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Abstract

The use of image covariates to build a classification model has lots of impact in various

fields, such as computer science, medicine, and so on. The aim of this paper is to develop

an estimation method for logistic regression model with image covariates. We propose a

novel regularized estimation approach, where the regularization is a combination of L1 regu-

larization and Sobolev norm regularization. The L1 penalty can perform variable selection,

while the Sobolev norm penalty can capture the shape edges information of image data. We

develop an efficient algorithm for the optimization problem. We also establish a nonasymp-

totic error bound on parameter estimation. Simulated studies and a real data application

demonstrate that our proposed method performs very well.

Introduction

As one of the most important issues in machine learning field, classification plays a prominent

role throughout various disciplines. Until now people have developed a large number of classi-

fication methods, such as KNN, Linear (Quadratic) discriminant analysis, logistic regression,

naive bayes, decision tree, SVM, neural network, deep learning, and many others [1, 2].

Among all those methods logistic regression has a long history [3], and is one of the most

popular approaches. Logistic regression model is a typical representative of generalized linear

models and linear classification methods. Therefore, this article takes logistic regression as the

research object. Traditionally, maximum likelihood method is usually used to obtain an esti-

mator of the parameter in logistic regression model [4–6].

However, the big data era brings us massive complex data, one of whose most prominent

characteristics is high dimensionality. The maximum likelihood estimation method in logistic

regression model faces serious problems such as non-existence, non-uniqueness [7] in high

dimensional settings. Regularization is a popular strategy to handle high dimensional prob-

lems [8]. Many regularized methods have been proposed over the past decades, including

LASSO [9], the smoothly clipped absolute deviation (SCAD) penalty method [10], the mini-

max concave penalty (MCP) method [11], and so on. For high dimensional logistic regression,

[12] considered L1-regularization path algorithm. [13] proposed an interior-point method for

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0234975 June 26, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: An B, Zhang B (2020) Logistic regression

with image covariates via the combination of L1

and Sobolev regularizations. PLoS ONE 15(6):

e0234975. https://doi.org/10.1371/journal.

pone.0234975

Editor: Mihye Ahn, University of Nevada, Reno,

UNITED STATES

Received: July 31, 2019

Accepted: June 6, 2020

Published: June 26, 2020

Copyright: © 2020 An, Zhang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The real ZIP Code

Dataset from the following website: https://web.

stanford.edu/~hastie/StatLearnSparsity_files/

DATA/zipcode.html.

Funding: The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-5746-5472
https://doi.org/10.1371/journal.pone.0234975
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234975&domain=pdf&date_stamp=2020-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234975&domain=pdf&date_stamp=2020-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234975&domain=pdf&date_stamp=2020-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234975&domain=pdf&date_stamp=2020-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234975&domain=pdf&date_stamp=2020-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234975&domain=pdf&date_stamp=2020-06-26
https://doi.org/10.1371/journal.pone.0234975
https://doi.org/10.1371/journal.pone.0234975
http://creativecommons.org/licenses/by/4.0/
https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/zipcode.html
https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/zipcode.html
https://web.stanford.edu/~hastie/StatLearnSparsity_files/DATA/zipcode.html


large-scale L1-regularized logistic regression. [14] proposed the group lasso for logistic regres-

sion. The L1/2 regularized logistic regression is considered by [15] for gene selection in cancer

classification.

Image data is a very popular form of data, and generated in many fields, such as com-

puter science, medicine, and so on. In addition to high dimensionality, image data usually

contains spatially smooth regions with relatively sharp edges, which leads to its own charac-

teristics including local smoothness [16], jump discontinuity [17], and many others. Local

smoothness leads to highly correlated features, which makes the image classification prob-

lem more challenging [18]. Jump discontinuity makes conventional smoothing techniques

inefficient [17]. On the other hand, using these characteristics in modeling process is often

helpful for model efficiency enhancement, and has received a lot of attention recently. For

example, [19] introduced a locally adaptive smoothing method for image restoration. [16]

proposed Propagation-Separation approach for local likelihood estimation, which can han-

dle local smoothness of image data. [20] developed an adaptive regression model for the

analysis of neuroimaging data, which is a generalization of the PS approach. [21] studied

theoretical performance of nonlocal means for noise removal of image data. [17] considered

a spatially varying coefficient model for neuroimaging data with jump discontinuities. [18]

proposed a spatially weighted principal component analysis (SWPCA) for imaging classifi-

cation. [22] developed a generalized scalar-on-image regression models via total variation

regularization, which can keep the piecewise smooth nature of imaging data. [23] proposed

an efficient nuclear norm penalized estimation method for matrix linear discriminant

analysis.

In this paper, we consider a logistic regression model with image covariates, and develop

a regularized estimation approach, which combines the L1 regularization and the Sobolev

norm regularization. The L1 penalty performs variable selection and removes covariates

unrelated to the response from models [9]. The Sobolev norm penalty keeps characteristics

of image data (e.g. local smoothness) in model fitting. In fact, the Sobolev regularization is a

popular technology in image data analysis, such as image denoising [24], edge detection of

images [25], and many others. The proposed regularization method is different from the

aforementioned regularized logistic regression models. It is also different from the elastic

net method [26], which is a combination of Lasso and ridge regression. The elastic net

encourages the grouping effect, where strongly correlated predictors tend to be in or out

of the model. However, the elastic net can not exploit structure information of image

covariates, and is not suitable for models with image covariates. There are differences

between our proposed method and the fused lasso method [27]. In many real data analysis,

such as gene expression data, covariates have a order. Adjacent covariates are often highly

correlated and have similar effects on the response variable. The fused lasso tends to make

adjacent covariates share common effect on the response. The proposed method can be

treated as the extended version of the fused lasso from one dimension to multidimensions.

