYB TF families play
important roles in xylem and phloem cell differentiation and activation [18]. In the final
stage of wood development, the tracheary elements and fibrocytes undergo programmed
cell death. This is accompanied by the degradation of protoplasts and some unlignified
secondary walls [19].

Lignification is the final step of xylem cell differentiation. Lignification refers to a bio-
logical process in which lignin formed by the oxidative polymerization of lignin monomers.
Lignin is mainly deposited on the cell walls of the tracheal components and fibers of plants,
after the end of radial growth of xylem cells. This process is divided into cell-autonomous
lignification and non-cell-autonomous lignification [20,21]. In cell-autonomous lignifica-
tion, lignin monomers are produced and deposited in the differentiated cells. Whereas in
non-cell-autonomous lignification, lignin monomers are produced by adjacent non-lignified
cells, transported, and deposited on the cell wall. Using histochemistry and fluorescence
microscopy techniques to study lignin deposition in the three-layer structure (S1, S2, and
S3) in the secondary xylem cell wall during poplar development, it was found that there
are three stages of lignification. First, lignin is deposited in the primary corner and mesial
layer. Second, microfibrils continue to polymerize with the participation of pectin and
other factors to form the S1 and S2 layers and lignin begins to extend from the corner to
the secondary wall multilayer structure and other regions of the intercellular layer. Third,
when S3 begins to form, lignin is rapidly deposited on the cell wall [22]. Wood at maturity is
essentially the remains of secondary walls, so understanding the biosynthesis of secondary
wall components can be used as a genetic tool to develop wood (Figure 1).
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Figure 1. Developmental stages of wood formation and characteristic features of each stage. Note: PIN1, auxin eux
carrier PIN-FORMED1 protein; MP/ARF5, the auxin-responsive transcription factor (TF) AUXIN RESPONSE FACTOR
5/MONOPTEROS; AtHB8, ARABIDOPSIS THALIANA HOMEOBOX 8; AHP6, an auxin that positively regulates the
expression of an inhibitor of CK signaling; RVE, one of five HD-ZIP III genes in Arabidopsis thaliana; KNAT7, KNOTTED-
LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7; ACAULIS5 (ACL5), encodes a thermospermine synthase. Solid
arrows and flat-headed arrows represent positive and negative transcriptional regulation, respectively. Referred to [23–26].

2.2. Lignin Production and Deposition

Lignin production and deposition comprise lignin monomer synthesis in the cy-
toplasm, lignin monomer transport through the cell membrane, and lignin monomer
oxidative polymerization on the cell wall [27]. The following is our detailed introduction
to the three processes.

2.2.1. Biosynthesis of Lignin Monomers

In most plants, the biosynthesis of lignin polymers occurs primarily via the phenyl-
propane pathway and the lignin-specific pathway. The multiple-branch pathways of the
phenylpropane pathway generate a variety of compounds that, for example, provide
structural support and increase cell and stem strength and bending resistance [28,29].
A series of hydroxylation, methylation and reduction reactions occurs in the phenylala-
nine metabolic pathway, which involves a series of continuous enzymatic reactions. The
genes encoding these single-lignol biosynthetic enzymes have been identified and their
functions have been characterized in many species [30]. The phenylalanine metabolic
pathway comprises three major steps. The first is the phenylpropane pathway, which
includes phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-
coumarate-CoA ligase (4CL). The phenylpropane lignin-synthesis pathway starts with the
generation of cinnamic acid by PAL-phenylalanine. C4H is one of the best-characterized
cytochrome P450 hydroxylases in higher plants and catalyzes the conversion of cinnamic
acid to p-coumaric acid. Next, p-coumaric acid is activated to 4-coumaroyl-coenzyme
A (CoA) by 4CL. Also, 4CL catalyzes the conversion of ferulic acid and erucic acid into
ferulyl-CoA and erucyl-CoA. However, the formation of ferulic acid and erucic acid is
based on a one-step monomer-methylation reaction involving caffeine-O-methyltransferase
(COMT) and ferulic acid 5-hydroxylase (F5H). The third step is monomer synthesis, which
involves cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in
the formation of the monomers p-coumarol, coniferyl alcohol, and erucyl alcohol. The three
monomers are converted to p-hydroxyphenyl lignin, guaiacyl lignin and syringyl lignin by
laccase (LAC) and peroxidase (POX) [31]. MYB TFs play an important role in the biosyn-
thesis of lignin. For example, PAL (MYB8, [32]; MYB15, [33]; MYB46, [34]; MYB58 and
MYB63, [35]), C4H (MYB15, [33]; MYB46, [34]), 4CL (MYB15, [33]; MYB46, [34]; MYB58 and
MYB63, [35]), HCT (MYB46, [34]), C3H (MYB46, [34]; MYB58 and MYB63, [35]), CCoAOMT
(MYB46, [34]; MYB58 and MYB63, [35]), F5H (MYB103, [35–37]), CCR (MYB46, [34]; MYB58
and MYB63, [35]), and CAD (MYB15, [33]; MYB46, [34]; MYB58 and MYB63, [35]).

