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negative binomial mixed models 
for analyzing longitudinal CD4 
count data
Ashenafi A. Yirga1*, Sileshi F. Melesse1, Henry G. Mwambi1 & Dawit G. Ayele2

It is of great interest for a biomedical analyst or an investigator to correctly model the CD4 cell count 
or disease biomarkers of a patient in the presence of covariates or factors determining the disease 
progression over time. The Poisson mixed-effects models (PMM) can be an appropriate choice for 
repeated count data. However, this model is not realistic because of the restriction that the mean 
and variance are equal. Therefore, the PMM is replaced by the negative binomial mixed-effects 
model (NBMM). The later model effectively manages the over-dispersion of the longitudinal data. 
We evaluate and compare the proposed models and their application to the number of CD4 cells of 
HIV-Infected patients recruited in the CAPRISA 002 Acute Infection Study. The results display that the 
NBMM has appropriate properties and outperforms the PMM in terms of handling over-dispersion of 
the data. Multiple imputation techniques are also used to handle missing values in the dataset to get 
valid inferences for parameter estimates. In addition, the results imply that the effect of baseline BMI, 
HAART initiation, baseline viral load, and the number of sexual partners were significantly associated 
with the patient’s CD4 count in both fitted models. Comparison, discussion, and conclusion of the 
results of the fitted models complete the study.

Abbreviations
AI  Acute Infection
AIDS  Acquired immune deficiency syndrome
ART   Antiretroviral therapy
ARV  Antiretroviral (drug)
CAPRISA  Centre of the AIDS Programme of Research in South Africa
CD4  Cluster of difference 4 cell (T-lymphocyte cell)
GLM  Generalized linear model
GLMM  Generalized linear mixed model
HAART   Highly active antiretroviral therapy
HIV  Human immunodeficiency virus
MI  Multiple imputations
NBMM  Negative binomial mixed-effects model;
PMM  Poisson mixed-effects model
SE  Standard error
STD  Sexually transmitted disease
VL  Viral load refers to the number of HIV copies in a milliliter of blood (copies/ml)

After it is identified by scientists as the human immunodeficiency virus (HIV) and the cause of acquired immu-
nodeficiency syndrome (AIDS) in 1983, HIV has spread persistently, triggering one of the most severe pandemics 
ever documented in human history. More than 75 million individuals have been infected with HIV, more than 32 
million individuals have perished due to AIDS-related causes since the pandemic started, and 7000 new infec-
tions are reported daily. Worldwide, 37.9 million [32.7–44.0 million] individuals were HIV positive at the end of 
2018. Approximately 0.8% [0.6–0.9%] of grownup persons in the age range fifteen to forty-nine years worldwide 
are living with HIV, even though the problem of the epidemic continues to vary sizably between nations and 
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 regions1. Despite recent progressions in HIV prevention, care, and treatment, which has modestly decreased 
the total number of new infections and deaths every year, AIDS and AIDS-related illnesses are still among the 
driving causes of loss of life globally. Sub-Saharan Africa and Southern Africa, in specific, is right now the region 
most influenced by HIV/AIDS in the  world2. The HIV crisis in South Africa is critical. Since South Africa is at 
the epicenter of the HIV/AIDS epidemic, South African concerns are worldwide concerns, and lessons learned 
in South Africa are lessons for the universal community.

HIV/AIDS and other STD have an obliterating effect on women’s health, especially the well-being of younger 
ladies. “The consequences of HIV/AIDS attain beyond women’s health to their part as mothers and caregivers and 
their commitment to the economic support of their families. The social, development, and health consequences 
of HIV/AIDS and other sexually transmitted illnesses should be seen from a gender perspective”3–5. “It needs to 
be emphasized that, except for sex-specific issues, treatment algorithms for HIV-Infected women do not differ 
from men’s. Dialogs about the changing epidemiology of HIV will provide the clinician a system to decide who 
may be at high risk and to clarify the application of rules to avoid sequential HIV transmission. Even though 
antiretroviral recommendations presently remain the same for men and women, the survey of discoveries for 
early HIV infection and the individual difference in CD4 cell count/viral load of HIV-infected patient will permit 
the clinician to interpret prospective information appropriately and to address deception or distortion of this 
information by patients”6–8.

“CD4 cell counts deliver a sign of the wellbeing of an individual immune system (body’s natural defense 
system against pathogens, infections, and illnesses). It also provides information about disease progression. CD4 
cells are white blood cells (in a cubic millimeter of blood) that play an essential role in the immune system. A 
higher number shows a stronger immune system. The CD4 cell counts of a person who does not have HIV can 
be anything between 500 and 1500. Individuals living with HIV who have a CD4 count over 500 are usually in 
good health. Individuals living with HIV who have a CD4 cell count below 200 are at high risk of developing 
serious  illnesses9. HIV treatment is prescribed for all individuals living with HIV. It is particularly critical for 
patients with low CD4 count, which is superior to start treatment sooner, rather than later”6. The study of HIV 
infection at the acute stage is essential to the plan and advancement of HIV antibodies and techniques to attain 
an undetectable level of the infection without ART or a functional remedy. Researchers have managed to find out 
about the early events following infection by diagnosing HIV within a month, weeks, or even days of infection. 
Moreover, humans dwelling with HIV who are not on treatment or who are not virally suppressed can also have 
a compromised immune system (measured by a low CD4 count) that makes them at risk of the new and ongoing 
coronavirus disease 2019 (COVID-19) pandemic, opportunistic infections, and underlying illnesses. Whereas 
analysts accept that early diagnosis and prompt treatment of HIV are the stepping stones to a functional remedy, 
more studies are required to understand better the adaptive, innate, and host responses that regulate viral load 
set-point and subsequently diagnosis and infectiousness.

Count data are ubiquitous in public health investigations. This sort of data assumes only positive integer val-
ues (i.e., 0, 1, 2, …). The most commonly used method for count data is the Poisson distribution and its related 
enhancement, such as the Poisson-gamma mixture, which considers over-dispersion and heterogeneity in the 
model. This paper’s main contribution is the inclusion of the links between CD4 cell count and influencing 
covariates of biometric and demographic factors. Therefore, this study aims to cope with the statistical challenges 
of over-dispersion and incorporate within-subject correlation structures by applying NBMMs to longitudinal 
CD4 count data from the CAPRISA 002 AI Study and also detecting factors that are significantly associated with 
the response variable.

Materials and methods
Data description.  This study makes use of data from the CAPRISA 002 AI Study. The study was con-
ducted on HIV-infected women at the Doris Duke Medical Research Institute (DDMRI) at the Nelson R Man-
dela School of Medicine of the University of KwaZulu-Natal in Durban, South Africa. Between August 2004 and 
May 2005, CAPRISA introduced a cohort study recurring high-risk HIV negative women to a follow-up study. 
In the case of the data used in this paper as part of an ongoing study, women infected with HIV are enrolled in 
the study early, followed intensely, and monitored carefully to examine disease progression and CD4 count/viral 
load evolution. One can refer to studies by Van Loggerenberg et al.10 and Mlisana et al.11 for details on the design, 
development, and procedures of the study population.

