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Size quantization of Dirac fermions in graphene
constrictions
B. Terrés1,2, L.A. Chizhova3, F. Libisch3, J. Peiro1, D. Jörger1, S. Engels1,2, A. Girschik3, K. Watanabe4, T. Taniguchi4,

S.V. Rotkin1,5,6, J. Burgdörfer3,7 & C. Stampfer1,2

Quantum point contacts are cornerstones of mesoscopic physics and central building blocks

for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be

tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac

electrons in nanostructured graphene has proven surprisingly challenging. Here we

show ballistic transport and quantized conductance of size-confined Dirac fermions in

lithographically defined graphene constrictions. At high carrier densities, the observed

conductance agrees excellently with the Landauer theory of ballistic transport without any

adjustable parameter. Experimental data and simulations for the evolution of the conductance

with magnetic field unambiguously confirm the identification of size quantization in the

constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a

renormalized Fermi velocity of B1.5� 106 m s� 1 in our constrictions. Moreover, at low carrier

density transport measurements allow probing the density of localized states at edges, thus

offering a unique handle on edge physics in graphene devices.
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T
he observation of unique transport phenomena in
graphene, such as Klein tunnelling1, evanescent wave
transport2, or the half-integer3,4 and fractional5,6 quantum

Hall effect are directly related to the material quality, as well as
the relativistic dispersion of the charge carriers. As the quality of
bulk graphene has been impressively improved in the last years7,8,
the understanding of the role and limitations of edges on
transport properties of graphene is becoming increasingly
important. This is particularly true for nanoscale graphene
systems where edges can dominate device properties. Indeed, the
rough edges of graphene nanodevices are most probably
responsible for the difficulties in observing clear confinement-
induced quantization effects such as quantized conductance9 and
shell filling10. So far signatures of quantized conductance have
only been observed in suspended graphene, however with limited
control and information on geometry and constriction width11.
More generally, with further progress in fabrication technology,
graphene nanoribbons and constrictions are expected to evolve
from a disorder-dominated12–15 transport behaviour to a
quasi-ballistic regime where boundary effects, crystal alignment
and edge defects16,17 govern the transport characteristics. This
will open the door to investigate interesting phenomena arising
from edge states, including magnetic order at zig-zag edges18,
an unusual Josephson effect19, unconventional edge states20,
magnetic edge-state excitons21 or topologically protected
quantum spin Hall states22.

In this work we report on the observation of size quantization
and localized trap states in ballistic transport through graphene
constrictions approximating quantum point contacts. Away from
the Dirac point, the current features evenly spaced, reproducible

kinks superposed on a linear background, in agreement with
transport simulations. Scattering at the rough constriction
edges reduces quantization steps to kinks in both experiment
and theory. The kink spacing, and their evolution with magnetic
field, allows us to unambiguously identify them as signatures of
size quantization. Close to the Dirac point, deviations from
ballistic behaviour allow for probing the density of localized
trap states.

Results
Ballistic transport. We prepared four-probe devices based on
high-mobility graphene–hexagonal boron nitride (hBN) sand-
wiches on SiO2/Si substrates and use reactive ion etching to
pattern narrow constrictions (see Methods) with widths ranging
from WE230 to 850 nm, connecting wide leads (Fig. 1a–c). The
graphene leads are side-contacted8 by 80-nm-thick chrome/gold
electrodes. A back-gate voltage is applied on the highly doped Si
substrate to tune the carrier density in the graphene layer,
n ¼ aðVg�V0

g Þ ¼ aDVg, where a is the so-called lever arm and
V0

g is the gate voltage of the minimum conductance, that is, the
charge neutrality point. To demonstrate the high electronic
quality of our graphene–hBN sandwich structures we show the
gate characteristic of a reference Hall bar device (Fig. 1d and
Supplementary Fig. 1). From this data we extract a carrier
mobility in the range of around 150.000 cm2 V� 1 s� 1

(Supplementary Note 1), resulting in a mean free path
exceeding 1 mm at around DVg¼ 4.6 V. Thus, the mean free
path is expected to clearly exceed all relevant length scales in our
constriction devices giving rise to ballistic transport.
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Figure 1 | Width-dependent ballistic transport in etched graphene nanoconstrictions encapsulated in hBN. (a) Schematic illustration of a hBN–graphene

sandwich device with the bottom and top layers of hBN appearing in green, the gold contacts in yellow, the SiO2 in dark blue and the Si back gate in purple.