As a model plant, Arabidopsis has advantages that other plants cannot replace, such as:
short growth cycle; small genome; only five chromosomes; with all the characteristics of
dicot plants; effective Agrobacterium-mediated transformation pathway, easy to obtain
a large number of mutants and genome resources; small size, can be planted in large
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quantities and more seeds. Analyzing the regulatory network of MYB transcription factors
in the formation of the Arabidopsis secondary wall can promote related research in other
plants. A large number of studies have also proved that Arabidopsis is a good material for
studying the formation of secondary walls [5,6,33,35,37]. Therefore, we take Arabidopsis
as an example and draw Figure 1 to help you understand the important role of MYB
transcription factor in the process of lignin synthesis more intuitively.

2.2.2. Transportation of Lignin Monomers

Lignin-monomer synthesis occurs in the cytoplasm or near the endoplasmic reticulum,
rather than on the cell wall [38]. Therefore, lignin monomers cross the cell membrane
from the site of cytoplasmic synthesis and enter the developing cell wall, which involves
a series of transport mechanisms and may occur by passive diffusion, vesicle-mediated
extracellular secretion, or ATP-dependent transport by ABC transporters or proton-coupled
antitransporters [39–41]. The latter mechanism is merely hypothetical at present. ABCG11,
ABCG22, ABCG29, and ABCG36 can be co-expressed with MYB58 in the differentiated
Arabidopsis tubular molecular cell culture system to jointly regulate the expression of lignin-
monomer-synthesis genes [42]. Finally, the lignin monomers are transported as single
lignin glycosides by UDP-glucosyltransferase. The mechanism by which lignin monomers
are transported to the lignification site in the cell wall is unclear, and further research
is needed.

2.2.3. Oxidative Polymerization and Deposition of Lignin Monomers

The lignin monomer moves freely in the cell, and the immobilized oxidase stops its
movement and determines the position of lignin polymer formation. LAC and type III POX
catalyze the oxidative polymerization of lignin monomers. POX and LAC undertake the ox-
idative polymerization of monolignol to the following lignin polymers: p-hydroxybenzene
lignin (H monolignol), guaiac lignin (G monolignol), and syringyl lignin (S monolignol)
(Figure 2) [43]. Monolignol polymerization is in part non-cell autonomous and occurs
mainly after programmed cell death [44]. An Arabidopsis double mutant revealed that LAC
is involved in the biosynthesis of lignin. Among the 17 known genes in the LAC family,
eight are expressed in the stem and four (LAC4, LAC11, LAC15, and LAC17) play a role
in lignin biosynthesis [45]. The lignin level in the seed coat of the LAC15-deficient tt10
Arabidopsis mutant was 30% lower than that of the wild type [46]. Other studies have con-
firmed that co-expression of LAC4 and LAC17 with the CesA gene [47] and the CAD genes
CAD-C and CAD-D is involved in the biosynthesis of monoxyphenol [48]. Zhou et al. [35]
determined that MYB58 and MYB63 are transcriptional activators of lignin biosynthesis,
and MYB58 directly activates LAC4. A lac11 single-knockout mutant exhibited normal
lignin deposition, but lac11 lac4 and lac11 lac17 double-knockout mutants exhibited only a
slight reduction in lignin level. However, simultaneous disruption of LAC4, LAC11, and
LAC17 almost completely eliminated lignin deposits, resulting in severe damage. SND1
and MYB46 are transcriptional activators of the LAC11 promoter, and MYB58 is a less
efficient activator of the LAC11 promoter (Figure 2) [49]. After LAC initiates oxidative
polymerization, POX forms rigid cross-links between lignin, hemicellulose and extensin,
which in turn affects lignification [50]. Single or double protrusion of AtPRX2, AtPRX71,
and AtPRX25 reduces the accumulation of lignin without affecting plant height [51,52].
The lignification of xylem tubular molecules and fibers depends on AtLAC4, AtLAC11,
and AtLAC17 [45]. Therefore, LAC and POX independently and interdependently affect
lignified tissues.
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Figure 2. Phenylpropane lignin biosynthesis pathway in Arabidopsis. In this model, MYB transcription factors control
the expression of genes in the lignin synthesis pathway. MYB58 and MYB63, MYB4 can activate/inhibit almost all the
enzymes in the lignin synthesis pathway, respectively. All TFs appear to be in ovals in the figure. Solid arrows and
flat-headed arrows represent positive and negative transcriptional regulation between transcription factors and enzymes,
respectively. The other solid arrows represent the direction of the regulatory network. Note: PAL, phenylalanine ammonia
lyase; 4CL, 4-coumarate-CoA ligase; C4H, cinnamate 4-hydroxylase; CCR, cinnamyl-CoA reductase; CAD, cinnamyl alcohol
dehydrogenase; C3H, p-coumaric acid 3-hydroxylase; COMT, catechol-O-methyltransferase; F5H, ferulic acid 5-hydroxylase;
POX, peroxidase; LAC, laccase.

