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Abstract

Motivation: Computation of steady-state flux solutions in large metabolic models is routinely per-

formed using flux balance analysis based on a simple LP (Linear Programming) formulation. A

minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal

loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a sub-

stantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally ex-

pensive for large metabolic models.

Results: We developed a pre-processing algorithm that significantly reduces the size of the original

loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a

fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent re-

sults on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities,

Fast-SNP considerably improves the computational efficiency in several metabolic models running

different loopless optimization problems. Furthermore, analysis of the topology encoded in the

reduced loop matrix enabled identification of key directional constraints for the potential perman-

ent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and

simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimiza-

tion feasible and numerically tractable at large scale.

Availability and Implementation: Source code for MATLAB including examples is freely available

for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses

Gurobi, CPLEX or GLPK (the latter is included with the algorithm).

Contact: lars.nielsen@uq.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Constrained-based methods are the most popular methods for

exploring the capabilities of genome-scale metabolic models

(GEMs) (Lewis et al., 2012). GEMs have been reconstructed for

many model organisms (Dal’Molin et al., 2010a; Duarte et al.,

2007; Edwards and Palsson, 2000; Forster et al., 2003), enabling

comprehensive study of the genotype–phenotype relationship,

cellular physiology, metabolic capabilities, among others (Bordbar

et al., 2014a). More recently, these reconstructions have included

larger and more complex networks, describing different cellular

interactions (Bordbar et al., 2010; Lewis et al., 2010), microbial

communities (Shoaie et al., 2015; Stolyar et al., 2007; Zhuang et al.,

2011) and multi-tissue organisms (Bordbar et al., 2011; Dal’Molin

et al., 2010b, 2015). The increased complexity of current metabolic
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models demands efficient constrained-based methods to compute

possible network states, especially thermodynamically feasible ones.

Computation of thermodynamically feasible states is computation-

ally hard (Müller and Bockmayr, 2013), severely limiting its applica-

tion to large-scale models. Efficient computational methods are thus

needed to interrogate the consequences of thermodynamic feasibility

on these models.

GEMs are mathematically represented by the stoichiometric ma-

trix S 2 Rm�n, which encodes the mass balances for m internal me-

tabolites involved in n reactions. The capacity of each reaction is

phenomenologically constrained by thermodynamics and enzyme

kinetics through the use of appropriate lower lb and upper ub

bounds on the vector of reaction fluxes v 2 Rn (Equation 1).

Assuming vanishing accumulation of internal metabolites (Equation

2), the space of feasible steady-state fluxes is defined by the follow-

ing set of constraints (hereafter referred as mass balance

constraints),

lb � v � ub (1)

S � v ¼ 0 (2)

This typically highly undetermined space is readily explored

using Flux Balance Analysis (FBA). Given an optimality criterion,

FBA uses linear optimization to compute a steady-state flux solution

that maximizes a defined objective such as growth rate, ATP pro-

duction, among others (Orth et al., 2010b). The flexibility of the

network under (sub)optimal conditions can be further assessed using

Flux Variability analysis (FVA) (Mahadevan and Schilling, 2003).

FVA computes the minimum and maximum flux through each reac-

tion capable of supporting a defined network state. Equations (3)

and (4) describe the LP formulations of the above optimization

problems,

FBA : maxv cT � v

s:t: fmass balance constraintsg
(3)

FVA : maxv =minv vi; i 2 f1; . . . ; ng

s:t: cTv � a � zopt

fmass balance constraintsg

(4)