Moreover, the fusion term here is Sobolev norm penalty. Furthermore, we develop a novel

algorithm to solve the optimization problem. The theoretical property of our estimator is

also studied, and a nonasymptotic estimate error bound is given. Numerical studies includ-

ing simulations and a real data analysis are also considered to verify the performance of our

method.

The rest of the article is organized as follows. Section 2 presents the methodology, including

model setup, algorithm, and theoretical property. Section 3 is numerical studies, where simu-

lated studies and a real data application are presented. Lastly, we make a short conclusion in

Section 4. The proof details of theoretical studies are put in Appendix Section.
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Methodology

Model setup

Suppose that we have observations (Xi, Yi) with 1� i� n, where Yi 2 {−1, + 1} is the class

label, and Xi ¼ ðx
ðiÞ
jk : j ¼ 1; � � � ; p; k ¼ 1; � � � ; qÞ 2 Rp�q is the corresponding image covariate.

We further assume that (Xi, Yi) with 1� i� n are independent and identically distributed. In

order to predict Yi with Xi, the following logistic regression model is assumed

log
Pi

1 � Pi
¼< Xi;B >; ð1Þ

where Pi = P(Yi = +1|Xi), B ¼ ðbjkÞ 2 R
p�q

is the corresponding coefficient image, and

< Xi;B >¼
Pp

j¼1

Pq
k¼1
xðiÞjk bjk is the inner operator of two matrices. Let β = vec(B) = (β1,� � �,βpq)

T

and Xi = vec(Xi) = (xij, j = 1,� � �,pq)T for i = 1, � � �, n, then< Xi, B>= βT Xi, and the model (1) is

equivalent to Pi ¼ 1=ð1þ e� bTXiÞ. The true value of β is denoted by b
�
¼ ðb

�

1
; � � � ; b

�

pqÞ
T
.

Traditionally, maximum likelihood method is usually used to estimate coefficient image B.

The likelihood function is

LðbÞ ¼
Yn

i¼1

PIðYi¼þ1Þ

i ð1 � PiÞ
IðYi¼� 1Þ

¼
Yn

i¼1

ð1þ e� Yib
TXiÞ

� 1
;

and the corresponding log-likelihood function is lnðLðbÞÞ ¼ �
Pn

i¼1
logð1þ e� YibTXiÞ:

Denote logistic loss function as lðbÞ ¼ logð1þ e� YibTXiÞ, and the associated risk is denoted

by PlðbÞ ¼ ElðbÞ. We assume that b
�
¼ arg minbPlðbÞ. The empirical risk is denoted by

PnlðbÞ ¼ n� 1
Pn

i¼1
logð1þ e� YibTXiÞ. Hence, maximizing the likelihood function is equivalent

to minimizing the empirical risk

min
b
PnlðbÞ:

Many optimization methods, such as Newton-Raphson method [6], can be used to solve the

above problem.

However, in the image covariate case, the corresponding coefficient image B is usually

assumed to be a piecewise smooth image with unknown edges. This assumption is widely

used in the imaging literature, and is critical for addressing various scientific questions [22].

The maximum likelihood method does not take advantage of these characteristics. Moreover,

image covariate is usually high dimensional, and not every element of Xi is useful to predict

Yi. But the maximum likelihood method can not perform variable selection. Consequently, we

propose a novel estimation method for B in the next subsection, which can keep characteristics

of image covariate such as local smoothing, and perform variable selection simultaneously.

Estimation

For the coefficient image B, we define its discrete gradientrB 2 Rp�q�2 as

ðrBÞjk ¼

ðbjþ1;k � bj;k; bj;kþ1 � bj;kÞ; j < p; k < q;

ð0; bj;kþ1 � bj;kÞ; j ¼ p; k < q;

ðbjþ1;k � bj;k; 0Þ; j < p; k ¼ q;

ð0; 0Þ; j ¼ p; k ¼ q:

8
>>>>>>><

>>>>>>>:
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(rB)jk = (bj+1,k − bj,k, bj,k+1 − bj,k) is the discrete gradient at the position (j, k). Furthermore,

bj+1,k − bj,k is the discrete gradient in the vertical direction, and bj,k+1 − bj,k indicates the dis-

crete gradient in the horizontal direction. The Sobolev norm of B is the L2 norm ofrB, which

is written as

kBkSob ¼ ð
Xp

j¼1

Xq

k¼1

ðrBÞ2jkÞ
1=2
:

In fact, we can rewrite kBk2

Sob as a quadratic form of β. Specifically, we define a matrix

D ¼ ðdijÞ 2 R
ð2pq� p� qÞ�pq with dij defined in the following formula (2)

dij ¼

� 1; i ¼ ð2p � 1Þðk � 1Þ þ s; j ¼ pðk � 1Þ þ ðsþ 1Þ=2;

k ¼ 1; . . . ; ðq � 1Þ; s ¼ 1; 3; . . . ; ð2p � 3Þ;