3. MYB Transcription Factors in Plants
3.1. The Classification of MYBs

The first MYB gene identified in plants was C1 from maize, which is involved in
anthocyanin biosynthesis [53]. Since then, an increasing number of MYB genes has been
identified and characterized in numerous plant species [54]. MYB TFs are implicated in
regulating SCW biosynthesis genes directly in plants. MYB proteins have two distinct
regions, an N-terminal conserved MYB DNA-binding domain and a diverse C-terminal
modulator region responsible for regulatory activity. Based on the number of MYB domains
at the N terminus, the MYB family is divided into R1-MYB (1R-MYB), R2R3-MYB (2R-MYB),
and R1R2R3-MYB (3R-MYB) [55]. TFs in the smallest class, R0R1R2R3-MYB (4R-MYB),
whose members have four R1/R2-like repeats, have also been found in plants such as
Arabidopsis [56] and soybean [Glycine max (Linn.) Merr.] [57]. In plants, the first tryptophan
of R3 is substituted for phenylalanine or isoleucine.

3.2. Functions of the Categories of MYBs

All four MYB classes are found in plants, which have the highest diversity of MYB
proteins. The 1R (R1-type MYB) proteins contain a unique MYB-binding domain, spanning
53 amino-acid residues including three equidistant tryptophans that may form an HTH
structure for DNA recognition [58]. The R1-MYB class is fairly divergent and include factors
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that bind the consensus sequence of plant telomeric DNA (TTTAGGG) [59]. Members
of R1-MYB are responsible for cellular morphogenesis, secondary metabolism, organ
morphogenesis, phosphate starvation, chloroplast development, and circadian regulation
in plants [13].

Most of the lignin TFs in the R2R3-MYB family are unique to plants [60]. In contrast
to the highly conserved MYB domain, the other regions of R2R3-MYB proteins are highly
variable. Based on the conservation of the DNA-binding domain and the amino-acid motifs
in the C-terminal domain, R2R3-MYB members are divided into at least 25 subgroups
in Arabidopsis, of which the members of each have similar or identical functions [14,61].
For instance, some R2R3-MYB proteins in subgroup 3 (Sg3) (AtMYB58, AtMYB63, and
AtMYB85) and subgroup 21 (Sg21) (AtMYB52, AtMYB54, and AtMYB69) positively regulate
lignin biosynthesis in the cell wall [35]. Members of subgroup 4 (Sg4) (AtMYB3, AtMYB4,
AtMYB7, and AtMYB32) act as repressors of the lignin-biosynthesis pathway [60,62]. The
functions of each R2R3-MYB subgroup in plants are shown in Table 1.

Table 1. Major R2R3-MYB subgroups in Arabidopsis and their functions.

Subgroup Function Representative Factors References

Sg1/11/17/20/23 Responses to stress AtMYB30, AtMYB60, AtMYB96, AtMYB102, et al. [14,63]

Sg2/5/6/7/8/
10/12/14

Cell patterning or
secondary

metabolites biosynthesis

AtMYB11, AtMYB12, AtMYB13, AtMYB15,
AtMYB28, AtMYB29, AtMYB37, AtMYB38,
AtMYB51, AtMYB68, AtMYB75, AtMYB76,

AtMYB84, AtMYB90, AtMYB111, AtMYB113,
AtMYB114, AtMYB122, AtMYB123, et al.

[64–69]

Sg3/4/13/21
Promote/Inhibit lignin,

cellulose, and/or
xylan biosynthesis

AtMYB3, AtMYB4, AtMYB7, AtMYB32, AtMYB46,
AtMYB52, AtMYB54, AtMYB56, AtMYB58,
AtMYB61, AtMYB63, AtMYB68, AtMYB69,

AtMYB83, AtMYB85, AtMYB103, AtMYB105, et al.

[35,37,62,63,68,70–72]

Sg9/15/22/25 Control cell fate
and identity

AtMYB23, AtMYB44, AtMYB66, AtMYB77,
AtMYB106, AtMYB115, AtMYB118, et al. [73–79]

Sg16/18/19/24 Plant development AtMYB18, AtMYB21, AtMYB24, AtMYB33,
AtMYB38, AtMYB65, AtMYB93, AtMYB101, et al. [65,80–83]

The R1R2R3-type MYB (3R-MYB) proteins are typically encoded by five genes in
higher plant genomes [13] and regulate the transcription of cyclin genes via MYB recogni-
tion elements in cyclin promoters, thereby controlling the cell cycle [56]. Members of the
3R-MYB class also control cellular morphogenesis [84,85] and secondary metabolism [86,87],
encode core components of the central circadianoscillator [88], and encode proteins in-
volved in organ morphogenesis [89], chloroplast development [90], and the responses to
phosphate starvation [91]. However, the contributions of 3R-MYB factors require further
research. A single 4R-MYB protein is encoded in several plant genomes, but its function
is unclear.