(b) SEM images of four investigated graphene constrictions patterned using reactive ion etching. Black scale bar, 500 nm. (c) False coloured atomic force

microscope (AFM) image of a fabricated device. Transport is measured in a four-probe configuration to eliminate any unwanted resistance of the

one-dimensional contacts8. The yellow colour denotes the gold contacts, green the top layer of hBN and brown the SiO2 substrate. White scale bar,

500 nm. (d) Low-bias back-gate characteristics of a Hall bar device (see arrow) and of five constriction devices with different widths ranging from 850 to

230 nm (see e for colour code). The dashed grey lines are fits to the data. (e) Low-bias four-terminal conductance of graphene quantum point contacts as

function of kF extracted in the high carrier density limit for seven different samples. The colour encodes the different samples with different constriction

widths (see labels). Grey lines represent a linear fit at high values of kF, inserted as guide to the eye. Conductance deviates from the expected linear slope

for small kF. Electron (hole) conductance is plotted as solid (dashed) line. Data are taken at temperatures below 2 K. (f) Comparison of c0W from

conductance traces (e) with the width W (extracted from SEM images).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11528

2 NATURE COMMUNICATIONS | 7:11528 | DOI: 10.1038/ncomms11528 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


We measure the conductance as function of gate voltage for a
number of constrictions with different widths W (Fig. 1d;
see labels in Fig. 1e). The observed square root dependence
G /

ffiffiffiffiffiffiffiffiffi
DVg

p
/

ffiffiffi
n
p

(see dashed lines in Fig. 1d) is a first indication
of highly ballistic transport in our devices. Indeed, according to
the Landauer theory for ballistic transport, the conductance
through a perfect constriction increases by an additional
conductance quantum e2/h whenever WkF reaches a multiple of p

G ¼ 4e2

h

X1
m¼1

y
WkF

p
�m

� �
; ð1Þ

where kF ¼
ffiffiffiffiffiffi
pn
p

is the Fermi wave number, the factor four
accounts for the valley and spin degeneracies, y is the step
function and we have neglected minor phase contributions due to
details of the graphene edge23 for simplicity. Fourier expansion of
equation (1) yields

G ¼ 4e2

h
c0WkF

p
þ 4e2

h

X1
j¼1

cj sin 2jWkF�fj

� �
� c0

2

" #
: ð2Þ

For an ideal constriction c0¼ 1, fj¼ 0 and cj¼ 1/(jp), j40. In the
presence of edge roughness, c0 is reduced to a value below 1 due
to limited average transmission, and the higher Fourier
components are expected to decay in magnitude and acquire
random scattering phases fja0. Consequently, the sharp
quantization steps turn into periodic modulations as will be
shown below. Averaged over these modulations only the zeroth-
order term in the expansion (equation (2)) survives. This mean
conductance G(0) of a constriction of width W thus features a

linear dependenc on kF, or, equivalently, a square-root
dependence as a function of back-gate voltage assuming an
energy-independent transmission c0 of all modes, in accord with
Fig. 1d.