Methods.  A linear model consists of a response variable Y , which is assumed to be normally distributed, 
and several predictors ( x1, x2, . . . , xp ). Multiple regression analysis studies the linear relationships among two or 
multiple independent variables and one dependent (response) variable. The multiple regression model is given 
by

where yi is the response variable, xi is a p× 1 vector of explanatory variables, β0 is the intercept, β is a p× 1 
vector of unknown regression coefficients, and εi

iid∼N
(

0, σ 2
)

 , which is a random error of observation i. We can 
extend these multiple linear regression model ideas to generalized linear models (GLM) where the distribu-
tion of the outcome variable can include distributions other than normal. The outcome yi can be continuous, 
dichotomous, count, ordinal, categorical, and so on as long as its distribution is from the exponential family. The 
exponential family of distributions incorporates numerous distributions that are valuable for viable modeling 
such as Poisson and Negative Binomial for count data; Binomial, Bernoulli, and Geometric for discrete data; 

yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi = β0 + x
′

iβ + εi = β0 + β ′xi + εi , i = 1, . . . , n.
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Gamma, Normal, Inverse Gaussian, Beta, and Exponential for the study of continuous response data set. More 
details on exponential family and related topics can be found in Dobson et al.12.

A Poisson process is mainly used as an initial point for modeling the stochastic difference of count data 
around a theoretical expectation. However, in reality, the patient’s data have more differences than using the 
Poisson distribution. The model’s over-dispersion is accounted for because of different model assumptions about 
the variance changes with the expectation. To the value of statistical inferences, the choice of these assumptions 
has major consequences. Therefore, the negative binomial distribution parameterization is proposed because 
the method introduces various quadratic mean–variance relationships, incorporating the ones assumed in the 
most commonly used approaches.

The Poisson regression is a commonly-used statistical model for n responses y1, . . . , yn whose domain is 
non-negative integer values. Each yi is modeled as an independent Poisson ( �i ) random variable and distributed 
as yi

iid∼ Poisson ( �i ), where the parameter �i controls the count rate in the ith outcome. Thus, a model for the 
Poisson rate parameter �i is given by

or equivalently,

where xi1, . . . , xip are a set of p explanatory variables, and β =
(

β0, . . . ,βp
)

 are the regression coefficients. The 
probability mass function (pmf) of the Poisson random variable with parameter �i is given by

Since yi
iid∼ Poisson ( �i ), as a consequence, the likelihood function is equal to the product of their pmf and 

the log-likelihood function can be derived by taking the natural logarithm of the likelihood function, become

where �i is defined in terms of β0, . . . ,βp and the covariates xi1, . . . , xip in Eq. (1), the log-likelihood function 
can be expressed as

For a presentation of efficient computational methods for maximizing β̂ , and V
[

β̂
]

 , see  Hilbe13.
Suppose the response variable yi follows a Poisson distribution with mean �i and there is no over- or under-

dispersion, then var
(

yi
)

= �i that is the mean and variance are equal. The restriction (mean = variance) may not 
be satisfied with many real-world data. Sometimes the variance is greater than the mean, and this phenomenon is 
called over-dispersion. One such model that works in such a condition is the negative binomial regression model.

If there is over-dispersion var
(

yi
)

= ��i and � > 1 . While if there is under-dispersion var
(

yi
)

= ��i and 
� < 1 that is var

(

yi
)

> E
(

yi
)

 , in this case, the Poisson distribution is no longer suitable. The method of moments 
solution for the dispersion parameter � is found from the sample relation that is var

(

yi
)

= �̂y . Therefore, 
�̂ = var(yi)

y  , and then if �̂ > 1 , evidence of over-dispersion. Data may be over-dispersed if the Pearson Chi-
Square ( χ2)/DF value is greater than 1.0. In general, when the value is greater than 2.0, it is an indication of over-
dispersion, it requires remedial  action13,14. Over-dispersed data can lead to underestimated SEs and inflated test 
 statistics13–16. In such circumstances, the negative binomial model can be utilized, and therefore the formulation 
can be expressed as yi ∼ NB(µi ,µi[1+ αµi]) , where α(α > 0) can be utilized to add flexibility, and plays the 
role of the scale parameter, for variance independently of the mean. The negative binomial model is a generali-
zation of the Poisson model, which relaxes the restrictive assumption that the variance and mean are  equal13–15. 
Just like the Poisson model, the negative binomial model is commonly utilized as a distribution for count data; 
however, it allows a variance higher than its mean. The most contrast between the NB and Poisson models is 
the extra parameter (scale parameter) that controls for the over-dispersion and, thus, the determination of the 
likelihood functions related to  them13,14. Estimation of the parameters can be accomplished through likelihood 
maximization by employing a nonlinear optimization  method13,14. The parametrization process of the negative 
binomial model is discussed later.

In general, for the inference of count data, the four most commonly used statistical model distributions are 
the Poisson, Negative Binomial, Hurdle, and Zero-Inflated regression models. The NB model addresses the issue 
of over-dispersion by including a dispersion parameter that relaxes the presumption of equal mean and variance 

ln �i = β0 + β1xi1 + . . .+ βpxip = β0 +
p

∑

j=1

βjxij

�i = eβ0+β1xi1+...+βpxip = e
β0+

p
∑

j=1
βjxij

(1)f
(

yi , �i
)

= e−�i�
yi
i

yi!
, yi = 0, 1, 2, · · ·

=
n

∑

i=1

[

yi ln (�i)− �i − ln yi!
]

ℓ
�

β0, . . . ,βp
�

=
n

�

i=1



yi





p
�

j=0

βjxij



− e

p
�

j=0
βjxij

− ln yi!





=
n

�

i=1

�

yix
′

iβ − exp
�

x
′

iβ
�

− ln yi!
�

.
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in the distribution whilst the Hurdle and Zero-Inflated regression models are utilized to handle the distribution 
of count outcome with excess  zeroes17–21.

The generalized linear model fails to consider the dependence of repeated observations over time. That means 
when data are measured repeatedly like CD4 counts of several individuals over time, the assumption of independ-
ence is no longer reasonable. Therefore, it is necessary to extend the GLM to generalized linear mixed-effects 
models, including a subject-specific random effect introduced in the linear predictor to seize the dependence.

Recall the linear mixed model:

where yij is an outcome variable, P is the predictor variable, β1, . . . ,βp are fixed effects, bi1, . . . , bip are random 
effects and εij ’s are residuals.

Suppose we want to generalize the above model. In that case, we do not need to assume that the outcome 
variable is normally distributed even after a transformation, such as the square root transformation for the CD4 
count. However, it has to follow a distribution from the exponential family; at that point, we can combine the 
mixed model’s idea with the generalized linear model. For instance, if yij is a count, we could look at Poisson 
regression. Hence the Poisson linear mixed model gets to be

In matrix notation form, the conditional mean of yij rely on fixed and random effects via the subsequent 
linear predictor:

where yij ’s are independent and have a Poisson distribution, conditional on a vector of random effects bi , with 
var

(

yij|bi
)

= E
(

yij|bi
)

, (i.e.,� = 1) , and x′
ij = z

′
ij =

(

1, tij
)

 . That is, the conditional mean of yij is associated 
with the linear predictor via a log link function, which is an example of a log-linear mixed-effects  model22,23.