4. Regulation of MYBs in Lignification

It can be seen from the above that MYB transcription factors play a very important
role in plant secondary wall biosynthesis. However, the regulation of transcription factors
on plants is not single but is regulated by levels of transcription factors at different levels,
forming a huge regulatory network and playing a regulatory role. So, what is the regulation
between MYB transcription factor and plant secondary wall synthesis? Next, we will try
to explain it in detail. In this part, we discuss first the regulation of SCW biosynthesis by
MYB46/83 as the second main switch. Next, we consider how other MYB TFs regulate
cell-wall biosynthesis in plants.
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4.1. Mechanism by Which MYBs Regulate Lignification

MYB transcription activators/repressors participate in various enzymatic reactions
in the phenylpropane metabolic pathway to regulate lignification (Figure 2) [92,93]. De-
tailed promoter and electrophoretic mobility shift assay of phenylpropane biosynthetic
genes, including PAL and 4CL, has shown that the cis-elements corresponding to the
MYB TF-binding motif are necessary for coordinated activation of monolignol pathway
genes [35,94–97]. One such element is the AC element (also known as C1-motif, PAL-box,
or H-box, divided into I, ACCTACC; II, ACCAACC; and III, ACCTAAC), which is rich in
AC sequences. With few exceptions, MYB TFs regulate gene expression by binding to AC
elements in the promoter regions of downstream lignin biosynthesis-pathway genes [26,98].
When MYB combines with a specific promoter, the second and third helices form an HTH
structure and the third helix functions to directly recognize a particular DNA sequence
motif [14]. In SCW biosynthesis, in-depth exploration of the binding mode between MYB
transcription factors and AC elements will enable editing of AC elements by genetic en-
gineering to regulate SCW synthesis. However, the mechanisms underlying the selective
binding of SCW TFs to the promoters of specific SCW-biosynthesis genes are unclear.

4.2. MYB46 and MYB83 Are the Second Layer of the Main Switch for Secondary
Cell-Wall Biosynthesis

MYB TFs can be activated in multiple ways. Throughout the formation of the sec-
ondary wall, the NAC (NAM/ATAF/CUC) TFs acts as the first-level main switch of SCW
biosynthesis and activates downstream TFs to regulate the entire SCW biosynthetic net-
work. MYB46/MYB83 act as the second-level main switch of SCW biosynthesis, serving as
molecular tools for improving plant biomass (Figure 3) [26,99].

MYB46 and MYB83—two of the earliest discovered lignin-specific TFs—are direct tar-
gets of SND1 (secondary wall-associated NAC domain) in Arabidopsis and not only modulate
the lignin synthesis pathway but also redundantly activate SCW formation [35,71,72,100].
MYB46 and MYB83 are expressed in vascular tissue and fibers, and their dominant inhi-
bition or RNA interference inhibition markedly suppresses secondary-wall thickening in
fibers and vascular tissue leading to collapse of the vascular phenotype. Similar to sec-
ondary wall NAC (SWN), overexpression of MYB46 and MYB83 induced ectopic secondary
cell wall synthesis [72,100,101]. By analyzing the promoter sequences of downstream
genes regulated by MYB46, Zhong et al. found that MYB46 and MYB83 regulate SCW
biosynthesis during wood formation by binding to a 7-bp conservative DNA sequence
in an SCW MYB-responsive element [SMRE, Secondary wall MYB-responsive element;
ACC(A/T)A(A/C)(T/C)] [102,103]. However, the regulation of SCW biosynthesis is more
complex than formerly thought. The expression of SCW-biosynthesis genes is regulated by
the coordinated actions of multiple MYBs, including activators and repressors [35,104], via
binding to not only AC elements (one type of SMRE) but also other SMRE sites. Similar to
the promoters of lignin-biosynthesis genes, those of cellulose- and xylan-biosynthesis genes
contain multiple SMRE sequences, suggesting that MYBs bind to and activate SMRE sites
in the promoters of cellulose- and xylan-biosynthesis genes. Another MYB TF, MYB26, may
act as a master switch of SCW biosynthesis in anther endothelial cells—its mutation causes
the loss of anther endothelial cell secondary-wall thickening and the anther-dehiscence
phenotype. Also, its overexpression leads to ectopic deposition of the secondary wall [105].
MYB26 directly regulates NST1 and NST2, which are critical for inducing secondary
thickening biosynthesis genes [106]. The four functional homologous genes MYB TF
(PtrMYB2/3/20/21) of MYB46/83 in another model plant poplar, PtrMYB2/3/20/21, are
also transcriptional master switches controlling secondary-wall biosynthesis during wood
formation that bind to secondary wall NAC-binding element (SNBE) sites in their target
gene promoters, thereby activating their expression [107]. Interestingly, the four PtrMYBs
exhibit marked differences in how they activate their target genes. One possibility is that
they exhibit differential expression patterns in different organs and tissues [108]. Alterna-
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tively, they may have different binding affinities for the various SMRE sequences in the
promoters of their target genes.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 3. Proposed model of MYB-mediated secondary cell wall (SCW) regulation in Arabidopsis. Solid black and flat-

headed arrows represent positive and negative transcriptional regulation, respectively. Dashed lines represent co-expres-

sion relationships, MYB26 and SND1, MYB46/83, and other TFs represent the first, second, and third layers of the tran-

scriptional regulatory network, respectively. The expression of 9 SND1-regulated transcription factors, namely, MYB20, 