where c represents the objective vector, zopt denotes the optimal

value found by FBA, and a is a parameter describing the degree of

optimality w.r.t. FBA, i.e. for suboptimal analysis 0 � a < 1,

whereas a ¼ 1 for alternative optima analysis. Although FBA and

FVA provide feasible steady-state flux solutions, they are not guar-

anteed to be thermodynamically feasible. Additional constraints on

the flux vector v are needed to ensure this and a minimal criterion

for thermodynamic feasibility is the absence of internal loops. Let us

define the ‘loop-law’ matrix, Nint 2 Rni�l, the matrix containing a

null space basis of the stoichiometric matrix of internal reactions

Sint 2 Rmi�ni , and, vint and Dlint the internal reaction and the corres-

ponding chemical potential vectors, respectively. A steady-state flux

solution v* is thermodynamically feasible if, (i) the global potential

energy of the network is balanced, i.e., NT
int � Dl�int ¼ 0 (first law),

and (ii) reactions proceed in the opposite direction of chemical po-

tential change, i.e. diagðDl�intÞ � v�int � 0 (second law). These two

conditions hold simultaneously true if and only if the net flux

around all closed loops is equal to zero, i.e. v* is ‘loopless’ (Beard

et al., 2002). The loopless condition can be enforced by formulating

mixed-integer linear constraints on vint (hereafter referred as loop-

less constraints) (Schellenberger et al., 2011),

NT
int � Dlint ¼ 0

1� eint � ðKþ 1Þ � Dlint � K� eint � ðKþ 1Þ

�K � ð1� eintÞ � vint � K � eint

eint;i 2 f0; 1g i 2 f1; . . . ;nig; Dlint 2 Rni ; K large ðe:g:; 103Þ

(5)

Addition of Equation (5) to Equations (3) to (4) yields two MILP

formulations commonly known as ll-FBA and ll-FVA (‘ll’ stands for

loopless). Inclusion of the loopless constraints not only increases the

size of the problem (decision variables are now eint, v, Dmint), but

also yields a harder optimization problem. Computationally, this

problem has recently been addressed by recasting ll-FVA into a ser-

ies of LP problems, in which steady-state flux solutions are com-

puted by conventional FBA and corrected by iteratively blocking all

infeasible cycles (Desouki et al., 2015; Müller and Bockmayr,

2013). Here, we proposed a different approach where loopless con-

straints are reduced to a sufficient set of feasible loop laws, enabling

efficient computation of loopless flux optimization problems. In this

way, once the sufficient set of loop laws has been found, any stand-

ard loopless optimization problem can be formulated and solved

using a single optimization problem without post-processing.

In this work, we present a pre-processing algorithm—Fast-

SNP—for efficient formulation of loopless constraints. We note that

it is always possible to pre-process the loop-law matrix Nint con-

strained to known directionalities, so that the reduced set of con-

straints yields an easier-to-solve, yet equivalent MILP problem. By

using a fast sparsification algorithm, Fast-SNP generates a reduced

feasible loop-law basis ~Nint, accounting for these directionalities.

Application of Fast-SNP considerably reduced computation times

during loopless flux optimization compared with the traditional ap-

proach in different metabolic models. Furthermore, our approach

identifies key directional constraints, which may enable elimination

of infeasible cycles in the underlying GEM. Altogether, Fast-SNP en-

ables efficient computation of thermodynamically feasible flux solu-

tions in GEMs.

2 Methods

2.1 A useful matrix pre-processing algorithm for

efficient loopless flux optimization
The motivation of our method stems from the observation that not

all internal loop laws are feasible given the directionalities defined

by Equation (1) (Saa and Nielsen, 2016). We previously exploited

this fact to detect ‘potentially active or feasible loop-laws’ in meta-

bolic models using the conventional representation of Nint (e.g.

reduced row echelon form of NT
int), enabling faster discovery of

infeasible random flux samples (Saa and Nielsen, 2016). This

reduced set of feasible loop-laws cannot immediately be used for

loopless flux computation. However, if we are able to derive a

reduced basis of Nint containing a minimum set of feasible loop-

laws, then the computed loopless flux solutions will be accurate (see

Supplementary Fig. S1 for an illustrative example). In addition to

minimizing the number of loop-laws, we decided to simplify the

laws through sparsification. We developed a fast matrix pre-

processing algorithm motivated by recent progress in the matrix

sparsification field (Bian et al., 2015). As opposed to sparsification

algorithms based on MILP formulations (Bordbar et al., 2014b), our

approach relies on an LP formulation that is not guaranteed to find

the ‘sparsest’ null space basis, i.e. least number of non-zero entries,

but quickly generates a reduced feasible basis for efficient computa-

tion of thermodynamically feasible flux solutions.