Several methods are available to estimate the parameters ( βi ’s and bi’s) in GLMMs, which includes marginal 
quasi-likelihood (MQL), penalized (predictive) quasi-likelihood (PQL), the Laplace approximation, the Gauss-
Hermite quadrative and the Markov Chain Monte Carlo (MCMC)  method24–27. Our preference is for the Laplace 
approximation due to the fewer limitations than the Adaptive quadrature (method = quad). It is accurate, fast, 
and gives us the plausibility to use the likelihood and information  criteria26,28,29. However, R-side random effects 
are not supported for method = laplace or method = quad in the Proc Glimmix statement. Instead, Proc Glimmix 
uses a random statement and the residual option to model repeated (R-side) effects.

“The parameter estimates based on the mixed-effects negative binomial model are not exceptionally dif-
ferent from those based on mixed-effects Poisson model. However, the Poisson model underestimates the SEs 
when over-dispersion is present, leading to improper inference. A straightforward way to select between these 
two models is to compare them based on a few criteria, such as AIC and BIC”23. Where for the ICs, a lower 
value means that the model fits better than the competing model. We may, moreover, compare models utilizing 
−2loglikelihood , and the likelihood ratio test for nested models. To some degree, parameters in GLMMs have 
different interpretations than parameters in the conventional marginal models. In GLMMs, the regression coef-
ficients have subject-specific interpretations. Especially, they characterize the impact of variables on a particular 
subject’s mean response. More specifically, the β ′s are interpreted in terms of the effects of within-subject changes 
in explanatory variables on changes in an individual’s transformed mean response, while holding the remain-
ing covariates constant. Accordingly, βj is interpreted as the change in an individual’s log of response for a unit 
increase in xij , while holding other fixed variables constant for that individual. Since the elements of the fixed 
effects, βj , have interpretations conditional on bi , the ith individual’s random effects, they are regularly known 
as subject-specific regression coefficients. “Thus, GLMMs are most useful when the main scientific objective is 
to make inferences about individuals instead of the population average effects; the population averages are the 
targets of inference in marginal models”22.

The negative binomial (NB) distribution, also the result of a Poisson–Gamma mixture, has vast applications 
as a model for count data, especially for data showing over-dispersion. It has properties that are comparable to 
the Poisson model, as discussed above, in which the outcome variable Yi is modeled as a Poisson variable with a 
mean �i where the model error is assumed to follow a Gamma distribution. The Poisson-Gamma mixture model 
was developed to account for over-dispersion that is widely observed in discrete or count  data30. The pdf of the 
NB distribution is frequently expressed in terms of the mean � and dispersion parameter θ such that the prob-
ability of observing a non-negative integer k , which was given by  Demidenko31 parameterization of the negative 
binomial regression, discussed as follows:

If Y  takes discrete values with the conditional Poisson distribution: Pr(Y = k|�) = e−�
�
k

k!  , where � > 0 , 
� ∼ Gamma(α, θ) then the pdf of a two-parameter, α, and θ , Gamma distribution is given by:

Thus, the negative binomial (Poisson–Gamma) model can be defined as:

yij = (β0 + bi0)+ (β1 + bi1)X1ij + . . .+
(

βp + bip
)

Xpij + εij ,

log
(

E
(

yij
))

= β0 + β1x1ij + · · · + βpxpij + b0 + b1x1ij + · · · + bpxpij

log
{

E(yij|bi)
}

= ηij = x
′
ijβ + z

′
ijbi .

(2)f (�;α, θ) = �
α−1e−�/θ

θαŴ(α)
, � > 0, α > 0, θ > 0

(3)f (Y |�) = e−�
�
k

k!
�
α−1e−�/θ

θαŴ(α)
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It has also been defined in the literature as:

where the binomial coefficient is computed as 
(

α + k − 1
k

)

= (α+k−1)(α+k−2)...α
k! = (α+k−1)!

k!(α−1)!  . Note that for a 

positive integer α , we have Ŵ(α) = (α − 1)!.
For negative binomial distribution, E

(

y
)

= αθ , and var
(

y
)

= αθ(1+ θ) . For Poisson distribution, the mean 
and variance are equal, but the variance is higher than the mean by αθ2 for negative binomial. By applying some 
calculus, one can show that the Poisson distribution is a special case of the negative binomial distribution when 
α → ∞ and θ → 0 , such that the product, αθ = � , is kept constant. The parameter a = 1

α
 is associated with the 

“extra-Poisson” variation or over-dispersion because var
(

y
)

= �+ a�2 , which is quadratic in the mean, that is 
why the negative binomial model is referred to as the NB2 model. This interpretation justifies a (�, a) param-
eterization of the NB distribution as

where E
[

y
]

= � and var
[

y
]

= �+ a�2 , and a = 0 results in Poisson distribution. This latest parameterization is 
useful to specify the NB regression and for testing over-dispersion as H0 : a = 032.

The likelihood function for Eq. (2) is proportional to

Lawless32 notes that for any c > 0,Ŵ(k + c)/Ŵ(c) = c(c + 1)× · · · × (c + k − 1) for integer-valued k ≥ 1 , 

thus, Ŵ(α+k)
Ŵ(α)

= α(1+ α)× · · · × (k − 1+ α) . Hence, log
{

Ŵ(α+k)
Ŵ(α)

}

=
ki−1
∑

j=0
log

(

α + j
)

. This produces log L(β ,α) 

as follows

Therefore, applying the Poisson theorem with Gamma distribution leads to the negative binomial distribution. 
Furthermore, detailed discussions of estimating methods and characteristics of the negative binomial model are 
presented in numerous  literature13,14,25,30–32.