MYB42, MYB43, MYB52, MYB54, MYB69, MYB85, MYB103, was developmentally associated with cells undergoing sec-

ondary wall thickening (a, b, c, d, e; [72]). MYB46 and MYB83 serve as the second layer of the main switch for secondary 

cell wall biosynthesis, which activate downstream transcription factors (including MYB20, MYB42, MYB43 and MYB85) 

by binding to SMRE sequence in an SCW MYB-responsive element (f, g, h, r; [101,103]) and directly or indirectly regulate 

the biosynthesis of the secondary wall. MYB42, MYB43, MYB85 (j, k, l; [109]), MYB58, MYB63 (m; [110]), MYB103 (i; [37]) 

are transcriptional regulators that directly activate lignin biosynthesis genes during secondary wall formation in Arabidop-

sis. MYB4, MYB7, MYB32, MYB75 are inhibitors of lignin biosynthesis (n, o, p, q; [60]). The concerted actions of the MYB 

TFs in this network leads to a coordinated activation of SCW biosynthetic genes, which results in the synthesis of lignin, 

cellulose, xylan. 

Lignin-specific MYBs—MYB58, MYB63, and MYB85—regulate the biosynthesis of 

lignin rather than cause the deposition of cellulose and hemicellulose (Table 2). Their over-

expression leads to activation of lignin-biosynthesis genes and ectopic deposition of lignin 

in cells that are usually not lignified [35,72,101]. It has long been thought that lignin-spe-

cific MYBs bind to AC elements in the promoters of lignin-biosynthesis genes and thereby 

activate the lignin-biosynthesis pathway [36,43]. MYB58 and MYB63 were first reported 

as lignin-specific transcriptional activators in Arabidopsis [35]. They have been shown to 

Figure 3. Proposed model of MYB-mediated secondary cell wall (SCW) regulation in Arabidopsis. Solid black and flat-
headed arrows represent positive and negative transcriptional regulation, respectively. Dashed lines represent co-expression
relationships, MYB26 and SND1, MYB46/83, and other TFs represent the first, second, and third layers of the transcriptional
regulatory network, respectively. The expression of 9 SND1-regulated transcription factors, namely, MYB20, MYB42, MYB43,
MYB52, MYB54, MYB69, MYB85, MYB103, was developmentally associated with cells undergoing secondary wall thickening
(a, b, c, d, e; [72]). MYB46 and MYB83 serve as the second layer of the main switch for secondary cell wall biosynthesis, which
activate downstream transcription factors (including MYB20, MYB42, MYB43 and MYB85) by binding to SMRE sequence in
an SCW MYB-responsive element (f, g, h, r; [101,103]) and directly or indirectly regulate the biosynthesis of the secondary
wall. MYB42, MYB43, MYB85 (j, k, l; [109]), MYB58, MYB63 (m; [110]), MYB103 (i; [37]) are transcriptional regulators that
directly activate lignin biosynthesis genes during secondary wall formation in Arabidopsis. MYB4, MYB7, MYB32, MYB75 are
inhibitors of lignin biosynthesis (n, o, p, q; [60]). The concerted actions of the MYB TFs in this network leads to a coordinated
activation of SCW biosynthetic genes, which results in the synthesis of lignin, cellulose, xylan.

The discovery of the hierarchical transcriptional network that regulates SCW biosyn-
thesis in Arabidopsis was a major breakthrough. However, the regulation of secondary
wall formation is more complex than formerly thought, involving positive and negative
regulation, dual function regulation, feedback loops, and crosstalk among combinatorial
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complexes and pathways [103]. Does this affect the transmission of signals related to lignin
synthesis by influencing TF-TF, MYB gene-TF, and/or MYB gene-MYB gene interactions?
Clarification of the SCW regulatory network warrants further research.

4.3. Downstream Targets of MYB46/MYB83
4.3.1. In Arabidopsis

MYB46 and MYB83 activate downstream TF expression [105]. From the metabolic
model, MYB46 and MYB83 regulate a series of downstream MYB TFs involved in lignin
biosynthesis, including the lignin-activating factors MYB58, MYB63, and MYB85 and the
lignin inhibitors MYB4, MYB7, and MYB32 (Figure 3).

Lignin-specific MYBs—MYB58, MYB63, and MYB85—regulate the biosynthesis of
lignin rather than cause the deposition of cellulose and hemicellulose (Table 2). Their
overexpression leads to activation of lignin-biosynthesis genes and ectopic deposition
of lignin in cells that are usually not lignified [35,72,101]. It has long been thought that
lignin-specific MYBs bind to AC elements in the promoters of lignin-biosynthesis genes
and thereby activate the lignin-biosynthesis pathway [36,43]. MYB58 and MYB63 were
first reported as lignin-specific transcriptional activators in Arabidopsis [35]. They have
been shown to bind to AC elements and regulate genes involved in lignin biosynthesis
(including early genes such as PAL, C4H, and 4CL) but not those involved in cellulose or
xylan biosynthesis, which is congruent with the proposed model of regulation of lignin
gene expression via AC cis-elements [35]. MYB85 activated the expression of the lignin-
biosynthesis gene 4CL1 in a transient assay of Arabidopsis protoplasts (Figure 2) [76].

Table 2. The main MYB transcription factor that regulates secondary wall synthesis in Arabidopsis and poplar.