3808 P.A.Saa and L.K.Nielsen

Deleted Text: ,
Deleted Text: &hx2009;&hx2264;&hx2009;
Deleted Text: &hx2009;&hx003C;&hx2009;
Deleted Text: &hx2009;&hx003D;&hx2009;
Deleted Text: While 
Deleted Text: o
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
Deleted Text: ,
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text: to 
Deleted Text: genome-scale metabolic model
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw555/-/DC1
Deleted Text: ,


The general workflow for efficient loopless flux optimization is illus-

trated with a toy model (Fig. 1). First, the network stoichiometry is for-

mulated and the internal and exchange reaction matrices, Sint and Sext,

are defined (Fig. 1A). Next, an initial basis Nint is found using singular

value decomposition (SVD). Conventional loopless optimization would

use this matrix or a reduced row echelon form of NT
int as constraint for

loopless flux computation (Equation 5). In this example, out of the three

possible independent loop laws found using these methods, there are

only two feasible loop laws—L1 and L2—given the directionalities of v1

and v2, i.e. L3 cannot form a loop (Fig. 1B). Thus, a reduced basis ~Nint

can be constructed using just the first two loop laws. This basis is read-

ily found using Fast-SNP by integrating the topology of Sint and direc-

tionality constraints. Implementation of this pre-processing step

significantly improves computational performance in a diverse family of

loopless optimization problems (Fig. 1C). In the following, we present

our algorithm for pre-processing the loop-law matrix Nint.

2.2 A fast matrix sparsification for efficient formulation

of loop-law constraints
The problem of finding the sparsest linear basis of the null space—

or the Sparse Null-space Basis problem (SNB)—is motivated by its

application to linear equality problems arising in constrained opti-

mization problems (Gottlieb and Neylon, 2010). Coleman and

Pothen (1986) demonstrated that a greedy algorithm must find the

SNB of a matrix Am�n in r¼n� rank(A) steps, provided that at

each step the subproblem of finding the sparsest null-space vector

(SNV) can be solved. Since SNV is NP-complete, SNB is NP-hard

(Coleman and Pothen, 1986), and the use of approximate algo-

rithms to solve SNB is justified. Recently, Bian et al. (2015) pro-

posed a convex-relaxation of the SNB—referred to as the Sparse

Null-space Pursuit (SNP)—where a sparse basis is computed in r�n

LP optimization runs. While this formulation is in principle attract-

ive, it does not consider any directional constraints on the basis vec-

tors, which is a key feature of our problem. Moreover, the n LP

optimizations per basis vector are excessive.

We have developed a more efficient sparsification algorithm—

Fast-SNP—inspired by the SNP formulation. Fast-SNP finds a min-

imal sparse representation of Nint in at most 2r LP optimization

runs. Briefly, starting from an empty null space basis, the SNV is

solved by finding the minimum l1-norm steady-state flux solution

vint,k that, (i) is consistent with the defined directionalities, and (ii) is

contained in the orthogonal space of Nint,k derived from the previ-

ous (k � 1) iterations. The latter constraint ensures that the basis

vector computed at iteration k is linearly independent from the pre-

vious (k � 1) vectors. This condition can be formulated as

PN?int;k
� vint;k 6¼ 0, where PN?int;k

denotes the projection matrix onto

null(Nint,k). As this above equation defines neither a convex nor a

compact region, we replace it with two equivalent constraints,

namely:

wT � PN?int;k
� vint;k > f _ wT � PN?int;k

� vint;k < � f (6)

where w represents a vector of random weights and f is a small posi-

tive constant, e.g. 10�3. Here we employed uniform random

weights; however other choices can be also used yielding similar re-

sults (Supplementary Table S1). As w is non-zero, the above con-

straints are only violated if PN?int;k
� vint;k 6¼ 0, which is the condition

to be avoided. The resulting SNV optimization problem can be then

formulated as follows,

SNV : minðx;vint;kÞ
P

ixi

s:t: Sint � vint;k ¼ 0

vint;k � x

�vint;k � x

lbint � vint;k � ubint

wT � PN?int;k
� vint;k > f ðpositive constraintÞ _

wT � PN?int;k
� vint;k < �f ðnegative constraintÞ

x 2 Rni

(7)

In this way, two LP optimizations are required to determine the

SNV at each iteration, and thus 2r runs are needed to complete the

null space basis. Notably, after each iteration, the sparsest (i.e. the

minimum l0-norm) solution is kept for the next iteration. If at one it-

eration there are no feasible solutions for both SNV problems, then

the algorithm terminates as there are no remaining non-zero basis

vectors given the current Nint,k and the directionality constraints.

The pseudocode of our Fast-SNP is shown in Algorithm 1.