When repeated counts are measured on the same individual over time, the assumption of independence is 
no longer reasonable; instead, they are correlated. Subject-specific random effects can be added into the linear 
predictor to modeling such dependence. Let yij be the values of a count variable (non-negative integer value) 
for subject i at time point j . The count is assumed to be drawn from a Poisson distribution with errors assumed 
to have a normal distribution, εij ∼ N

(

0, σ 2
ε

)

 . Then, the Poisson mixed-effects model that specifies the expected 
number of counts is written as

where xij is the variable of interest, β is the vector of fixed effects (population-level effects), including an inter-
cept β0 , bi is the vector of random effects (subject-level effects) for the sample variables z ij , and εij is the random 
 errors22,23. Given the Poisson process for the count yij , the probability that yij = y , conditionally on the random 
effects bi , is given by

This addition also can be applied to the NBMM that allows over-dispersion by assuming a gamma distribu-
tion for the errors; instead of a normal distribution. Suppose that xij and z ij are known vectors of covariates 
associated with count data yij , i = 1, . . . , n and j = 1, . . . , ni , conditional on a q− dimensional vector of 
subject-specific random effects, bi , the counts of yij , with the assumption of gamma errors, has a negative bino-
mial distribution, yij|bi ∼ NB

(

µij ,µij + θµ2
ij

)

 , with µij = E
(

yij|bi
)

= exp
{

x
′
ijβ + z

′
ijbi

}

 . This indicates that 
the mean parameters µij of the negative binomial mixed-effects models are also related to the predictor variables 
xij , and the sample variables z ij through the logarithm link function: log

(

µij

)

= x
′
ijβ + z

′
ijbi + εij , which shows 

(4)=
(

α + k − 1
k

)(

θ

1+ θ

)k( 1

1+ θ

)α

= Ŵ(α + k)

k!Ŵ(α)

(

θ

1+ θ

)k( 1

1+ θ

)α

,

Pr(Y = k; �, a) =
(

k + 1
a − 1
k

)(

a�

1+ a�

)k( 1

1+ a�

)
1
a

,

L(β ,α) =
n
∏

i=1

Ŵ(α + ki)

ki!Ŵ(α)

(

θi

1+ θi

)ki( 1

1+ θi

)α

=
n

�

i=1





ki−1
�

j=0

log
�

α + j
�

− log ki! + ki log θi − ki log (1+ θi)+ α log 1− α log (1+ θi)





ℓ(β ,α) =
n

�

i=1





ki−1
�

j=0

log
�

α + j
�

− log ki! + ki log θi − (ki + α) log (1+ θi)





(5)log
(

µij

)

= x
′
ijβ + z

′
ijbi + εij ,

P
(

yij = y|bi , xij , z ij
)

=
e−µijµ

y
ij

y! = 1

y! e
−exp

(

x′ijβ+z ′ijbi
)

exp
(

x′ijβ + z ′ijbi
)y

= 1

y! exp
[(

x′ijβ + z ′ijbi
)y

− exp
(

x
′
ijβ + z

′
ijbi

)]

, y = 0, 1, 2, . . .
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that the model for the conditional mean of the NBMM is similar to that of PMM. However, the conditional vari-
ance of yij for NBMM is Var

(

yij|bi
)

= µij + θµ2
ij , which is greater than the conditional mean of PMM by θµ2

ij , 
specifically, because a gamma distribution is assumed for the exponentiated errors, exp

(

εij
)

 , with a mean of 1 
and variance θ22,31. Random effects are used to demonstrate multiple assets of variations and subject-specific 
effects. As a result, they avoid biased inference on the fixed effects. The random effects are assumed to have a 
multivariate normal distribution:

where � is a positive-definite variance–covariance matrix that accounts for the correlation of the random 
 effects33,34.

Ethics  approval  and  consent  to participate.  Ethical approval for the study was obtained from the 
Research Ethics Committee of the University of KwaZulu-Natal (E013/04), the University of the Witwatersrand 
(MM040202), and the University of Cape Town (025/2004). All participants provided written informed consent. 
All methods were performed following the relevant guidelines and regulations expressed in the Declaration of 
Helsinki.

Results
Table 1 shows the summary of CD4 count and its associated selected covariates in the CAPRISA 002 AI Study. 
The dataset included 235 subjects (7129 observations consists of a minimum of two and a maximum of sixty-one 
observations per subject). P-values demonstrated in Table 1 are obtained from the Chi-square test. At a 5% level 
of significance, the univariate cross-tabulation analysis uncovers that the patient’s baseline BMI, baseline VL, 
number of sexual partners, age, ART initiation, and education level are significantly associated with patient’s CD4 
count. Table 1 demonstrates that there is a high prevalence of CD4 count above 500 cells/mm3 among patients 
with normal weight and overweight status, which are 38.32 and 9.36%, respectively (p-value < 0.0001). Out of 
7129 observations, patients with an undetectable viral load at baseline indicate no sign of a CD4 count < 500 
cells/mm3 throughout the study.

Moreover, from Table 1, there is a high prevalence of CD4 count above 500 cells/mm3 for patients with low 
viral load at baseline (21.83%). This shows ART suppresses the amount of HIV viably in patient’s body fluids who 
have an undetectable and low viral load at baseline to the point where standard tests are incapable of detecting any 
HIV or can only find a little flow. There is also a high prevalence of CD4 count above 500 cells/mm3 for patients 
with a stable sexual partner (43.85%, p-value < 0.0001) compared to patients who have many sexual partners. 
A high prevalence of CD4 count above 500 cells/mm3 is observed among patients of the age group between 

(6)bi ∼ N(0,�)

Table 1.  Distribution of CD4 count and associated selected covariates with percent missing. The response 
variable (CD cell count) has 110 (1.5%) missing observations.

Covariates Level

CD4 count N (%)

p-value % Missing< 200 200–500 > 500

Baseline BMI category

Underweight 2 (0.03) 219 (3.12) 254 (3.62)

< 0.0001 0.0
Normal weight 114 (1.62) 2305 (32.84) 2690 (38.32)

Overweight 18 (0.26) 512 (7.29) 657 (9.36)

Obese 0 17 (0.24) 231 (3.29)

Baseline viral load

Undetected 0 0 16 (0.23)

< 0.0001 0.0
Low 20 (0.28) 791 (11.27) 1532 (21.83)

Medium 45 (0.64) 1209 (17.22) 1497 (21.23)

High 69 (0.98) 1053 (15) 787 (11.21)

Number of sexual partners

No partner 29 (0.41) 565 (8.05) 579 (8.25)

< 0.0001 0.0Stable partner 85 (1.21) 2274 (32.4) 3078 (43.85)

Many partners 20 (0.28) 214 (3.05) 175 (2.49)

Age group

< 20 1 (0.01) 130 (1.82) 121 (1.72)

< 0.0001 0.0

20–29 97 (1.38) 1872 (26.67) 1977 (28.17)

30–39 17 (0.24) 813 (11.58) 1255 (17.88)

40–49 19 (0.27) 203 (2.89) 369 (5.26)

50–59 0 35 (0.5) 91 (1.3)

 ≥ 60 0 0 19 (0.27)

Educational level
Primary school 3 (0.04) 104 (1.48) 181 (2.58)

0.0129 0.0
Secondary school 131 (1.87) 2949 (42.01) 3651 (52.02)

Place of residence
Rural 62 (0.88) 1467 (20.90) 1806 (25.73)

0.7176 0.06
Urban 72 (1.03) 1586 (22.6) 2026 (28.86)

ART initiation group
Pre ART 110 (1.57) 2566 (36.56) 2783 (39.65)

< 0.0001 0.0
Post ART 20 (24) 487 (6.94) 1049 (14.95)
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20–29 years and 30–39 years, which are 28.17 and 17.88%, respectively (p-value < 0.0001). The prevalence of 
CD4 count above 500 cells/mm3 is also observed among women patients who have higher/secondary school 
levels of education (52.02%, p-value = 0.0129). However, the place of residence is found not to be associated with 
patients’ CD4 count (p-value = 0.7176).