Species MYB TFs Ortholog in
Arabidopsis thaliana Annotation References

Arabidopsis
thaliana

AtMYB3 inhibit the accumulation of lignin [111]
AtMYB4 - inhibit the accumulation of lignin [111]
AtMYB7 - inhibit the accumulation of lignin [111]
AtMYB15 - promote the synthesis of lignin [33]
AtMYB20 - promotes the accumulation of lignin [112]
AtMYB32 - inhibit the accumulation of lignin [111]
AtMYB43 - promotes the accumulation of lignin [112]
AtMYB46 - promote the synthesis of cellulose, lignin, and hemicellulos [113]

AtMYBB58 promotes the accumulation of lignin [35]
AtMYB61 - promotes the accumulation of lignin [70]
AtMYB63 - promotes the accumulation of lignin [35]
AtMYB75 - inhibit the accumulation of lignin [114]
AtMYB83 - promote the synthesis of cellulose, lignin, and hemicellulos [113]
AtMYB85 - promotes the accumulation of lignin [72]

AtMYB103 - promotes the accumulation of lignin and cellulose [37]

Poplar

PtrMYB2/3/20/21 MYB46/83 promote the synthesis of cellulose, lignin, and hemicellulose [115]
PtrMYB6 inhibit the accumulation of lignin [116]
PtrMYB55 AtMYB55 promote the synthesis of lignin and cellulose [117]
PtrMYB74 promote the synthesis of cellulose, lignin, and hemicellulose [118]

PtoMYB92 AtMYB85 promotes the accumulation of lignin, but inhibits the
hemicellulose synthesis [119]

PtrMYB121 AtMYB55 promote the synthesis of lignin and cellulose [117]

PtoMYB125 AtMYB85 promotes the accumulation of lignin, but inhibits the
hemicellulose synthesis [119]

PtrMYB152 AtMYB43 promotes the accumulation of lignin [120]
PtoMYB156 inhibit the accumulation of cellulose, lignin, and hemicellulose [121]
PtoMYB170 AtMYB61 promotes the accumulation of lignin [122]
PtrMYB189 inhibit the accumulation of cellulose, lignin, and hemicellulose [123]
PtoMYB216 AtMYB61 promotes the accumulation of lignin [124]
PdMYB221 inhibit the accumulation of cellulose, lignin, and hemicellulose [125]

MYB46, MYB83, and the downstream lignin regulator MYB4 and its homologs MYB7
and MYB32, which belong to subgroup 4 of R2R3-MYB TFs, directly inhibit lignin biosynthe-
sis [62,111,126,127]. The promoter element bound by MYB4 [the 7-bp conserved sequence
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ACC(A/T)A(A/C)(T/C)] is similar to the SMRE of Arabidopsis. MYB4 regulates the expres-
sion of genes related to SCW synthesis by binding to the SMRE sites of downstream target
genes or via mitogen-activated protein kinase in A. thaliana and Pinus taeda [26,105]. MYB4,
MYB7, and MYB32 have a conserved ethylene-reactive element binding factor-related
amphiphilic repression (EAR) motif and GY/FDFLGL motif at the C terminus [62,111].
The GY/FDFLGL motif contributes to the interaction between MYB TFs and SUPER SEN-
SITIVE TO ABA AND DROUGHT 2 (SAD2) [111]. SAD2 is an imported β-like protein
that mediates the nuclear translocation of MYB4, MYB7, and MYB32 as well as inhibits
the expression of its target genes (e.g., C4H) (Figure 2) [111]. MYB3 is a newly discovered
repressor of phenylpropane biosynthesis in A. thaliana and is one of the four members of
R2R3-MYB subgroup 4 [62]. The inhibition by MYB3 of C4H expression is directly regu-
lated by the core inhibitors LNK1 and LNK2, which promote the binding of MYB3 to the
C4H promoter (Figure 2) [62]. In addition, MYB repressors downregulate AtNST3/SND1
expression in vitro, and AtNST3/SND1 directly regulates AtMYB32 [93]. In view of this,
negative feedback of the VNS-MYB network enables fine-tuning of the formation of sec-
ondary walls [128]. Except Sg4, members of other subgroups of MYB negatively regulate
SCW biosynthesis by interacting with other TFs. For example, the MYB-R3 domain of
MYB75 [114] (also known as PAP1) in Arabidopsis and MYB6 [116], MYB26 [106] in trans-
genic poplar physically interact with the KNOX TF KNAT7, forming a complex that inhibits
the development of SCWs in poplar and Arabidopsis. The complex triggers a reduction in
deposition and biosynthesis gene expression, which hinders SCW development.