2.3 Detection and removal of infeasible loops
Generation of a reduced loop-law matrix can accelerate other loop-

less flux optimization problems. Here, we evaluated two of such

problems, namely: loop detection (LD) and loop removal (LR). The

first problem determines whether a steady-state flux distribution is

thermodynamically feasible (i.e. loopless), whereas the second com-

putes the nearest feasible flux solution. Specifically, given a steady-

Fig. 1. Illustration of the optimization workflow using Fast-SNP. (A) Network

stoichiometry definition. The toy model consist of seven internal reactions (vi,

i ¼ 1,...,7), three exchange reactions (bj, j ¼ 1,2,3) (nine reactions in total) and

five metabolites. The stoichiometric matrix S is defined by two block matrices

containing, respectively, the internal (Sint) and exchange (Sext) reactions. (B)

Pre-processing the loop-law matrix using known directionalities. An initial

basis for the null space of internal reactions (Nint) is for example computed

using SVD. This matrix contains r ¼ ni � rank(Sint) ¼ 3 loop laws or basis vec-

tors accounting only for the information in Sint. However, given the direc-

tional constraints on Nint, a minimal basis ~Nint can be found by including

directionality information using Fast-SNP. The resulting basis ~Nint has r* ¼ 2

� r feasible loop laws, enabling more efficient optimization of loopless prob-

lems. (C) Once a reduced basis for the loop-law matrix is found, a diversity of

loopless optimization problems can be performed more efficiently
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state flux solution v0 with vint,0 denoting its internal reactions, LD

tests for thermodynamic feasibility by directly applying the loopless

constraints using a LP formulation with a blank objective

(Schellenberger et al., 2011),

LD : minDlint;0
0

s:t: NT
int � Dlint;0 ¼ 0

�K � ð1þ sgnðvint;0ÞÞ � sgnðvint;0

�
� Dlint;0

Dlint;0 � K � ð1� sgnðvint;0ÞÞ � sgnðvint;0

�

K large ðe:g:; 103Þ

(8)

v0 is loopless if the previous LP problem admits a solution for

Dlint,0. If the flux solution is infeasible, LR finds the nearest feasible

flux solution v* employing the following MIQP formulation

(Schellenberger et al., 2011),

LR : minðd;int� ;v� ;Dl�
int
Þ kdk2

s:t: v� � v0 ¼ d

fmass balance constraintsg

floopless constraintsg

d 2 Rn

(9)

where d denotes the distance vector from v0 to v*. Thus, the closest

feasible flux distribution to v0 is found by minimizing the Euclidean

norm of d.

2.4 Computational implementation
Fast-SNP and all the loopless flux formulations were coded and im-

plemented in MATLAB 2015b (The MathWorks, Natick, MA). Our

implementation relies on third-party solvers to solve LP, MILP and

MIQP problems. Optimization runs were performed using Gurobi

Optimizer 6.5 (Gurobi Optimization, Inc., Houston, TX) and IBM

ILOG CPLEX 12.5.1 (IBM Corp., NY). All computations were run

on a Dell Studio OptiPlex 9020 workstation (Intel Core i7-4790

processor, 16 GB ram memory, 64-bit architecture) running on

Windows 7.

3 Results

The computational performance of our strategy was compared with

the traditional approach in different metabolic models covering a

range of sizes. The models considered include the toy model shown

in Figure 1, an Escherichia coli core model (Orth et al., 2010a), and

six GEMs, namely: iAF692 (Feist et al., 2006), iJN661 (Jamshidi

and Palsson, 2007), iYL1228 (Liao et al., 2011), Salmonella

Typhimurium Model (STM) (Thiele et al., 2011), iJO1366 (Orth

et al., 2011) and Yeast 6 (Heavner et al., 2013). We have assumed

growth in minimal medium and growth rate maximization as the

objective function for each model. In the case of the toy model, the

upper bound of b1 was set to 1 and reaction b3 was maximized (see

Fig. 1B). The characteristics of each model after removal of blocked

reactions are shown in Table 1. The models used in this study can be

downloaded from the BiGG Models database at http://bigg.ucsd.edu

(King et al., 2016).