The individual profiles plot for 17 randomly selected HIV-Infected women enrolled in the CAPRISA 002 AI 
Study is shown in Fig. 1.

Analyzing data shown in Fig. 1, we can observe insights concerning the variability among individual patients 
at a given point in time, the variance within units over time, and the trends over time. Note that the space between 
the lines represents between unit variability, and the change in each line (slope) represents within variability. 
Moreover, as portrayed in Fig. 1, the number of CD4 cells seems to represent a slightly increasing pattern over 
time; however, the rate of increment is low. Additionally, Fig. 1 shows that there is wide variability in the num-
ber of CD4 cells and in the number of repeated measures (number of observations per subjects are not equal).

The results of the Fit statistics in Table 2 are obtainable because of method = Laplace in Proc Glimmix Pro-
cedure. These values are relative and valuable when we compare different model choices. The NB model’s Fit 
statistics are much smaller than the Poisson model (Table 2). For instance, AICC is 87833.48 for NB versus 
204893.1 for the Poisson. Also, the Pearson χ2/DF of 20.66 for the Poisson model is problematic (Table 3), indi-
cating evidence of over-dispersion in the data. Ideally, this value ought to be generally 1.0 when modeling count 
data with a Poisson distribution. The ratio of Pearson Chi-Square statistics is dropped from 20.66 to 0.91 under 
the NB model, which is close to one (Table 3), indicating that over-dispersion has been appropriately modeled 
and it is no longer an issue under the NB model.

In addition to the conditional fit statistics, any other diagnostic that may allow us to see over-dispersion in 
the Poisson model is a graphical representation (Fig. 2). We can get residual plots through Proc Glimmix using 
the Plot option. Here, we only focus on looking at residual versus predicted plots. Figure 2 (left panel) shows 

Figure 1.  Individual profiles plot of CD4 cell count for 17 randomly selected subjects.

Table 2.  Comparisons of fit statistics for the two distributions.

Distribution

Fit statistics

− 2 log likelihood AIC AICC BIC CAIC HQIC

Poisson 204,842.9 204,892.9 204,893.1 204,979.4 205,004.4 204,927.8

NB 87,781.28 87,833.28 87,833.48 87,923.23 87,949.23 87,869.54

Table 3.  Measure of over-dispersion between Poisson and negative binomial distribution.

Fit Statistics for Conditional Distribution Poisson NB

− 2 log L(CD4 counts/r. effects) 199,670.3 85,320.39

Pearson χ2 145,017.0 6396.89

Pearson χ2/DF 20.66 0.91



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16742  | https://doi.org/10.1038/s41598-020-73883-7

www.nature.com/scientificreports/

the visual prove of over-dispersion. As the Predicted Mean ( µ̂ ) increases, the associated residuals become more 
broadly dispersed. The variance ought to increase as a function of the mean, but not as quickly as we see in this 
plot (Fig. 2). Also, Fig. 2 (right panel) shows prove of over-dispersion. The variance adjusted residuals are more 
variable around the lower point of the estimated Linear Predictor (η̂ ). On the model scale (Fig. 2 (right panel)), 
we should not see the variance adjusted residuals variable across different points of η̂ as we see in this  plot16,35. In 
other words, Fig. 2 (right panel) demonstrates that the empirical distribution of the residuals is not reasonably 
symmetric, and in general, it is not very informative.

The improvement in the Pearson χ2/DF and Fit statistics indicate that it is best to model data from this 
experiment with the NB distribution. Utilizing the proper distribution gives unbiased test statistics and SE 
estimates (Table 4).

In addition, the subsequent random effect models were taken into consideration for testing NBMMs:

Model 1: Intercept, Time,
√
Time.

Model 2: Intercept, Time.
Model 3: Intercept, 

√
Time.

Model 4: Time, 
√
Time.

Model 5: Intercept only.
Model 6: Time only.
Model 7: 

√
Time only.

We conclude that Model 1 is a preferable model among models listed above since it has the smallest information 
criteria. Moreover, a comparison of the covariance structure using the fitted model (Supplementary Table S1) 
and a comparison of fixed-effects results across different covariance structures using Model 1 (Supplementary 
Table S2) are made. The estimated unstructured covariance matrix ( D̂ ) for the GLMMs model that uses NB 
distribution is

Figure 2.  Data-scale raw residuals and Model-scale studentized residuals versus predicted values.

Table 4.  Comparison of random effect models.

Random effect models

Information criteria

− 2log ℓ AIC AICC BIC CAIC HQIC

Model 1 87,781.28 87,833.28 87,833.48 87,923.23 87,949.23 87,869.54

Model 2 88,603.50 88,649.50 88,649.66 88,729.07 88,752.07 88,681.58

Model 3 88,591.64 88,637.64 88,637.80 88,717.21 88,740.21 88,669.72

Model 4 89,156.39 89,202.39 89,202.55 89,281.96 89,304.96 89,234.47

Model 5 89,837.18 89,879.18 89,879.31 89,951.83 89,972.83 89,908.47

Model 6 92,302.08 92,344.08 92,344.21 92,416.73 92,437.73 92,373.37

Model 7 91,190.61 91,232.61 91,232.74 91,305.26 91,326.26 91,261.90
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The estimated scale parameter is 0.04205, which can be found in the “Covariance Parameter Estimates” output 
of the SAS PROC GLIMMIX (Laplace) procedure (see Supplementary Table S3). Therefore, the estimated con-
ditional variance of the count is µ̂i + 0.04205µ̂2

i  , where µ̂i is the conditional mean on the counting scale. “The 
Scale parameter measures the magnitude of over-dispersion and is practically equivalent to the mean square 
error in conventional theory analysis of variance”15.

Table 5 shows the overall effect of the selected factors within the fitted models. The results indicate that the 
effects of Time, Baseline BMI, HAART initiation group, baseline viral load, and the number of sexual partners on 
the patient’s CD4 count were found to be highly significant in both fitted models. However, the overall F-values 

D̂ =





0.1131 0.000739 −0.01754
0.000739
−0.01754

0.000155
−0.00137

−0.00137
0.01556





Table 5.  Type III Analysis of fixed effects for Poisson and NB distribution.

Effect Num DF Den DF

NB Poisson

F value Pr > F F value Pr > F

Time in month 1 235 62.53 < 0.0001 14.80 0.0002

Sqrt_Time 1 234 86.36 < 0.0001 48.41 < 0.0001

Baseline BMI category 3 6307 6.26 0.0003 6.31 0.0003

ART initiation 1 6307 345.45 < 0.0001 5890.28 < 0.0001

Baseline VL 3 6307 7.48 < 0.0001 12.79 < 0.0001

No. of sexual partners 2 6307 1.64 0.1935 1.85 0.1578

Age group 5 6307 1.46 0.1987 27.34 < 0.0001

Education level 1 6307 0.25 0.6196 0.15 0.6990

 Place of residence 1 6307 0.01 0.9246 0.11 0.7406

Table 6.  Parameter estimates using Poisson and NB mixed-effects model.