1; i ¼ ð2p � 1Þðk � 1Þ þ s; j ¼ pðk � 1Þ þ ðsþ 1Þ=2þ 1;

k ¼ 1; . . . ; ðq � 1Þ; s ¼ 1; 3; . . . ; ð2p � 3Þ;

� 1; i ¼ ð2p � 1Þðk � 1Þ þ s; j ¼ pðk � 1Þ þ s=2;

k ¼ 1; . . . ; ðq � 1Þ; s ¼ 2; 4; . . . ; ð2p � 2Þ;

1; i ¼ ð2p � 1Þðk � 1Þ þ s; j ¼ pðk � 1Þ þ s=2þ p;

k ¼ 1; . . . ; ðq � 1Þ; s ¼ 2; 4; . . . ; ð2p � 2Þ;

� 1; i ¼ ð2p � 1Þk; j ¼ kp; k ¼ 1; . . . ; ðq � 1Þ;

1; i ¼ ð2p � 1Þk; j ¼ kpþ p; k ¼ 1; . . . ; ðq � 1Þ;

� 1; i > ð2p � 1Þðq � 1Þ; j ¼ i � ðp � 1Þðq � 1Þ;

1; i > ð2p � 1Þðq � 1Þ; j ¼ i � ðp � 1Þðq � 1Þ þ 1;

0; else:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

Then one can easily verify that kBk2

Sob ¼ b
TDTDb. We also present the matrix D with a graph

in the case p = q = 3 for the purpose of understanding. Please see Fig (1).

We then consider the following optimization problem

min
b
QðbÞ; ð3Þ

where QðbÞ ¼ PnlðbÞ þ l1b
TDTDbþ l2kbk1

, and k�k1 is the L1 norm. The term λ1 β
T DT Dβ

shrinks adjacent elements of B to be similar, hence it can capture the local smoothing of B.

The term λ2kβk1 shrinks the elements of B to 0, and performs variable selection. We next pro-

pose an algorithm to solve the optimization problem (3).

Algorithm

For the optimization problem (3), we define K = DT D = (kjl) andHðbÞ ¼ PnlðbÞ þ l1b
TKb,

then one can see that Q(β) =H(β) + λ2kβk1. This indicates that the function Q(β) is a convex

function with the separable structure [28]. [29] shows that the coordinate descent algorithm

can be guaranteed to converge to the global minimizer for any convex optimization function
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with the separable structure. Hence we here propose a coordinate descent algorithm to obtain

the solution of the optimization problem (3).

For j = 1, � � �, pq, we successively minimize Q(β) along βj direction with other parameters

fixed. Specifically, denote the current value of β as βc, and pci ¼ PðYijXi; b
c
Þ ¼ 1=ð1þ e� YiXTi bcÞ

for i = 1, � � �, n. For j = 1, � � �, pq, we use the second order Taylor expansion to approximate

functionHðbc
� j; bjÞ with b

c
� j ¼ ðb

c
1
; � � � ; b

c
j� 1
; b

c
jþ1
; � � � ; b

c
pqÞ

T
fixed. Specifically,

@Hðbc
� j; bjÞ

@bj
jbj¼bcj

¼ n� 1
Xn

i¼1

ðpci � 1ÞYixij þ 2l1

Xpq

l¼1

kjlb
c
l ;

@
2Hðbc

� j; bjÞ

@b
2

j

jbj¼bcj
¼ n� 1

Xn

i¼1

pcið1 � p
c
i Þx

2

ij þ 2l1kjj:

Hence,

Hðbc
� j; bjÞ � Hðbc

� j; b
c
j Þ þ ðn

� 1
Xn

i¼1

ðpci � 1ÞYixij þ 2l1

Xpq

l¼1

kjlb
c
l Þðbj � b

c
j Þ

þ
1

2
ðn� 1

Xn

i¼1

pcið1 � p
c
i Þx

2

ij þ 2l1kjjÞðbj � b
c
j Þ

2
:

Moreover,

Qðbc
� j; bjÞ � ðn� 1

Xn

i¼1

ðpci � 1ÞYixij þ 2l1

Xpq

l¼1

kjlb
c
l Þðbj � b

c
j Þ

þ
1

2
ðn� 1

Xn

i¼1

pci ð1 � p
c
iÞx

2

ij þ 2l1kjjÞðbj � b
c
j Þ

2
þ l2jbjj þ C;

Fig 1. The matrix D in the case p = q = 3.

https://doi.org/10.1371/journal.pone.0234975.g001
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where C is a constant containing no information about βj. Denote ðn� 1
Pn

i¼1
ðpci � 1ÞYixij þ

2l1

Ppq
l¼1
kjlb

c
l Þðbj � b

c
j Þ þ

1

2
ðn� 1

Pn
i¼1
pcið1 � p

c
iÞx

2
ij þ 2l1kjjÞðbj � b

c
j Þ

2
þ l2jbjj by ~QðbjÞ. One

can update βj through minimizing ~QðbjÞ. Specifically, by

@ ~QðbjÞ
@bj

¼ ðn� 1
Xn

i¼1

ðpci � 1ÞYixij þ 2l1

Xpq

l¼1

kjlb
c
l Þ

þðn� 1
Xn

i¼1

pcið1 � p
c
i Þx

2
ij þ 2l1kjjÞðbj � b

c
j Þ þ l2

@jbjj

@bj
¼ 0;

where
@jbjj

@bj
is the subderivative, that is

@jbjj

@bj
¼ signðbjÞ if βj 6¼ 0 and

@jbjj

@bj
2 ½� 1; 1� otherwise, we

have that

bj � b
c
j þ ðn

� 1
Xn

i¼1

pcið1 � p
c
iÞx

2
ij þ 2l1kjjÞ

� 1

�ðn� 1
Xn

i¼1

ðpci � 1ÞYixij þ 2l1

Xpq

l¼1

kjlb
c
l Þ ¼ l2ðn� 1

Xn

i¼1

pcið1 � p
c
iÞx

2
ij þ 2l1kjjÞ

� 1
@jbjj

@bj
:

Consequently, one can update βj as

b
c
j  signðDc

j Þ
�
jD

c
j j � l2ðn� 1

Xn

i¼1

pci ð1 � p
c
iÞx

2

ij þ 2l1kjjÞ
� 1
�

þ
;

where D
c
j ¼ b

c
j � ðn

� 1
Pn

i¼1
pcið1 � p

c
iÞx

2
ij þ 2l1kjjÞ

� 1
ðn� 1

Pn
i¼1
ðpci � 1ÞYixij þ 2l1

Ppq
l¼1
kjlb

c
l Þ.

We summarize the algorithm as follows.

Coordinate

• Step 1. Initialization. Given initial value β.

• Step 2. For t = 1, 2, � � �, update β.

For j = 1, � � �, p

• Compute pi for 1� i� n;

• Let Dj ¼ bj � ðn� 1
Pn

i¼1
pið1 � piÞx2

ij þ 2l1kjjÞ
� 1
ðn� 1

Pn
i¼1
ðpi � 1ÞYixij þ 2l1

Ppq
l¼1
kjlblÞ;

• Update bj  signðDjÞ
�
jDjj � l2ðn� 1

Pn
i¼1
pið1 � piÞx2

ij þ 2l1kjjÞ
� 1
�

þ
;

End for.

• Step 3. Repeat Step 2 until convergence.

By the proposed algorithm, we can obtain the solution of (3), which is denoted by b̂. As the

estimator for β, the theoretical properties of b̂ are studied in the next subsection.

Theoretical properties

In this subsection, we consider the properties of b̂. A nonasymptotic error bound of b̂

is given. We assume that the true value β� is sparse. Let I� ¼ f1 � j � pq : b
�

j 6¼ 0g, and

k� ¼
Ppq

j¼1
Iðb�j 6¼ 0Þ be the cardinality of I�. For the purpose of theoretical studies, we make

the following assumptions.
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Assumption 1. Assume that there exists a constant L such that |xij|� L for every 1� i� n,

1� j� pq.

Assumption 2. Assume that there exists a constant C such that kβ�k1� C.

Assumption 3. For the matrix K, assume that there exists a constant C0 such that λmax(K)�

C0, where λmax(K) is the largest eigenvalue of K.

Assumption 4. Let S ¼ EðXiXT
i Þ. Define the set

Va;� ¼
n
b 2 Rpq :

P
j=2I� jbjj � a

P
j2I� jbjj þ �

o
for some a; �: Assume that there exists a con-

stant 0 < b � 1 such that for every β 2 Vα, �,

PðbTSb � b
X

j2I�
b

2

j � �Þ ¼ 1:

Assumption 1 makes a common bound L for all xij with i = 1, � � �, n, j = 1, � � �, pq. Assump-

tion 2 gives a bound for kβ�k1. Combining Assumptions 1 and 2, one can make sure that

Pi with 1� i � n are bounded away from zero and one. Pi equalling zero or one will cause

the i-th subject to be either ignorable or dominant in the likelihood function, that is not

expected to appear in statistical analysis. This case can be avoided by Assumptions 1 and 2.

In Assumption 3, we assume that the largest eigenvalue of K is bounded. Assumption 4 is

called Condition Stabil, which can be regarded as a stability requirement on the correlation

structure [30]. Under these assumptions, we have the following theorem.

Theorem 1 Assume that Assumptions 1-3 are true and Assumption 4 holds for
a ¼ 5; � ¼ ln 2

2d
� 3

l2
with d = max{pq, n}, let λ1 = λ2/(6CC0), if

l2 � 3 7L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln ð2dÞ

n

r

þ
L
2d
þ 2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 ln d
n

r !

; ð4Þ

then we have that

P kb̂ � b�k1 �
3k�l2

sb
þ 1þ

3s
l2

� �

�

� �

> 1 � d;

where s = (1 + eA)−4 with A = 8CL is a constant.
The proof of Theorem 1 is put in the appendix section. The theorem shows that with a high

probability, the L1 norm of estimate error is bounded by 3k�λ2/(sb) + (1 + 3s/λ2)�. One can

see that the term (1 + 3s/λ2)� = O(d/2d), which can be negligible for large d. Hence, the term

3k�λ2/(sb) dominates the upper bound, which becomes larger when b becomes smaller. If fur-

ther assume that ln(pq) = o(n), by the condition (4) one can see that λ2 can tend to 0. Further

3k�λ2/(sb)! 0, that means the upper bound can tend to zero. Consequently, the consistency

of b̂ can be guaranteed.