3.1 Fast-SNP significantly reduces loop-law constraints

enabling efficient ll-FBA computation
Fast computation of a reduced feasible loop-law matrix is critical for

efficient loopless optimization. Even if a reduced basis accelerates op-

timization, if its computation is too expensive then the approach is

simply not useful. Therefore, we first evaluated the computational

performance of our sparsification algorithm in the studied models

(Table 2). The computation of a reduced basis was achieved in <25 s

for all models and Gurobi was �60% faster than CPLEX. The speed

depends on both the total number and the number of feasible loop

laws. For example, Yeast 6 has considerably less internal reactions

and therefore total loop laws than iJO1366 (224 versus 484), but it

has almost 3-fold more feasible loop laws than iJO1366 (110 versus

34). In this case, the pre-processing time was similar in these two

models using both solvers, highlighting the dependence on both fac-

tors. We further compared the performance of Fast-SNP against a pre-

vious method for generation of a minimal null space basis (Hay et al.,

2014). This method is based on the identification of reactions involved

in infeasible loops through FVA and extreme pathway analysis. As

such, this method would require 2n LP iterations þ 1 basis computa-

tion for the generation of Nint. In contrast, Fast-SNP requires 2r LP it-

erations þ r basis computations (in the worst case). Considering the

greedy nature of Fast-SNP, the high efficiency of SVD algorithms for

orthogonal basis generation and that r < n as r ¼ n – rank(Sint), Fast-

Algorithm 1. Fast SNP

Inputs: Stoichiometric matrix of internal reactions Sint, lower

and upper bounds (lbint,ubint)

Outputs: Reduced feasible null space basis of the loop matrix

Nint

Set k 0; PNint;k
 0; Nint;k  1

w  GenerateRandomWeights

while k< r do

PN?int;k
 Ini�ni

� PNint;k

vþint;k  SolvePossitiveConstraintSNVðPN?int;k
;wÞ

v�int;k  SolveNegativeConstraintSNVðPN?int;k
;wÞ

Set vint;k  argminðkv�int;kk0; kvþint;kk0Þ
if IsEmpty(vint,k) then

break

else

Nint;kþ1  Nint;k�vint;kbNint;kþ1  GenerateOrthogonalBasisUsingSVDðNint;kþ1Þ
PNint;kþ1

 bNint;kþ1 � bNT

int;kþ1

end if

Set k  kþ1

end while

return Nint,k

Table 1. Characteristics of the metabolic models used in this study

Model Organism Mets Rxns Rev.

rxns

Int.

rev.

rxns

Toy model — 5 10 4 3

E.coli core E.coli 68 87 15 13

iAF692 Methanosarcina barkeri 417 484 42 38

iNJ661 Mycobacterium tuberculosis 579 740 82 77

iYL1228 Klebsiella pneumoniae 830 1223 85 78

STM Salmonella Typhimurium LT2 1086 1597 83 79

iJO1366 E.coli 1136 1679 115 110

Yeast 6 Saccharomyces cerevisiae 756 1018 78 76
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SNP produces a sparse null basis substantially faster (�10 times) than

the latter method (Supplementary Fig. S2).

Fast-SNP also yielded substantially reduced loop-law matrices

with fewer feasible loop laws in all GEMs (Table 2). Reduction of

GEMs loop laws varied from 50.9% for Yeast 6 to 94.8% for STM,

underscoring the impact of known directionalities on the number of

feasible loop laws. In addition to shrinking the loop matrices, the al-

gorithm created much sparser matrices. For instance, the computed

loop-law matrix for iJO1366 contained 98.5% less non-zero entries

compared with a reduced column echelon of the latter. The above

results are encouraging for the potential increase in algorithmic effi-

ciency of loopless optimization algorithms. Whether they actually

translate into substantial speedups is evaluated next.

Pre-processing the loop-law matrix significantly accelerated ll-

FBA optimization (Fig. 2). The runtime reductions increased with

the size of the model and Gurobi was �3-fold faster than CPLEX

(Fig. 2). For the largest GEMs (STM, iJO1366 and Yeast 6) a run-

time reduction of around 20-fold was observed. Importantly, in all

the studied models there was a perfect agreement on the computed

optimal values (Supplementary Fig. S3).