4.3.2. In Poplar

Most of our understanding of secondary growth comes from the study of Arabidop-
sis [129]. However, secondary growth in woody perennials is different from that in Ara-
bidopsis roots or hypocotyls [130]. Therefore, identifying the genes that regulate secondary
growth in representative woody plant poplar is a top priority [115]. PtrMYB2, PtrMYB3,
PtrMYB20, and PtrMYB21 are the functional orthologs of Arabidopsis MYB46 and MYB83,
and they regulate poplar secondary-wall biosynthesis by binding to and activating SMRE
sequences [105,115]. Like the Arabidopsis SWNs [131,132], PtrWNDs bind to the SNBE sites
in the promoters of PtrMYB2/3/20/21 and thereby activate their expression [107]. The
findings that these four PtrMYBs all are capable of activating secondary wall biosynthetic
genes in poplar trees indicate that these PtrMYBs might function redundantly in regu-
lating secondary wall biosynthesis during wood formation. But why poplar evolved to
retain all these four PtrMYBs. One possibility is that although they are all transcriptional
activators of secondary wall biosynthesis, they exhibit differential expression patterns in
different organs and tissues [108]. Another possibility is that they might differentially
activate their target genes as they show differential binding affinity toward different SMRE
sequences that are present in promoters of their target genes. Therefore, the expression of
these four PtrMYBs might be required for a full strength of transcriptional activation of
secondary wall biosynthesis. This is the same as MYB46 and MYB83 in Arabidopsis as the
T-DNA knockout mutation of either MYB46 or MYB83 alone does not cause an apparent
reduction in secondary wall thickening [71]. Although the functions of some orthologous
R2R3-MYB TFs from Arabidopsis and poplar appear to be conserved in regulating SCW
biosynthesis, the transcriptional regulation network of SCW biosynthesis may be different
in herbaceous and woody plants. Unlike Arabidopsis AtMYB85 which can promote the
synthesis of cellulose, lignin, and hemicellulos, its homologues PtoMYB92 and PtoMYB125
can promote the accumulation of lignin but inhibit the synthesis of hemicellulose [119].
Studies have also shown that in the phylogenetic analysis, PtoMYB216 protein groups
in the lignification-related R2R3-MYB clade and it is most similar to AtMYB61 from Ara-
bidopsis [124]. AtMYB61 is related to the ectopic lignification of plants [70]. PtoMYB216
is related to the modification of the cell wall of poplar xylem. This may be caused by
differences in species [124]. Although the internal MYB transcription factors in plants have
different regulation on the secondary wall, they all follow the hierarchical regulation mode
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of VNSs-MYB-TFs-SCW. Perhaps this can provide a foundation for us to further study the
regulation mechanism of the secondary wall.

Similar to Arabidopsis, MYB subgroup 4 members—downstream regulators of PtrMYB2/
3/20/21—PtoMYB156 [121], PtrMYB189 [123] and PdMYB221 [125,133,134] are nega-
tive regulators of lignin biosynthesis. This is the same as transcription factors such as
EgMYB1 [135], BpMYB4 [136], CmMYB8 [137], AmMYB308 [138], ZmMYB42 [139] and
ZmMYB31 [104], which are also negative regulators of lignin biosynthesis. Except for
PtrMYB189, all of the above-mentioned subgroup 4 members and other MYB repressors
have a C-terminally conserved EAR motif, with the expression of these essential genes
for repression demonstrated in vitro and in planta [111,112,140]. For PtrMYB189, site-
directed deletion and mutagenesis of 13 amino acids (277–289, GDDYGNHGMIKKE) at
the C terminus of MYB indicated the importance of this region in target inhibition [123].
Also, numerous MYB TFs enhance cell-wall properties and wood formation. For example,
PtrMYB121 directly binds to and activates the promoters of genes related to lignin and
cellulose synthesis, thus regulating SCW formation [117]. PtrMYB152, the homolog of the
Arabidopsis R2R3-MYB TF AtMYB43, acts as a specific transcriptional activator of lignin
biosynthesis during the formation of poplar wood. Overexpression of PtrMYB152 increased
the thickness of the secondary wall in plants [120]. PtrMYB92 [119], PtrMYB18, PtrMYB74,
PtrMYB75, PtrMYB121, and PtrMYB128 [131] activate the promoters of all three main wood
component-biosynthesis genes. In addition, in the third layer, the PtrMYB161 TF binds to
multiple sets of target genes, allowing it to act as both an activator and a repressor [141]. It
directly regulates the expression of two syringyl-specific monoxylinol genes (PtrCAld5H1
and PtrCAld5H2) [133,142,143] and two key SCW cellulose-synthase genes, PtrCesA4 and
PtrCesA18 (PtrCesA8-B) [144,145].

Recent studies have shown that changes in the status of MYB transcription factors
can affect the biosynthesis of lignin. For example, phosphorylation of LTF1, an MYB
transcription factor in Populus, acts as a sensory switch regulating lignin biosynthesis
in wood cells. When LTF1 becomes phosphorylated by PdMPK6 in response to external
stimuli such as wounding, it undergoes degradation through a proteasome pathway, re-
sulting in activation of lignification. Expression of a phosphorylation-null mutant version
of LTF1 led to stable protein accumulation and persistent attenuation of lignification in
wood cells [135]. Moreover, the post-translational regulation of MYB transcription factors,
especially their ubiquitination regulation, is closely related to the biosynthesis of lignin. En-
doplasmic reticulum-localized E2 ubiquitin-conjugating enzyme 34 (PtoUBC34) interaction
with lignin repressors MYB221 and MYB156 regulates the transactivity of the transcription
factors in Populus tomentosa. This specific interaction allows for the translocation of TFs
PtoMYB221 and PtoMYB156 to the ER and reduces their repression activity in a PtoUBC34
abundance-dependent manner [146]. The above studies show the presence of a complex
MYB regulatory network in poplar, similar to that in Arabidopsis, which regulates secondary-
wall biosynthesis. Therefore, research on the MYB regulatory networks in Arabidopsis and
poplar will enhance the understanding of secondary-wall biosynthesis.