The selection of tuning parameters

The optimization function (3) contains two tuning parameters λ1 and λ2, which should be

determined by some criteria, such as BIC, cross validation method. In our simulation studies,

we select the tuning parameters by a validation set. And in real data analysis, the cross valida-

tion method is used. Before applying these methods, one should firstly determine the value

range of tuning parameters. Specifically, we here make a transformation of λ1 and λ2. Let

λ = λ1 + λ2, and α = λ2/λ. Then the penalty terms in (3) can be rewritten as λ(αkβk1 + (1 − α)βT

Kβ). Because α 2 [0, 1], the alternative values of α are set as 0.02κ for κ = 1, � � �, 50. With a
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given α, we denote λ0 as the threshold value. Once λ� λ0, the solution of (3) is exactly zero. By

@QðbÞ
@b

¼
1

n

Xn

i¼1

e� YibTXi

1þ e� YibTXi
ð� YiXiÞ þ 2lð1 � aÞKbþ la

@kbk1

b
¼ 0;

one can see that once β = 0 is the solution, every element of 1=ð2lanÞ
Pn

i¼1
ð� YiXiÞ belongs to

[−1, 1]. This means that l0 ¼ 1=ð2anÞk
Pn

i¼1
ðYiXiÞk1. Following the idea of [14], the alterna-

tive values of λ are set as 0.001 and 0.96νλ0 for ν = 0, 1, � � �, 160. For the validation set method,

the prediction error on the validation set of our approach with tuning parameters α, λ is

denoted by PE(α, λ). The final α, λ are selected as the minimizer of PE(α, λ).

For theM-fold cross validation method, the data are randomly divided intoM folds of

approximately equal size. Form = 1, � � �,M, we treat them fold as the validation set, and fit the

model with tuning parameters α, λ on the remaining M − 1 flods. The corresponding predic-

tion error on the validation set is denoted by PEðmÞða;lÞ and the cross validation prediction error is

defined as

PEðcvÞða;lÞ ¼
1

M

XM

m¼1

PEðmÞða;lÞ:

The α, λ are selected as the minimizer of the cross validation prediction error [6].

Numerical studies

In this section, we evaluate the performance of our proposed method by two simulated

examples and a real data analysis. For the purpose of comparison, we also consider the logis-

tic regression model with L1 penalty [12, 13], the logistic regression model with fused lasso

penalty, and linear support vector machine, which are denoted by LG-L1, LG-fused, and Lin-

ear SVM respectively for convenience. Meanwhile, our proposed method is abbreviated as

LG-sob.

Simulation studies

Example 1. We generate data from the following model

log
PðYi ¼ þ1jXiÞ

PðYi ¼ � 1jXiÞ
¼< Xi;B0 >; i ¼ 1; � � � ; n;

where Xi and B0 both belong to R32�32
. One result caused by image covariates is that the corre-

sponding regression coefficient can be treated as a image too. Hence we here just treat B0 as

images, while Xi is generated from a multivariate normal distribution. Specifically, we define

the vectorization of Xi as Xi, and Xi is generated from a multivariate normal distribution with

mean 0 and covariance covðxij1 ; xij2Þ ¼ 0:5jj1 � j2 j for any 1� j1, j2� 1024. The parameter image

B0 is considered in two cases, which have been shown in Fig 2. The first case of B0 denoted by

B01 is a bird picture, in which the blue region takes value 0, and the yellow region takes value 1.

The other case of B0 denoted by B02 is a butterfly picture, which is more complicated and takes

values in interval [−0.0197, 0.0628]. Given Xi and B0, the response Yi is generated from a two-

point distribution PðYi ¼ þ1jXiÞ ¼ 1 � PðYi ¼ � 1jXiÞ ¼ 1=ð1þ e� <Xi ;B0>Þ.

Example 2. In this example, the mechanism of data generation is similar to that for Exam-

ple 1, the only difference is that we generate Xi in a more complex way. In particular, we follow

the simulation scheme of [22] and generate Xi from a 32 × 32 phantom map with 1024 pixels
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according to a spatially correlated random process Xi = ∑l l−1 ηil φl, among which the ηil are

standard normal random variables and the φl are bivariate Haar wavelet basis functions.

For these two simulated examples, along with the training set with sample size n, we also

generate a validation set and a test set with sample sizes both being 500. We train the model on

the training set, select tuning parameters through the validation set, and calculate the classifi-

cation accuracy on the test set to evaluate the performance of the model.

For every specification of the parameter B0 and sample size n, we replicate the simulation

100 times for each example, and the average prediction errors are computed and summarized

in Table 1 for Example 1, and Table 2 for Example 2 respectively. Besides the prediction errors,

we also calculate the average estimation errors
P100

i¼1
kB̂i � B0k

2
=100 for LG-sob, LG-L1 and

LG-fused, where B̂i is the parameter image estimator in the i-th time. From the results, one

can see that our proposed method performs better than the other three methods in all cases

from the prediction perspective. As sample size n becomes larger, the prediction errors will

become smaller, but the estimation errors do not decrease congruously. The reason may be

that the tuning parameters are selected based on minimization of prediction error.

Fig 2. Simulated example. The true parameter images B0.

https://doi.org/10.1371/journal.pone.0234975.g002

Table 1. Results of simulated example 1: Prediction error (PE) and estimation error (EE).