By measuring the carrier-density-dependent quantum Hall
effect at high magnetic fields4,24, we can independently determine
the gate coupling a for each device (Supplementary Fig. 2,
Supplementary Table 1 and Supplementary Note 2). We can thus
unfold the dependence on Vg and study both the electron and
hole conductance as function of kF (Fig. 1e). From the linear
slopes of G(kF), the product c0W can be extracted for each device
and compared with its width W (Fig. 1f) determined from
scanning electron microscopy (SEM) images (see, for example,
Fig. 1b). The estimates for c0W extracted from G(0) lie only
slightly below the width W, where c0 decreases for decreasing
width. This suggests that for the narrower devices reflections,
most likely due to device geometry and edge roughness, are
playing a more important role. From the data in Fig. 1f we can
extract c0E0.56 for our smallest constriction. Below we will show
that, indeed, reflections at the rough edges of the constriction and
not a reduction in active channel width is responsible for the
deviation of the experimentally extracted c0W from the SEM
width W.

Localized states. For small kFo50� 106 m� 1 (that is, low carrier
concentrations) the measured conductances systematically devi-
ate from the expected linear behaviour (Fig. 1e). This deviation
from the square-root relation between G and n (that is, DVg)
becomes more apparent when focusing on G around the charge
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Figure 2 | Conductance through graphene quantum point contacts. (a) Conductance traces of two different cool-downs (black and green curve) of the

same constriction (WE230 nm) as a function of charge carrier density. For the black (green) cool-down, shaded grey (light grey) regions denote deviations

from the ideal Landauer model G /
ffiffiffi
n
p

shown in red. At higher conductance values we observe well-reproduced ‘kinks’ with spacings on the order of 2e2/h

(see arrows and horizontal lines). (b) Experimental conductance trace as a function of kF after correction for the density of trap states (black and green

curves) and theoretical simulations of the graphene quantum point contact (blue curve). Theoretical results are rescaled to experimental device size as

determined from a. Ideal transmission pkF is shown in red as guide to the eye. Curves are offset horizontally for clarity. The inset gives an example for the

probability distribution of a simulated scattering state. (c) Local density of states of the graphene quantum point contact from tight-binding simulations, at

three different energies (� 100, � 30 and 250 meV; see also arrows in e). (d) Graphene density of states extracted from experiment (fit to a Gaussian)

and e from simulation. Both experiment and theory find a substantial contribution from trap states around the Dirac point.
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neutrality point (CNP). The conductance as function of n for two
different cool-downs of the same graphene constriction
(WE230 nm, Fig. 2a), shows marked cool-down-dependent low-
carrier-density regions with substantial deviations from G /

ffiffiffi
n
p

.
Far away from the CNP, the conductance as function of n for
both cool-downs shows (i) an identical

ffiffiffi
n
p

behaviour leading to
the very same c0W and (ii) almost identical, regularly spaced kink
structures (see arrows in Fig. 2a), which are, however, slightly
shifted relative to another on the carrier density axis n
(Supplementary Fig. 8). These observations suggest that the
square-root relation between the Fermi wave vector kF and
the gate voltage Vg, that is, n needs to be modified. While the
quantum capacitance of ideal graphene can be neglected25–27,
a small additional contribution nT(DVg) from, for example,
localized trap states modifies the relation between n and kF to

aDVg ¼ n ¼ k2
Fp
� 1þ nT DVg

� �
: ð3Þ

Far away from the Dirac point (k2
F � pnT), we recover the

expected square-root relation. Close to the Dirac point, however,
aDVg will be strongly modified by deviations nT from the linear
density of states of ideal Dirac fermions and approaches nT(DVg)
near the CNP. The trap states do not contribute to transport, yet
they contribute to the charging characteristics28. Such trap states

can for instance be found at the rough edges of patterned
graphene devices, which feature a significant number of localized
states. A tight-binding simulation of the local density of states of
the experimental geometry yields a strong clustering of localized
states at the device edges (Fig. 2c), which energetically lie close to
the CNP (Fig. 2e). The deviation of G from the