3.2 Reduced loop-law constraints improve computa-

tional performance of ll-FVA and related loopless

optimization problems
The computational improvement of Fast-SNP was further evaluated

in ll-FVA setting a ¼ 0.9, i.e. 90% of the optimal growth rate calcu-

lated previously. As with ll-FBA, our strategy displays considerably

lower runtimes using either solver compared with the conventional

approach (Table 3). In general, the greater the reduction in the loop-

law constraints, the greater the relative acceleration. For large

GEMs, reductions in computation time varied from 7-fold in Yeast

6 using Gurobi (13-fold improvement with CPLEX) up to 50-fold in

STM (31-fold improvement with CPLEX). Very promising speedups

were also achieved in iJO1366; 41- and 47-fold improvements were

obtained using CPLEX and Gurobi, respectively. In the case of

medium-scale GEMs, speedups were moderate ranging from 2-fold

runtime reduction for iAF692 using CPLEX, to �20-fold improve-

ment for iYL1228 using Gurobi. Notably, flux ranges computed

with Fast-SNP yielded almost identical results as in conventional ll-

FVA with no statistical significant difference (Fig. 3 and

Supplementary Table S4). We further compared the computational

improvement of Fast-SNP against recent approaches for efficient

loopless flux optimization, namely: fast-tFVA (Müller and

Bockmayr, 2013) and CycleFreeFlux (Desouki et al., 2015). Overall,

Fast-SNP yielded more modest improvements compared with the

other approaches though magnitude varied dramatically between

problems and solvers used (Supplementary Tables S2 and S3).

We also evaluated the performance of Fast-SNP in the related

loopless flux optimization problems, LD and LR (see ‘Methods’ sec-

tion). These optimization problems have been respectively proposed

for detection and correction of infeasible flux distributions gener-

ated using random sampling (Schellenberger et al., 2011). Given the

large size of samples required for the analysis of GEMs (typically

105), efficient detection and removal of infeasible cycles is funda-

mental (Saa and Nielsen, 2016). As for ll-FBA and ll-FVA, pre-pro-

cessing the loop-law matrix improves runtimes for detection and

removal of loops in iJO1366 (Fig. 4). Comparing the performance

of LD optimizations with and without pre-processing of iJO1366,

runtimes decreased 1.3- and 7.4-fold using Gurobi and CPLEX, re-

spectively. Interestingly, on this occasion CPLEX was faster than

Gurobi. The results are even more impressive for the case of LR.

Neither Gurobi nor CPLEX were capable of finding a feasible solu-

tion within 6 h, when the loop-law matrix was not processed using

Fast-SNP (Fig. 4). With Fast-SNP, a solution was found within mi-

nutes using either Gurobi or CPLEX. This result highlights that an

Table 2. Pre-processing results for each metabolic model

Model Feasible loop laws/

total loop laws

No. non-zero

entries Fast-SNPN int/no.

non-zero entries Nint
a

Pre-processing timeb (s)

Gurobi CPLEX

Toy model 2/3 7/10 3.6�10�2 6 9.0�10�3 4.7�10�2 6 1.6�10�3

E.coli core 1/13 2/80 4.2�10�2 6 9.0�10�3 4.2�10�2 6 9.0�10�3

iAF692 12/64 38/409 5.5�10�1 6 9.7�10�2 8.5�10�1 6 1.3�10�1

iNJ661 21/149 63/1183 1.6 6 1.7�10�1 2.6 6 1.1�10�1

iYL1228 23/368 76/4635 4.3 6 8.9�10�2 8.9 6 2.4�10�1

STM 23/446 59/5453 6.5 6 3.8�10�1 1.4 6 4.6�10�1

iJO1366 34/484 96/6164 12.0 6 1.2�10�1 21.6 6 3.3�10�1

Yeast 6 110/224 1802/3825 15.14 6 4.8�10�1 23.63 6 3.1�10�1

aIn order to ensure a fair comparison between the two matrices, the reduced row echelon form of NT
int was employed.

bRuntimes are shown as mean 6 standard deviation calculated from three independent runs.

Fig. 2. Optimization performance with and without pre-processing the loop-law

matrix. Comparison of ll-FBA runtimes with and without pre-processing using

distinct solvers in different models. The error bars represent the standard devi-

ation of three optimization runs. Pre-processing of the loop-law matrix substan-

tially reduces the computation time in large models using both solvers
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efficient formulation of the loop matrix might not only be a conveni-

ent strategy, but an absolute requirement to solve complex loopless

formulations.