(n, B0) (500, B01) (1000, B01) (500, B02) (1000, B02)

PE EE PE EE PE EE PE EE

LG-sob 0.099 337.645 0.075 336.173 0.107 8.153 0.080 13.505

LG-L1 0.272 404.589 0.199 375.926 0.272 17.354 0.204 23.143

LG-fused 0.248 423.242 0.190 406.866 0.248 7.016 0.190 9.400

Linear SVM 0.221 NA 0.174 NA 0.223 NA 0.172 NA

https://doi.org/10.1371/journal.pone.0234975.t001

Table 2. Results of simulated example 2: Prediction error (PE) and estimation error (EE).

(n, B0) (500, B01) (1000, B01) (500, B02) (1000, B02)

PE EE PE EE PE EE PE EE

LG-sob 0.028 181.06 0.023 176.19 0.049 582.94 0.038 1096.1

LG-L1 0.073 1712.6 0.058 1501.7 0.116 2190.9 0.090 3022.4

LG-fused 0.052 438.57 0.044 495.73 0.097 482.19 0.076 775.99

Linear SVM 0.050 NA 0.038 NA 0.084 NA 0.071 NA

https://doi.org/10.1371/journal.pone.0234975.t002
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Moreover, we also randomly select one simulated result from the 100 replications of

Example 1, and show the parameter image estimations in Fig 3. One can see that our proposed

LG-sob method can capture the shapes of images, but LG-L1 and LG-fused do not have this

property.

A real data analysis

The classification of the ZIP Code Dataset is a benchmark problem in machine learning com-

munity [6]. One can obtain the ZIP Code Dataset from the following website https://web.

stanford.edu/~hastie/StatLearnSparsity_files/DATA/zipcode.html [28]. The Dataset contains

normalized handwritten digits, which are automatically scanned from envelopes by the U.S.

Postal Service. Every observation is a handwritten digit, and is represented as a size normalized

16 × 16 grayscale image [31]. The purpose is to use the 256 pixel values to predict the corre-

sponding digit. The Dataset contains a training set with 7291 observations and a test set with

Fig 3. Simulated example. One of randomly selected parameter images estimations. The first row is the results of our

proposed LG-sob, the second row is the results of LG-L1, the third row is the results of LG-fused.

https://doi.org/10.1371/journal.pone.0234975.g003
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2007 observations. Because this article only considers the binary response prediction by logis-

tic regression models, and it looks like that numbers 3 and 8 have more similar characteristics,

hence we only consider handwritten 3’s and 8’s in this paper. The sizes of handwritten 3’s and

8’s are 658 and 542 respectively in the train set, while they are both 166 in the test set. Fig 4

shows some examples of handwritten 3’s and 8’s.

More specifically, we denote the i-th observation by Xi 2 R
16�16

, and define the correspond-

ing class label Yi = −1 if Xi represents handwritten 3 and Yi = + 1 if Xi represents handwritten

8. Our proposed method is applied to construct the classifier for the prediction of Yi (i.e. hand-

written numeral) based on the grayscale image Xi. We train the model on the training set,

and evaluate the performance of the proposed method on the test set by classification accuracy.

For the purpose of comparison, we also consider the logistic regression model with only L1

penalty.

The tuning parameters are selected by 10-fold cross validation (CV) method. The CV pre-

diction errors in various parameters setting are calculated and plotted in Fig 5. Finally, our

proposed method selects the tuning parameters as α = 0.04, λ = 0.0118, while the method with

L1 penalty selects the tuning parameter as λ = 0.0014. The parameter image estimations of the

two methods are shown in Fig 6. One can see that our proposed method tends to make adja-

cent pixels have similar effects on the model. Meanwhile, LG-L1 tries to obtain a more sparse

parameter estimation, and LG-fused method tries to make pixels only adjacent in the vertical

direction have similar effects. The top-left region of parameter image has positive effects on

handwritten numeral 8, and the bottom-right region has positive effects on handwritten

numeral 3. The classification accuracy on the test set of our proposed method is 96.99%, while

the accuracies of LG-L1, LG-fused, and Linear SVM are 96.39%, 96.08% and 96.39%, respec-

tively. The proposed method performs better.

Conclusion

We have developed a novel estimation method for logistic regression with image covariates.

This method can not only perform variable selection, but also capture the shape features of

Fig 4. Real data analysis. Some examples of handwritten 3’s and 8’s.

https://doi.org/10.1371/journal.pone.0234975.g004
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the parameter images. Both theoretical results and numerical studies show that our method

performs well. We have proposed a coordinated descent algorithm to solve the optimization

problem, and the global convergence of the algorithm is guaranteed. However, as pointed

out by one referee, the coordinated descent algorithm is very time consuming, especially

in the case of high dimensional image covariates. Many more efficient optimalization

approaches, such as Nesterov accelerated gradient methods [32], interior-point methods

[13], may be more suitable. We will research this issue in future. Furthermore, our method

is mainly based on Sobolev norm regularization, compared to which total variation

Fig 5. Real data analysis. The results of 10-fold CV: Prediction error in various parameters settings.

https://doi.org/10.1371/journal.pone.0234975.g005

Fig 6. Real data analysis. The parameter image estimations. Left: the estimation of our proposed LG-sob; Middle: the

estimation of LG-L1; Right: the estimation of LG-fused.

https://doi.org/10.1371/journal.pone.0234975.g006
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regularization is more sensitive to capture sharp edges and jumps of parameter images. How-

ever, the algorithm of total variation regularization based estimation method is more com-

plex, which can be our future work to study.