ffiffiffi
n
p

scaling also
opens up the opportunity to extract nT from experimental
conductance data (for example, Fig. 2d), and thus a new pathway
for device characterization. Inspired by the tight-binding
simulation, we approximate the distribution of trap states as
function of Fermi wave vector by a Gaussian distribution. We fit
the position, height and width of the Gaussian by minimizing the
difference between the measured G(kF) and the corresponding
linear extrapolation to very low values of kF (Fig. 2b, Supplemen-
tary Fig. 3 and Supplementary Note 3). We find good qualitative
agreement between simulation and experiment (compare
Fig. 2d,e). Quantitative correspondence would require a
detailed, microscopic model for the trap state density nT. Note
that the only difference between different traces in Fig. 2a,b,d is
the exposition of the device to air for several days leading to a
wider carrier density region of substantial deviations (green
trace). The number of trap states (that is, the deviations around
the CNP) is significantly enhanced (compare also green and black
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Figure 3 | Size quantization signatures. (a) Comparison of the low-energy conductance between theory (blue) and experiment (black). (b,c) Measured

electron (el; black trace) and hole (ho; red trace) conductance including kink or step-like structure (see arrows) as a function of kF for two different

constriction widths (see insets). The hole conductance traces are horizontally offset for clarity. (d) Fourier transform of the G�G(0) electron conductance

F½dGðkFÞ� through the 230-nm graphene constriction, for experiment (ex; black trace) and theory (th; blue trace). The first peak of the

Fourier transform clearly corresponds to the width W of the quantum point contact (marked by arrows). (e) Same as d for the hole conductance. The size

of the first peak is substantially reduced for both experiment and theory due to the presence of localized states that lead to additional scattering.

(f) Comparison of width WFT extracted from the Fourier transform of the conductance traces (as shown in d,e) to geometric constriction width W from four

different devices (extracted from SEM images).
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trace in Fig. 2d). As the active graphene layer is completely
sandwiched in hBN, only the graphene edges are exposed to air
and, very likely, experience chemical modifications. In line with
our numerical results, we thus conjecture that localized states at
the edges substantially contribute to nT, leading to the strong
cool-down dependence we observe in our measurements. While
this interpretation seems plausible and is consistent with our data,
alternative explanations such as electron–hole puddles29 or
charged impurities13 cannot be ruled out.

Away from the CNP our data agrees remarkably well with
ballistic transport simulations through the device geometry using
a modular Green’s function approach30 (see blue trace in Fig. 2b):
we simulate the four-probe constriction geometry taken from a
SEM image, scaled down by a factor of four to obtain a
numerically feasible problem size31. To account for the etched
edges in the devices, we include an edge roughness amplitude of
DW¼ 0.2W for the constriction. This comparatively large edge
roughness (which is consistent with the systematic reduction of
transmission through the constriction when using the average
conductance) is probably due to microcracks at the edges of the
device.

Quantized conductance. Superimposed on the overall linear
behaviour of G(kF), we find reproducible modulations (kinks) in
the conductance (Fig. 3a–c and Supplementary Fig. 4). The kinks
are well reproduced for several cool-downs (see arrows in Fig. 2a,
Supplementary Figs 5 and 6 and Supplementary Note 4), as well
as for different devices (Supplementary Fig. 7), generally showing
a spacing DG varying in the range of (2� 4)e2/h (see arrows in
Fig. 3b,c). The ‘step height’ and its sharpness depend on the
carrier density (that is, kF), as well as on the constriction width
and is strongly influenced by the overall transmission c0 (Fig. 1f).
Remarkably, we observe a spacing DG of the steps close to 4e2/h
for one of our wide samples (WE310 nm) at elevated
conductance values on both the electron and hole sides (see
arrows and horizontal lines in Fig. 3c and Supplementary Fig. 4b)