Covariates

Negative binomial mixed-effects model Poisson mixed-effects model

Estimate SE Pr >|t| 95% CI for NB estimate Estimate SE Pr >|t|

Intercept 6.4697 0.04982 < 0.0001 (6.3715, 6.5679) 6.4625 0.04264 < 0.0001

Time in month 0.007824 0.000989 < 0.0001 (0.005875, 0.009774) 0.006564 0.001706 0.0002

Sqrt_Time − 0.08649 0.009307 < 0.0001 (− 0.1048, − 0.06815) − 0.06839 0.009830 < 0.0001

ART initiation (post) 0.2301 0.01238 < 0.0001 (0.2058, 0.2543) 0.1947 0.002537 < 0.0001

Baseline BMI category (ref. = normal weight)

Obese 0.4815 0.1113 < 0.0001 (0.2633, 0.6996) 0.4985 0.1147 < 0.0001

Overweight 0.02561 0.04975 0.6067 (− 0.07191, 0.1231) 0.03131 0.05148 0.5431

Underweight 0.005901 0.07927 0.9407 (− 0.1495, 0.1613) 0.01691 0.08264 0.8379

Baseline HIV viral load category (ref. = low VL)

High VL − 0.2393 0.05157 < 0.0001 (− 0.3404, − 0.1382) − 0.3074 0.05065 < 0.0001

Medium VL − 0.1258 0.04587 0.0061 (− 0.2157, − 0.03585) − 0.1121 0.04686 0.0168

Undetectable 0.1377 0.2901 0.6351 (− 0.4310, 0.7064) 0.1199 0.2978 0.6872

Number of sexual partners (ref. = stable partner)

Many partners − 0.1560 0.09394 0.0967 (− 0.3402, 0.02811) − 0.1674 0.09908 0.0911

No partner − 0.04821 0.04993 0.3343 (− 0.1461, 0.04967) − 0.05913 0.05164 0.2522

Age group in years (ref. = < 20)

20–29 0.01166 0.03104 0.7072 (− 0.04919, 0.07251) − 0.00791 0.007830 0.3125

30–39 0.02852 0.03432 0.4060 (− 0.03876, 0.09580) − 0.01239 0.008474 0.1438

40–49 − 0.00719 0.04545 0.8743 (− 0.09629, 0.08191) − 0.03422 0.01112 0.0021

50–59 − 0.05694 0.06662 0.3927 (− 0.1875, 0.07365) − 0.1399 0.01549 < 0.0001

 ≥ 60 0.2082 0.1532 0.1741 (− 0.09205, 0.5084) − 0.3107 0.03519 < 0.0001

Education attainment (ref. = secondary or high school)

Primary school − 0.04509 0.09084 0.6196 (− 0.2232, 0.1330) − 0.03582 0.09263 0.6990

Residence of participant (ref. = urban)

Rural − 0.00373 0.03947 0.9246 (− 0.08112, 0.07365) 0.01337 0.04038 0.7406
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of the NB model were smaller than for the Poisson model. This can be supporting prove that over-dispersion 
can lead to inflated and biased F-values if we do not use the proper model in our analysis.

Table 6 shows the log of the expected CD4 count as a function of the selected predictor variables using a nega-
tive binomial mixed-effect model. The results indicate that time (month) significantly affects the CD4 count of a 
patient. We interpret the coefficient of the month as an average within-subject change in the logs of expected CD4 
count for patients would be expected to increase by 0.0078 units (p-value < 0.0001; 95% CI 0.005875, 0.009774), 
while holding other factors in the model constant. The square root of time shows a significant adverse effect in 
the logs of expected CD4 counts of a patient (Table 6). Compared to pre HAART initiation, the difference in 
the logs of CD4 counts of a patient who had been initiated on HAART would be expected to increase by 0.2301 
units (p-value < 0.0001; 95% CI 0.2058, 0.2543), holding other factors constant in the model. It can be observed 
that the difference in the logs of expected CD4 counts is expected to be 0.4815 units (p-value < 0.0001; 95% 
CI 0.2633, 0.6996) higher for patients with higher BMI (Obese) at baseline compared to patients with normal 
weight status holding other factors constant in the model. Those patients who had high and medium viral load 
at baseline, the difference in the logs of their expected CD4 counts were decreased by 0.2393 (p-value < 0.0001; 
95% CI − 0.3404, − 0.1382) and 0.1258 (p-value = 0.0061; 95% CI − 0.2157, − 0.03585), respectively, compared 
to patients who had low viral load at baseline while holding other factors in the model constant.

Furthermore, the SEs for the Poisson mixed-effects model were more likely to be underestimated and/or 
biased compared to those from a negative binomial mixed-effects model since the model is fitted by ignoring 
over-dispersion of the data (Table 6).

The prediction profile equation for the average number of CD4 cell following Table 6 results obtained by NB 
mixed-effects model is given as:

Taking antilog values on both sides of the above-predicted equation yields the expected number of counts, 
given by

The prediction of individual profiles, Fig. 3, presents the estimated trajectories for the average number of CD4 
cell under the estimates acquired by the negative binomial mixed-effect model with UN covariance structure 
consolidated with the model where the intercept and slope were considered as random effects (see Table 4 and 
Supplementary Table S1) for seven patients with particular profiles for four years. For instance, from CAPRISA 
002 AI Study, patient ID = 141, 22 years old female, with around 500 cells/mm3 CD4 cell count at baseline, low 
VL at baseline, had normal weight status at baseline, and have no sexual partner at the time of enrollment.

The second patient ID = 152, 34 years old female, with obese weight status at baseline, having stable sexual 
partner, high VL at baseline, and CD4 count at baseline below 500 cells/mm3. As a third example, we looked at 
patient ID = 172 who had undetected VL at baseline, with CD4 count at baseline above 500 cells/mm3, 29 years 
old female, with obese weight status at baseline and have a stable sexual partner. As a fourth example, we can also 
look at patient ID = 188, who had a high number of CD4 cells at baseline (1070 cells/mm3) with low VL at base-
line, 42 years old, had obese weight status at baseline, and have a stable sexual partner. As we would anticipate, 

log
(

µ̂i

)

= 6.4697+ 0.007824× time − 0.08649×
√
time + 0.2301

× postHAARTtreatment + 0.4815× obese − 0.2393

× highVL− 0.1258×mediumVL.

µ̂i = exp
(

6.4697+ 0.007824× time − 0.08649×
√
time + 0.2301× postHAARTtreatment

+0.4815× obese − 0.2393× highVL− 0.1258×mediumVL
)

.

Figure 3.  Prediction of 7 randomly selected individual profiles plot of CD4 count for 4 years.
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all seven individuals appeared to have an increased average number of CD4 cells over time, in line with their 
predicted individual profiles (Fig. 3). However, the increasing level or degree is different among individuals. This 
is due to factors related to this study and numerous other characteristics of these individuals, mainly (according 
to our research) for their VL at baseline, baseline BMI and the treatment (either the patient had effective HAART 
initiation after HIV exposure or not).