Appendix: Proof of Theorem 1

Before giving the proof of Theorem 1, we first list the bounded differences inequality as the fol-

lowing lemma without proof.

Lemma 1 (the Bounded Differences Inequality) Suppose that X1; � � � ;Xn 2 H are indepen-
dent, and the function f : Hn

! R satisfies the bounded difference assumption

sup
x1 ;���;xn;x

0

i2H

jf ðx1; � � � ; xnÞ � f ðx1; � � � ; xi� 1; x
0

i; xiþ1; � � � ; xnÞj � ci;

for i = 1, � � �, n. Then for all t> 0,

Pðf � Eðf Þ � tÞ � e� 2t2=
Pn

i¼1
c2i :

For more details about Lemma 1 and its proof, one can refer to [33]. The following is the

proof of Theorem 1.

Proof of Theorem 1. By the definitions of b̂ and β�, one can see that

Plðb̂Þ � Plðb�Þ;

and

Pnlðb̂Þ þ l1b̂
TKb̂ þ l2kb̂k1

� Pnlðb
�
Þ þ l1b

�TKb� þ l2kb
�
k

1
:

Hence, we have that

0 � Plðb̂Þ � Plðb�Þ

� ðPn � PÞðlðb
�
Þ � lðb̂ÞÞ þ l1ðb

�TKb� � b̂TKb̂Þ þ l2ðkb
�
k

1
� kb̂k

1
Þ:

ð5Þ

Moreover,

l2=3kb̂ � b
�
k

1

� l2=3kb̂ � b
�
k

1
þ l1ðb̂ � b

�
Þ
TKðb̂ � b�Þ

� l2=3kb̂ � b
�
k1 þ l1ðb̂ � b

�
Þ
TKðb̂ � b�Þ þ Plðb̂Þ � Plðb�Þ

� l2=3kb̂ � b
�
k1 þ l1ðb̂ � b

�
Þ
TKðb̂ � b�Þ þ l1ðb

�TKb� � b̂TKb̂Þ

þðPn � PÞðlðb
�
Þ � lðb̂ÞÞ þ l2ðkb

�
k1 � kb̂k1Þ:

ð6Þ

We first consider the term ðPn � PÞðlðb
�
Þ � lðb̂ÞÞ. Specifically, define Ln ¼ sup b

ðPn � PÞðlðb�Þ� lðbÞÞ
kb� b�k1þ�

.

Let lðb;Yi;XiÞ ¼ logð1þ e� YibTXiÞ, and

PnllðbÞ ¼
1

n
ð
Xn

i¼1;i6¼l

lðb;Yi;XiÞ þ lðb;Y 0l ;X
0

l ÞÞ;
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which is the empirical measure corresponding to replacing (Yl, Xl) by ðY 0l ;X
0

l Þ. Then

ðPn � PÞðlðb
�
Þ � lðbÞÞ

kb � b
�
k

1
þ �

�
ðPnl � PÞðlðb

�
Þ � lðbÞÞ

kb � b
�
k

1
þ �

¼
1

n
lðb�;Yl;XlÞ � lðb;Yl;XlÞ � lðb

�
;Y 0l ;X

0

l Þ þ lðb;Y 0l ;X
0

l Þ

kb � b
�
k

1
þ �

�
4L
n
kb � b

�
k1

kb � b
�
k1 þ �

�
4L
n
;

among which the inequality is obtained by a first order Taylor expansion and the assumption 1.

Then by Lemma 1, we can obtain that

PðLn � EðLnÞ � uÞ � expf�
nu2

8L2
g :

Let d ¼ exp � nu2

8L2

� �
, then we have that u ¼ 2L

ffiffiffiffiffiffiffiffiffi
� 2ln d
n

q
, and P(Ln − E(Ln)� u)� δ.

Let d = max{pq, n}. Taking � ¼ ln 2

2d
� 3

l2
, by the lemma 3 of [34] with Cφ = 1, CF = L, we have

EðLnÞ � 7L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2dÞ

n

r

þ
L
2d
:

Consequently, we have that

PðLn � 7L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln ð2dÞ

n

r

þ
L
2d
þ 2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 ln d
n

r

Þ � 1 � d:

By the condition of Theorem 1, we know l2 � 3 7L
ffiffiffiffiffiffiffiffiffiffiffi
2 ln ð2dÞ

n

q

þ L
2d þ 2L

ffiffiffiffiffiffiffiffiffiffi
� 2 ln d

n

q� �
, hence

P(Ln� λ2/3)� 1 − δ.

On the event {Ln� λ2/3}, we have that

ðPn � PÞðlðb
�
Þ � lðb̂ÞÞ �

l2

3
ðkb � b

�
k1 þ �Þ: ð7Þ

Secondly, we consider the term l1ðb̂ � b
�
Þ
TKðb̂ � b�Þ þ l1ðb

�TKb� � b̂TKb̂Þ. Based on

Assumptions 2 and 3, one can see that

l1ðb̂ � b
�
Þ
TKðb̂ � b�Þ þ l1ðb

�TKb� � b̂TKb̂Þ

¼ 2l1b
�TKðb� � b̂Þ

� 2l1lmax ðKÞkb
�
k

2
kb̂ � b

�
k

2

� 2l1lmax ðKÞkb
�
k

1
kb̂ � b

�
k

1

� 2l1CC0kb̂ � b
�
k1:

One can see that if λ1 = λ2/(6CC0), we have

l1ðb̂ � b
�
Þ
TKðb̂ � b�Þ þ l1ðb

�TKb� � b̂TKb̂Þ � l2=3kb̂ � b
�
k

1
: ð8Þ
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Consequently, on the event {Ln� λ2/3} we combine (6), (7), (8), and obtain

l2=3kb̂ � b
�
k

1
� l2kb̂ � b

�
k

1
þ l2ðkb

�
k

1
� kb̂k

1
Þ þ l2=3�

� l2ðkb̂k1 þ kb
�
k1Þ þ l2ðkb

�
k1 � kb̂k1Þ þ l2=3�

� 2l2kb
�
k

1
þ l2=3�:

ð9Þ

Hence we have that

kb̂ � b
�
k1 � 6kb

�
k1 þ � � 7C: ð10Þ

By (9) one can also obtain that

kb̂ � b
�
k

1
� 3kb̂ � b

�
k

1
þ 3ðkb

�
k

1
� kb̂k

1
Þ þ �

¼ 3ð
X

j2I�
jb̂ j � b

�

j j þ
X

j=2I�
jb̂ jj þ

X

j2I�
jb
�

j j �
Xpq

j¼1

jb̂ jjÞ þ �

¼ 3ð
X

j2I�
jb̂ j � b

�

j j þ
X

j2I�
jb
�

j j �
X

j2I�
jb̂ jjÞ þ �

� 6
X

j2I�
jb̂ j � b

�

j j þ �:

Consequently, we have
P

j=2I� jb̂ j � b
�

j j � 5
P

j2I� jb̂ j � b
�

j j þ �. This means that b̂ � b
�
2 V5;�.

By the example 4.5 in [35], we have that Plðb̂Þ � Plðb�Þ � EXðPðb̂Þ � Pðb
�
ÞÞ

2
, where

P(β) = 1/(1+ e−X
T β) and EX(�) is the expectation with respect to the distribution of X. Using

Taylor expansion, one can obtain that

Pðb̂Þ � Pðb�Þ ¼
e~bTX

ð1þ e~bTXÞ
2
XTðb̂ � b

�
Þ;

where ~b ¼ tb̂ þ ð1 � tÞb
�

for some τ 2 (0, 1). Moreover, by (10) and Assumptions 1-2, we

have ~bTX � k~bk1L � ðtkb̂ � b
�
k1 þ kb

�
k1ÞL � 8CL: This means that

ðPðb̂Þ � Pðb�ÞÞ2 � sðb̂ � b�ÞTXXTðb̂ � b
�
Þ;

where s = (1 + eA)−4 and A = 8CL, then by Assumption 4 we have that

Plðb̂Þ � Plðb�Þ � EXðPðb̂Þ � Pðb
�
ÞÞ

2
� sðb̂ � b�ÞTSðb̂ � b�Þ � sb

X

j2I�
ðb̂j � b

�

j Þ
2
� s�: ð11Þ
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Furthermore, we have

l2

3
kb̂ � b

�
k1 þ sb

X

j2I�
ðb̂j � b

�

j Þ
2
� s�

�
l2

3
kb̂ � b

�
k1 þ Plðb̂Þ � Plðb

�
Þ

� l2=3kb̂ � b
�
k1 þ l1ðb

�TKb� � b̂TKb̂Þ þ ðPn � PÞðlðb
�
Þ � lðb̂ÞÞ

þl2ðkb
�
k1 � kb̂k1Þ

� l2=3kb̂ � b
�
k1 þ l1ðb̂ � b

�
Þ
TKðb̂ � b�Þ þ l1ðb

�TKb� � b̂TKb̂Þ

þðPn � PÞðlðb
�
Þ � lðb̂ÞÞ þ l2ðkb

�
k

1
� kb̂k

1
Þ

� l2kb̂ � b
�
k

1
þ l2ðkb

�
k

1
� kb̂k

1
Þ þ l2=3�

¼ l2ð
X

j2I�
jb̂ j � b

�

j j þ
X

j=2I�
jb̂j jÞ þ l2ð

X

j2I�
jb
�

j j �
X

j2I�
jb̂j j �

X

j=2I�
jb̂j jÞ

þl2=3�

¼ l2

X

j2I�
jb̂ j � b

�

j j þ l2ð
X

j2I�
jb
�

j j �
X

j2I�
jb̂j jÞ þ l2=3�

� 2l2

X

j2I�
jb̂ j � b

�

j j þ l2=3�;

where the first inequality follows by (11), the second inequality follows by (5), and the fourth

inequality is obtained by combining the results of (7) and (8). Consequently, we have

kb̂ � b
�
k1 þ

3

l2

sb
X

j2I�
ðb̂j � b

�

j Þ
2
� 6
X

j2I�
jb̂j � b

�

j j þ ð1þ
3s
l2

Þ�

� 9ak� þ
1

a

X

j2I�
ðb̂j � b

�

j Þ
2
þ ð1þ

3s
l2

Þ�;

where a is a positive constant and the second inequality follows by

6jb̂j � b
�

j j ¼ 2 � 3a1=2 � a� 1=2jb̂j � b
�

j j � 6aþ ðb̂j � b
�

j Þ
2
=a:

Let a = λ2/(3sb), then

kb̂ � b
�
k1 �

3k�l2

sb
þ ð1þ

3s
l2

Þ�:

This completes the proof of the Theorem.
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