Our assignment of the conductance ‘kinks’ as signatures
of quantized flow through the constriction is supported by
our theoretical results. Theory and experimental data from
the smallest constriction show similar smoothed, irregular
modulations (Fig. 3a), instead of sharp size quantization steps32.
The replacement of sharp quantization steps by kinks reflects the
strong scattering at the rough edges of the device33,34, resulting in
the accumulation of random phases in the Fourier components
of G (equation (2)). We note that calculations with smaller
edge disorder show a larger average conductance, yet very
similar ‘kink’ structures. As the present calculation includes
only edge-disorder-induced scattering while neglecting other
scattering channels such as electron–electron or electron–phonon
scattering, the good agreement with the data suggests
edge scattering to be the dominant contribution to the
formation of the ‘kinks’. By contrast, both experimental and
theoretical investigations of, for example, semiconducting GaAs
heterostructures show very clear, pronounced quantization
plateaus35. In these heterostructures, the electron wavelength
near the G point is very long, and cannot resolve edge disorder on
the nanometre scale. By contrast, K�K0 scattering in graphene
allows conduction electrons to probe disorder on a much
shorter length scale. Consequently, edge roughness substantially
impacts transport. The comparison between experimental and
theoretical data (Fig. 3a) unambiguously establishes the observed
modulations to be consistent with the smoothed size quantization
effects predicted by theory.

By subtracting the zeroth-order Fourier componentpkF

(or
ffiffiffi
n
p

), the superimposed modulations of the conductance

dG(kF)¼G�G(0) provide direct information on the quantized
conductance through the constriction (equation (2)). One key
observation is that the Fourier transform of dG(kF) offers an
alternative route towards the determination of the constriction
width complementary to that from the mean conductance G(0).
For example, the pronounced peak of the first harmonic at
230 nm (red arrows in Fig. 3d,e) is consistent with the
constriction width W derived from the SEM image. Our
simulation also correctly reproduces the experimental observation
that the peak in the Fourier spectrum of dG(kF) is more
pronounced on the electron side (Fig. 3d) than on the hole side.
This results from the slightly asymmetric energy distribution of
the trap states relative to the CNP, which is accounted for in our
tight-binding calculation.

Performing such a Fourier analysis for several devices
(Supplementary Fig. 9 and Supplementary Note 5) yields much
closer agreement with the geometric width W (Fig. 3f and
horizontal axis of Fig. 1f) than an estimate based only on the
zeroth-order Fourier component c0W (first term in equation (2);
see vertical axis of Fig. 1f). Fourier spectroscopy of conductance
modulations thus allows to disentangle reduced transmission due
to scattering at the edges (c0W) from the effective width of the
constriction, and proves the relation between the observed
Fourier periodicity and the device geometry.

Bias voltage spectroscopy measurements yield an estimate for
the energy scale of the size quantization steps11,36. For example,
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by analysing finite bias measurements from our smallest
constriction device we extract a sub-band energy spacing of
DE¼ 13.5±2 meV near the CNP (Fig. 4a,b, Supplementary
Figs 10–12 and Supplementary Note 6). With the geometric
width of 230 nm also confirmed by the Fourier spectroscopy
(Fig. 3c) we can estimate the Fermi velocity near the CNP as
vF¼ 2WDE/h¼ (1.5±0.2)� 106 m s� 1. This is a clear signature
of a substantially renormalized Fermi velocity in nanostructured
graphene, possibly enhanced by electron–electron interaction37.
Moreover, the extracted energy scales are consistent with the
weak temperature dependence of the quantized conductance
(Fig. 4c, Supplementary Figs 13 and 14 and Supplementary
Note 7).