Moreover, for this study to yield meaningful results, we checked the missing values in the dataset using the 
Little’s MCAR test. The regular Little’s MCAR test gives us a χ2 distance of 4515.686 with a degree of freedom 106 
and p-value 0.000 (Little’s MCAR test: Chi-Square = 4515.686, DF = 106, sig. = 0.000). The analysis gives evidence 
that the missing data in the study variables of interest are not MCAR under significance level 0.000. Therefore, 
we used Multiple Imputation (MI) techniques to get a valid analysis for parameter estimates from the complete 
data set by fitting the chosen model. The MI procedure’s main concept is to replace each missing value with a 
set of m possible values. Generally, the imputation of dependent and independent variables is basic for getting 
unbiased estimates of the regression  coefficients36. Following Rubin’s (1987) terminology, the MI procedure 
includes three distinct phases: each missing value is imputed m times to generate m complete data sets, analyze 
each m complete data sets separately by using standard procedure and then combine the results to generate valid 
statistical inference about the model parameters from the m data set analysis using Rubin’s combine  rule37. SAS 
Proc MI can be used to create N number of imputation; after that, Proc MIAnalyze is used to pool the parameter 
estimates. A detailed discussion of missing data analysis and how missing data handled by statistical software 
can be found in numerous  literature37–44.

Table 7 shows a combined result for each parameter. The table also shows a 95% confidence interval, the 
minimum and maximum regression coefficients from the imputed data set, and the associated p-value. We can 
compare the results given in Table 7 with the results of applying the negative binomial mixed-effect model to 
the CAPRISA 002 AI data using incomplete cases (Table 6). Comparing the two different sets of results, we do 
not see that many exciting differences. In both cases, covariates that were found to be significantly affecting the 
patient’s CD4 count are similar, and their respective parameter estimates are more close to each other.

In general terms, a comparison of the results from data with missing value case analysis (Table 6) and multiple 
imputation analysis (Table 7) shows little difference between parameter estimates, SEs, and confidence intervals. 
In this case, the small difference in results and associated inferences is likely due to relatively low amounts of 
missing data in the analysis variables (Table 1). However, it will not always be true that results from incomplete or 
complete case analysis and a multiple imputation treatment of the data will lead to similar results and  inferences38. 
Finally, missing data is especially common in longitudinal data sets. Missingness can arise due to respondent 

Table 7.  Combined results of a negative binomial mixed-effects model analysis using MI Procedure to deal 
with the missing values.

Parameter

Parameter estimates (10 imputations)

Estimate SE Pr >|t| 95% confidence limits Minimum Maximum

Intercept 6.459413 0.049830 < 0.0001 (6.36175, 6.55708) 6.458658 6.460775

Time in month 0.007475 0.000975 < 0.0001 (0.00556, 0.00939) 0.007450 0.007508

Sqrt_Time − 0.083647 0.009266 < 0.0001 (− 0.10181, − 0.06549) − 0.083982 − 0.083434

ART initiation (Post) 0.224037 0.012594 < 0.0001 (0.19935, 0.24872) 0.223216 0.225014

Baseline BMI category (ref. = normal weight)

Obese 0.474714 0.109902 < 0.0001 (0.25931, 0.69012) 0.473892 0.475630

Overweight 0.024208 0.048971 0.6211 (− 0.07177, 0.12019) 0.023820 0.024529

Underweight 0.002070 0.078101 0.9789 (− 0.15101, 0.15515) 0.001321 0.003137

Baseline HIV viral load category (ref. = Low VL)

High VL − 0.239102 0.051294 < 0.0001 (− 0.33964, − 0.13857) − 0.239735 − 0.238839

Medium VL − 0.122078 0.045390 0.0072 (− 0.21104, − 0.03311) − 0.122251 − 0.121642

Undetectable 0.142848 0.286259 0.6178 (− 0.41821, 0.70391) 0.142510 0.143351

Number of sexual partners (ref. = stable partner)

Many partners − 0.153632 0.092090 0.0953 (− 0.33412, 0.02686) − 0.154667 − 0.152911

No partner − 0.046962 0.049227 0.3401 (− 0.14344, 0.04952) − 0.047267 − 0.046691

Age group in years (ref. = < 20)

20–29 0.013477 0.031659 0.6703 (− 0.04857, 0.07553) 0.012306 0.014325

30–39 0.033725 0.034974 0.3349 (− 0.03482, 0.10227) 0.032678 0.034744

40–49 − 0.005842 0.046177 0.8993 (− 0.09635, 0.08466) − 0.007790 − 0.004745

50–59 − 0.052070 0.067501 0.4405 (− 0.18437, 0.08023) − 0.054207 − 0.051024

≥ 60 0.206708 0.156046 0.1853 (− 0.09914, 0.51255) 0.205360 0.207553

Education attainment (ref. = secondary or high school)

Primary school − 0.046292 0.089605 0.6054 (− 0.22191, 0.12933) − 0.046602 − 0.046009

Residence of participant (ref. = urban)

Rural − 0.001916 0.038813 0.9606 (− 0.07799, 0.07416) − 0.002146 − 0.001596



12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16742  | https://doi.org/10.1038/s41598-020-73883-7

www.nature.com/scientificreports/

attrition, survey structure, file-matching issues, and refusal to answer sensitive questions such as certain health 
conditions, illegal behaviors, or  income38. Missing data can also arise due to death. A loss to follow-up due to 
death is qualitatively different from dropout due to other responses and, ordinarily, needs to be dealt with quite 
differently in the analysis of longitudinal  data9. Missing data is generally classified as Missing Completely at 
Random (MCAR), Missing at Random (MAR), or Not Missing at Random (NMAR)37,39,41,44–46.

Discussion and conclusion
GLMs extend the standard concept of linear models to outcome variables whose distribution is from a member 
of the exponential family. “GLM consists of three components: a stochastic component that characterizes the 
likelihood distribution of the response variable; a linear predictor that is a systematic component portraying the 
linear model characterized by the explanatory variables; and a link function that connect the mean of the response 
variable to a linear combination of the explanatory variables. Link functions that are commonly used for distribu-
tions are discussed in numerous literature”12,16,24,28,35,47–51. Parameters in GLM are estimated based on maximum 
likelihood principles. Different ways of transformations of the response variable make the transformed data to 
fulfill the linear model’s assumptions, such as approximately normally distributed and having stable variances. 
In a more common term, a transformation is a replacement that changes the shape of distribution or relation-
ship. However, transformation is often challenging for regression settings in which it additionally influences the 
practical relationship between the covariates and the outcome variable. In some cases, it is not perceived that 
the utilization of transformations changes the  model52.