3.3 Analysis of the reduced loop-law matrix reveals key

directional constraints required to avoid infeasible

loops
A reduced feasible loop-law matrix can also serve as a valuable

source of information for unravelling infeasible cycles in genome-

scale models. The set of vectors encoded in the rows of ~Nint de-

scribes a minimal basis of feasible loop laws allowed by the direc-

tionalities in the model, and thus, they can yield useful insights

about potential infeasibilities in the model. In the following, we ana-

lyzed the topology of these laws in iJO1366 after performing ll-FVA

with a ¼ 0.9 (see previous section). Application of ll-FVA yielded 13

blocked reactions and changed the directionality of 728 reactions in

iJO1366. Importantly, the resulting model has 18 loop laws out of

the initial 34, easing its topological analysis (Fig. 5).

Figure 5A depicts the complete set of loop laws found in iJO1366

after definition of growth conditions (minimal medium), optimality

criterion (at least 90% of optimal growth rate) and thermodynamic

feasibility (loopless condition). The set of feasible loop laws covers 45

reactions (11 reversible) involved in ion and metabolite inter-

compartment transport, alternate carbon, acetate and glycogen me-

tabolism (Supplementary Table S1). Reactions with the highest par-

ticipation in loop laws are: NAt3pp (5), PPKr (5), CA2t3pp (4) and

Cat6pp (4) (Supplementary Fig. S4). Notably, the latter reaction is

also flux-forcing, i.e. it has a strictly non-zero flux, and thus it cannot

be removed without rendering the model infeasible.

Next, our interest is to analyze the impact of blocking or fixing

the directionalities of reactions involved in infeasible cycles. We have

selected three illustrative cases to show different strategies for ra-

tional analysis and removal of loops (Fig. 5B). Case 1 illustrates a

simple loop comprised of two duplicated reactions: ASPt2pp (irre-

versible) and ASPt2rpp (reversible). In this case, the most sensible ac-

tion is to remove the irreversible reaction (ASPt2pp) and preserve the

reversible one (ASPt2rpp). The resulting model has the same capabil-

ities as the original without the artificial loop L2. Cases 2 and 3 are

more subjective and illustrate different modelling rationales. In Case

2, if we are not interested in pyruvate alternate metabolism, reaction

HPYRI can be removed from the model effectively eliminating L1.

Case 3 illustrates that loops can be also eliminated by fixing the

directionalities of reversible reactions rather than deleting a reaction.

L7 consists of a loop where the succinyl-CoA synthetase operates in

reverse. However, under fast-growing glucose-limited aerobic condi-

tions, this reaction proceeds in the forward direction in E.coli (Ishii

et al., 2007). By fixing its direction to forward, L7 is eliminated as no

Table 3. Runtime comparison of ll-FVA with and without reduction of loopless constraints

Model ll-FVA without pre-processinga ll-FVA with pre-processinga Average runtime fold-change

(tconv ll-FVA/tFast-SNP ll-FVA)

CPLEX Gurobi CLPEX Gurobi CPLEX Gurobi

Toy model 4.7�10�1 6 3.0�10�2 1.1�10�1 6 2.4�10�2 3.1�10�1 6 1.0�10�2 1.4�10�1 6 1.6�10�2 1.7 0.8

E.coli core 15.1 6 1.9 3.3 6 0.2 2.6 6 3.3�10�1 1.9 6 1.3�10�1 5.8 1.8

iAF692 4.4�102 6 4.7 2.9�102 6 6.3 2.1�10 6 7.8 69.0 6 5.6 2.1 4.2

iNJ661 2.9�103 6 24.5 1.6�103 6 40.1 6.4�102 6 30.2 3.1�102 6 5.6 4.5 5.1

iYL1228 2.9�104 6 61.5 1.3�104 6 40.6 1.7�103 6 36.6 6.5�102 6 36.1 17.5 19.3

STM 5.9�104 6 4.9�102 2.8�104 6 5.6�102 1.9�103 6 41.9 5.7�102 6 15.1 31.1 49.7

iJO1366 8.3�104 6 2.3�102 4.2�104 6 42.3 2.0�103 6 7.65 9.0�102 6 19.8 40.7 46.8

Yeast 6 9.2�104 6 2.8�102 2.9�104 6 91.0 7.2�103 6 22.3 4.4�103 6 1.9�102 12.7 6.5

aRuntimes are shown as mean 6 SD calculated from three independent runs.

Fig. 3. Flux ranges computed using the reduced loop-law matrix are consistent with the ranges obtained from conventional ll-FVA in the studied models
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other reactions in this cycle can be reversed (Fig. 5B). In summary,

the topology encoded in the reduced loop-law matrix facilitates ra-

tional infeasibility analysis of large metabolic models.