Transition from quantized conductance to quantum Hall.
Additional clear fingerprints of size quantization appear in the
parametric evolution of the conductance steps38 with magnetic
field B. The transition from size quantization at zero B-field to
Landau quantization at high magnetic fields occurs when the
cyclotron radius lC becomes smaller than half the constriction
width W. For the Landau level m the transition should occur at
2lC ¼ 2

ffiffiffiffiffiffiffi
2m
p

lB � W with lB the magnetic length. This transition
line in the B� n plane (see black dashed curve in Fig. 5a) agrees
well with the onset of Landau level formation in our data (see
Supplementary Fig. 15 and Supplementary Note 8 for similar data
from a 280-nm constriction device). The evolution of the lowest
quantized steps (at B¼ 0 T) to the corresponding lowest Landau

levels at low temperatures (T¼ 1.7 K) can be easily tracked
(Fig. 5b,c). At higher temperatures (T¼ 6 K) the evolution of
quantized sub-bands to Landau levels is observed even for higher
conductance plateaus (Fig. 5d,e). For a comparison, we calculate
the evolution of size quantization of an infinitely long ribbon of
width W as function of magnetic field. We take WE230 nm from
the SEM data, which leaves no adjustable parameters. Our model
(black lines in Fig. 5e,f) reproduces the evolution from the kinks
at small fields (lBcW) to the Landau levels for large fields
(lBoW) remarkably well, further supporting the notion that they
are, indeed, a signature of size quantization.

Discussion
We have shown ballistic conductance of confined Dirac fermions
in high-mobility graphene nanoconstrictions sandwiched by
hBN. Away from the Dirac point, we observe a linear increase
in conductance as function of Fermi wave vector with a slope
proportional to constriction width. Close to the Dirac point,
the charging of localized edge states distorts this linear
relation. Superimposed on the linear conductance, we observe
reproducible, evenly spaced modulations (kinks). Tight-binding
simulations for the device reproduce these structures related to
size quantization at the constriction. We can unambiguously
identify these ‘kinks’ as size quantization signatures by both
Fourier spectroscopy at zero magnetic field and their evolution
with magnetic field, finding good agreement between theory and
experiment.
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measured at T¼ 1.7 K. Landau levels emerge at high magnetic fields. The magnetic-field quantization of Landau level m dominates over size quantization

as soon as 2
ffiffiffiffiffiffiffi
2m
p

lB (where the magnetic length lB � 25=
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p
nm) is smaller than the constriction width (B-field values above dashed black line).

(b,c) Double-derivative plots of the regions delimited by thin dashed lines in a showing the evolution of the lowest quantization plateaus with magnetic

field: we observe the full transition from quantized sub-bands (B¼0 T) to Landau levels at large B-field. (d) The same magnetic-field evolution is visible in

the conductance as a function of magnetic field and charge carrier density for a different cool-down of the same device, also measured at 1.7 K. The blue

arrows highlight the expected quantum Hall conductance plateaus at 2, 6 and 10 e2/h. (e) Double-derivative plot of the conductance as a function of

magnetic field and charge carrier density measured at T¼ 6 K. The solid black lines denote the theoretical expectations for the evolution of the size

quantization with magnetic field. The thick dashed black line corresponds to the boundary of the Landau level regime, also appearing in a. (f) Zoom-in

of e for small magnetic fields Br1 T.
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Methods
Experimental methods and details. The hBN–graphene–hBN sandwich
structures8 have been etched by reactive ion etching in an SF6 atmosphere, prior
deposition of a B10-nm-thick Cr etching mask. Residues of Cr oxide are removed
by immersing the samples in a tetramethylammonium hydroxide solution for
about 30–35 s. All transport measurements are performed in a four-probe
configuration using standard lock-in techniques. Since the distances between the
contacted current-carrying electrodes and the voltage probes are small compared
with the other length scales of the system, we have an effective two-probe
configuration. Importantly, this way we exclude the one-dimensional contact
resistances.

Electrostatic simulations and transport calculations. We simulate the
experimental device geometry using a third-nearest neighbour tight-binding
ansatz. We rescale our device by a factor of four compared with experiment,
to arrive at a numerically feasible geometry. We determine the Green’s
function using the modular recursive Green’s function method30,39. The local
density of states and transport properties can then be extracted by suitable
projections on the Green’s function. For more technical details see
Supplementary Note 9.
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