Transformations are elaborative when a selected choice is not predetermined through different considera-
tions; that is, the selection of transformation is  subjective53. “GLMs avoid these problems since the data are no 
longer transformed; instead, a function of the means is modeled as a linear combination of the covariates”24,48. 
Sometimes, for example, for large values of the estimated coefficient, the use of a transformation is effective than 
using GLMs and Wald type statistics for  inference48,49. “In general, however, transformations rarely compete 
well with GLMs for adequately powered studies”48. Therefore, we analyzed the non-normal untransformed form 
of the CD4 cell count of a patient enrolled in the CAPRISA 002 AI Study in the context of GLMMs (Table 6).

Longitudinal studies, also called mixed-effects models, are used to study changes in the response variable over 
a relevant interval of time or space and the effects of different factors on these changes. The two fundamental 
issues in longitudinal studies are constructing an appropriate model for the mean and choosing a reasonable 
but parsimonious model for the covariance structure of longitudinal  data22. For these reasons, we have fitted an 
NBMM consolidated with the UN covariance structure since there was enough evidence of over-dispersion in 
the data. The chosen covariance structure gives the smallest information criteria (Supplementary Table S1). The 
comparisons between Poisson and negative binomial mixed-effects models were outlined in Table 6.

Moreover, comparisons of the covariance structure illustrated in Supplementary Table S1. GLMMs combine 
the GLMs with the LMMs. “As an extension of GLMs, they consolidate random effects into the linear predictor. 
As a mixed model, they contain at least one fixed effect and at least one random effect”54. Parameter estimation 
in GLMMs is also based on maximum likelihood principles; inferences for the parameters are readily obtained 
from classical maximum likelihood  theory22,54. “The two fundamental computational methods to attain solutions 
to the likelihood equations are a pseudo-likelihood, and integral approximation of the log-likelihood using either 
the Laplace or Gauss-Hermite quadrature strategies”16,40,55. Since pseudo-likelihood generates biased covariance 
parameter estimates when the number of observations per subject is small, it is especially inclined to biased 
estimates when the power is small and uses a pseudo-likelihood rather than a true likelihood, likelihood ratio, 
and fit statistics such as AICC and BIC have no clear meaning. However, the integral approximation uses the 
actual likelihood and grant us the appropriate likelihood ratio tests or information criteria, permitting compet-
ing models to be compared using these test statistics. Of these two, the Laplace method is best since quadrature 
is ordinarily computationally restrictive for regularly repeated measures. Moreover, the Laplace procedure is 
less computationally intensive than the quadrature procedure and is considerably more flexible in terms of the 
models with which it can be used. Detailed discussions of parameter estimation in GLMMs can be found in 
numerous  literature16,22,28,47,48,51. The fit statistics in Table 3 were obtained by using the Laplace method. If this 
method had not been specified on the SAS Proc Glimmix procedure, the default pseudo-likelihood method would 
have been used to fit the model. Because pseudo-likelihood is based on Tylor series approximation to the condi-
tional likelihood and not expressly on the conditional likelihood itself, a goodness of fit statistic which includes 
the Pearson χ2 that is particularly appropriate to the conditional distribution cannot be computed. Rather, the 
pseudo-likelihood approaches calculate a Generalized χ2 statistic that measures the combined fit of the conditional 
distribution of the counts and the random effects. Since it is not particular to solely the conditional distribution, 
it does not offer a clear cut diagnostic to evaluate the fit of the Poisson distribution to the  counts40.

The Pearson χ2/DF gives the goodness of fit statistic to evaluate over-dispersion within the Poisson model. 
Since the variance and mean of the Poisson are equal, the scale parameter (α) is 1. If the Poisson assumption is 
fulfilled, the Pearson χ2/DF ought to be close to 1. Its estimated value of 20.66 (Table 3) indicated solid prove 
of over-dispersion under the Poisson model. “Over-dispersion would mean more variability shown by the data 
than would be assumed under a given statistical model”20. Over-dispersion could be an issue that should not be 
disregarded in the statistical inferences. The essential and most critical outcome of over-dispersion is its effect 
on SEs and test statistics. This was demonstrated in Table 5, uncorrected analysis of over-dispersed data (Poisson 
model) consequences underestimated SEs, leading to biased estimates and inflated test statistics. “It is basic to 
check for over-dispersion when fitting a GLM or a GLMM to guarantee that inferences derived from the fitted 
model are precise”20. Over-dispersion is an implication that the fitted model is incorrect, and adjustments are 
required. “The two most commonly used approaches in GLMMs, to avoid unwanted outcomes outlined above, 
are: adjusting the SEs and test statistics by incorporating an adjustment for over-dispersion in the model or 
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assume a different probability distribution for the counts that more reasonably approximate the method by which 
over-dispersion emerge”48. Because the second strategy of assuming a different distribution is a reasonable and 
suggested methodology, it was illustrated in Table 5 in which the negative binomial distribution substitutes the 
Poisson distribution as the conditional distribution of the outcome. The NB distribution is the foremost candidate 
as an alternative to the  Poisson13,14. The Pearson χ2/DF value of 0.91 (Table 3) shows that the negative binomial 
gives a much-improved fit of the data compared to the Poisson model. This is one of a reasonable GLMMs 
approach for managing with over-dispersion.

Supplementary Table S2 outlined that the fixed effects are significantly influenced by the covariance structure. 
Furthermore, the covariance structure also impacted the random effects estimate: the time effects and their SEs. 
The SEs tend to be affected more than the estimates. The selection of covariance structures subjects for non-
normally distributed data, just as it does for normally distributed data. The fit statistics related to pseudo-likelihood 
estimation are not comparable among models. Consequently, the fit statistics cannot be used to select between 
competing for covariance structures. Therefore, the choice of covariance structure is not as straightforward for 
non-normal longitudinal response data as it is under normality  assumption15,52,55–58. However, for the GLMM 
approach, the situation is better. As we discussed previously, since the GLMM characterizes an exact probability 
process under the Laplace method, fit statistics such as AICC and BIC can be  obtained57. Thus, for GLMMs, 
covariance structures selection can continue much as it does for normally distributed data as long as either 
Laplace (preferable) or quadrature techniques are used. Moreover, while we have incorporated a parametric 
spatial covariance structure for the fitted negative binomial mixed-effects model, other procedures to account 
for spatial variation are of interest. Our study methodology, in theory, can be extended to deal with this issue 
using a GLMM for spatial  data29. Therefore, we leave this and other attainable extensions for future studies.

Along this line, it would be fascinating to extend this study to the quantile mixed-effects model. Most longitu-
dinal modeling techniques are primarily based on mean regression to focus only on the average effect of covariate 
and the mean trajectory of the longitudinal outcome, which is constant throughout the population. But, such 
average effects are not always of interest in lots of study areas and sometimes quite heterogeneous. Thus, quantile 
mixed-effects model has the capacity, at both the population and individual level, to discover heterogeneous 
covariates effects, and describe variations in longitudinal studies at different quantiles of the response variable, 
and hence leads to more efficient estimates, especially when the errors are over-dispersed59,60.

Data availability
The datasets used for this study can be obtained by requesting the corresponding author on reasonable request.
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