Other aspects of the network require further study, such as the patterns of genetic
interaction within the lignin-biosynthesis pathway and how the multigene-coordinated
network functions in wood formation. Therefore, plants has a complex transcriptional
network that regulates its SCW deposition program, as summarized in Figure 3.

4.4. Other Elements That Interact with MYB Transcription Factors to Regulate Secondary-
Wall Biosynthesis
4.4.1. Noncoding RNAs

The regulation of secondary walls by noncoding RNAs (ncRNAs), such as microRNAs
(miRNAs) and long ncRNAs (lncRNAs), has been a topic of interest. Notably, miRNAs, a
class of endogenous ncRNAs consisting of approximately 21–23 nucleotides, play important
roles in plant development by cleaving target mRNAs with perfect or near-perfect comple-
mentarity [147,148]. The miRNA–MYB network regulates secondary-wall biosynthesis in
plants [149] by modulating the activities of enzymes (e.g., CAD and POX) related to phenyl-
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propane metabolic pathways [150]. For example, higher expression of MYBs in MIM858 (an
artificial miRNA858 target mimic) lines leads to redirection of the metabolic flux towards
the synthesis of flavonoids at the cost of lignin synthesis [149]. Alternatively, miRNAs post-
transcriptionally regulate MYB genes related to secondary-wall formation [14,61,151,152].
Lignin biosynthesis is also regulated by coordinated networks involving TFs, miRNAs,
and lncRNAs, depending on the genetic effects of the loci [153]. High-throughput RNA
sequencing showed that the interaction between lncRNAs, miRNAs, and TFs (including
MYBs) contribute to wood formation in Populus. tomentosa [154]. There are few studies
on the roles of ncRNAs and MYB TFs in SCW formation. Comparison of differentially
expressed miRNA (DEmiRNA) and target gene annotation between poplar and larch sug-
gested the different functions of DEmiRNAs and divergent mechanism in wood formation
between two species [155]. To increase our understanding of SCW biosynthesis in plants,
these regulatory networks involving TFs, miRNAs, and lncRNAs need to be investigated.

4.4.2. Plant Hormones

MYB TFs also stimulate plant hormone-mediated plant lignification [58]. For instance,
growth hormone, cytokinin, brassinolide and abscisic acid regulate SCW biosynthesis by
directly regulating MYB TFs in Arabidopsis, rice, and other plant species [156,157]. ABA
has been reported to be involved in the regulation of lignin biosynthetic genes and TF
regulators that respond to the lignin accumulation process in plants [158]. For example,
ABA induced lignin biosynthesis by promoting the expression of CgMYB58 and its target
genes in HR, HB and KP juice sacs [159]. The latest research shows that melatonin can affect
the expression of MYB transcription factor, thereby regulating the synthesis of lignin [160].
Also, certain factors combine with hormone-related elements in the MYB promoter region
to regulate plant lignification. Auxin response factors (ARFs) are important regulators of
lignin biosynthesis in various biological processes in plants. ARF8.4, a flowering-related
spliceosome, binds to auxin-related elements in the MYB26 promoter and activates its
transcription, thereby controlling interior-wall lignification [161]. Despite these advances,
the key plant-hormone-related regulatory nodes in the lignin-biosynthesis pathway have
not been elucidated [60]. In-depth exploration of the regulatory network involving MYB
TFs and plant hormones will facilitate genetic strategies for increasing plant lignin content.

5. Summary and Prospects

Although the large, plant-specific MYB gene family promotes the evolution of plant-
specific physiological or developmental processes, their roles in the SCW biosynthesis
regulatory network are unclear. Are other MYB TFs involved in lignin polymerization and
SCW deposition? Are there differences in lignin polymerization mediated by different
MYB TFs? Is there a cascade activation relationship among these MYB TFs? What is
the regulatory relationship among these MYB TFs? Also, experimental verification of
the regulatory network of MYB TFs is needed. Related TFs should be investigated using
emerging techniques (e.g., transcriptome sequencing), and mutants could be used to
determine upstream and downstream relationships in the MYB TF regulatory network. In
addition, the elucidation of functional relationships between specific target genes and MYB
TFs would enhance the understanding of the roles MYB-type TFs play in gene regulation
in plants and promote the development of new varieties by metabolic engineering.

SCW biosynthesis involves external factors such as light and temperature, and in-
ternal factors such as TFs, enzymes, and endogenous hormones (reviewed by [162,163]).
Therefore, we need to consider the impact of these factors on wood formation to be able
to artificially design wood development to meet the needs of modern production and
lifestyles. Although there have been major advances in our understanding of the regulation
of lignin polymerization and secondary-wall formation in recent years, the roles of MYB
TFs, which garnered the attention of scientists nearly 100 years ago, will continue to capture
the interest of plant biologists.
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