4 Discussion

Computation of loopless steady-state flux solutions is an NP-hard

MILP problem (Müller and Bockmayr, 2013). Recent approaches such

as fast-tFVA (Müller and Bockmayr, 2013) and CycleFreeFlux

(Desouki et al., 2015) have exploited particular features of the problem

and used LP formulations following alternative approaches to solve dif-

ferent loopless flux optimization problems. Although these approaches

enabled fast computation of feasible fluxes (acceleration up to two

orders of magnitude), they rely on post-processing methods for blocking

infeasible cycles after steady-state flux computation. In the current

study, we developed a pre-processing strategy where the conventional

MILP problem is reformulated using a minimal set of loop-law con-

straints, enabling efficient computation of loopless flux solutions as well

as topological analysis of infeasible cycles in large metabolic models.

All modern MILP solvers use pre-processing to recast MILP for-

mulations into easier-to-solve, yet equivalent representations

(Savelsbergh, 1994). It is often possible to develop superior pre-pro-

cessing strategies using insights into the specific MILP problem. We

have developed a fast pre-processing algorithm, Fast-SNP, which

finds a minimal set of feasible loop laws taking into consideration

the directionalities of the model. Once the reduced loop-law matrix

is found, a smaller loopless MILP problem can be formulated and

solved efficiently. Speedups up to 50-fold were achieved with pre-

processing across diverse types of loopless flux optimization prob-

lems (Tables 2 and 3, Figs 2 and 4). Although the computational im-

provement of Fast-SNP is more modest than previous approaches

(Supplementary Tables S2 and S3), it is the only strategy capable of

efficiently solving loopless related problems (i.e. ll-FBA, ll-FVA, LD

and LR) using a single optimization problem based on suitable LP,

MILP or MIQP formulations subject to the loopless constraints

(Equation 5). Importantly, such constraints have recently been alge-

braically proven to always yield thermodynamically feasible flux so-

lutions (Noor et al., 2012).

Finally, we highlight additional and distinctive features of Fast-

SNP for the analysis of metabolic models. As shown in the previous

section, this approach enables a priori assessment of model com-

plexity in the ‘loop law sense’, as it explicitly computes a minimal

basis describing all the potentially infeasible cycles in the studied

model. Formally, these loop laws represent elementary flux modes

that do not exchange mass with the surroundings (Schuster et al.,

2000). These internal cycles have previously been studied in the

Fig. 4. Reduced loopless constraints generated from Fast-SNP reduce opti-

mization runtimes of other loopless problems in iJO1366. Computational per-

formance in LD and LR problems using flux samples from iJO1366. Error bars

represent the standard deviation of five optimization runs. Bars shown with

(*) denote cases where it was not possible to compute a solution in< 6 h

Fig. 5. Topological exploration of the reduced loop-law matrix obtained from

Fast-SNP enables rational elimination of infeasible loops in iJO1366. (A)

Topological analysis of the reduced loop-law matrix. Reactions indicated with

arrows can be either blocked or their directionalities fixed to eliminate infeasi-

bilities. (B) Examples of different approaches to remove infeasible loops
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context of oriented matroid theory (Beard et al., 2004; Oliveira

et al., 2001) and more recently, infeasible cycles have been enumer-

ated in GEMs using sampling approaches (De Martino et al., 2013).

However, efficient assessment of the impact of directionality con-

straints as well as topological analysis of these loop laws for their

potential removal, has been lacking in the literature. Fast-SNP aids

comprehensive assessment, unravelling simple strategies for remov-

ing infeasible loops based on thermodynamic or practical consider-

ations (see Fig. 5). Additionally, we note that the proposed matrix

sparsification algorithm in Fast-SNP can also be employed for other

useful analyses. For example, this algorithm can readily be modified

to explore alternative solutions by incorporating suitable additional

constraints (e.g., vi � z*) using an appropriate objective (e.g. l1-

norm minimization). The resulting greedy algorithm would generate

a set of linearly independent solutions or pathways (i.e. a basis) con-

sistent with the previous constraints by solving only LP problems.

This avoids the need of computing expensive MILP formulations. In

conclusion, Fast-SNP complements existing methods in the

constrained-based modelling toolbox for exploration and topo-

logical analysis of infeasible cycles and metabolic pathways.
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