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Abstract

This study explores the topological properties of brain gray matter (GM) networks in

patients with paroxysmal kinesigenic dyskinesia (PKD) and asks whether GM network

features have potential diagnostic value. We used 3D T1-weighted magnetic

resonance imaging and graph theoretical approaches to investigate the topological

organization of GM morphological networks in 87 PKD patients and 115 age- and

sex-matched healthy controls. We applied a support vector machine to GM morpho-

logical network matrices to classify PKD patients versus healthy controls. Compared

with the HC group, the GM morphological networks of PKD patients showed signifi-

cant abnormalities at the global level, including an increase in characteristic path

length (Lp) and decreases in local efficiency (Eloc), clustering coefficient (Cp), normal-

ized clustering coefficient (γ), and small-worldness (σ). The decrease in Cp was signifi-

cantly correlated with disease duration and age of onset. The GM morphological

networks of PKD patients also showed significant changes in nodal topological

characteristics, mainly in the basal ganglia-thalamus circuitry, default-mode network

and central executive network. Finally, we used the GM morphological network

matrices to classify individuals as PKD patients versus healthy controls, achieving

87.8% accuracy. Overall, this study demonstrated disruption of GM morphological
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networks in PKD, which might extend our understanding of the pathophysiology of

PKD; further, GM morphological network matrices might have the potential to serve

as network neuroimaging biomarkers for the diagnosis of PKD.
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gray matter networks, machine learning, paroxysmal kinesigenic dyskinesia, structural MRI,

topological organization

1 | INTRODUCTION

Paroxysmal kinesigenic dyskinesia (PKD) is a rare movement disorder

characterized by transient and recurrent dystonic or choreoathetoid

attacks, mainly triggered by sudden voluntary movement (Bruno

et al., 2004). According to etiology, PKD can be divided into idiopathic

(also called primary) PKD and secondary disease (Waln & Jankovic,

2015). Idiopathic PKD does not show any abnormalities on conven-

tional neuroimaging or electroencephalography (EEG) between attacks.

Secondary PKD is caused by various neurological and medical diseases

such as multiple sclerosis and stroke affecting the basal ganglia.

Previous studies have revealed a complex pattern of abnormali-

ties affecting diverse subcortical regions including the basal ganglia

and thalamus (Joo et al., 2005; Kim, Kim, Kim, Suh, & Koh, 2015;

Shirane, Sasaki, Kogure, Matsuda, & Hashimoto, 2001; Zhou, Chen,

Gong et al., 2010; Zhou, Chen, Zhang, et al., 2010), as well as cortical

regions including the motor cortex, somatosensory cortex,

presupplementary motor area and right inferior frontal gyrus (Hsu,

Kwan, et al., 2013; Hsu, Liao, et al., 2013; H. F. Li et al., 2019; Liu

et al., 2018) in PKD. However, the pathophysiological mechanisms in

PKD are not fully understood.

The rapid development of psychoradiology has advanced our

understanding of the complex brain alterations in patients with neuro-

psychiatric disorders (Gong, 2020). Analyzing the structural networks

which form the anatomical and physiological substrate that shapes

brain function (Qi, Meesters, Nicolay, Ter Haar Romeny, &

Ossenblok, 2016; Sporns, Tononi, & Kotter, 2005) can assist our

better understanding of brain abnormalities. Currently, there are two

modalities available for imaging structural connectivity in humans:

tractography using diffusion tensor imaging (DTI) and structural

covariance network (SCN) analysis based on structural T1-weighted

MRI sequences (Seidlitz et al., 2018; Sun et al., 2018). These two

approaches investigate different mechanisms of human network

organization. The former seeks to reconstruct anatomical connectivity

from bundles of nerve fibers in white matter. The latter aims to con-

struct structural networks by calculating interregional morphological

associations based on the structural covariance of gray matter volume

and cortical thickness (Alexander-Bloch, Giedd, & Bullmore, 2013; He,

Chen, & Evans, 2007). Analyses of structural covariance focus on the

covariation (i.e., the correlation) in structural markers between differ-

ent brain regions, and can offer more insights into their topographical

organization. It is increasingly apparent that the study of SCNs is a

robust and valuable tool for investigating topological organization in

brain disorders (T. Chen et al., 2017; Niu et al., 2018; Tijms, Series,

Willshaw, & Lawrie, 2012; Tijms et al., 2014) and can provide informa-

tion complementary to other connectivity approaches, such as

resting-state fMRI and diffusion imaging. In the present study, we

focused on gray matter (GM) SCNs (i.e., morphological networks).

We used a new method proposed by Kong and colleagues (Kong

et al., 2015; Kong et al., 2014; H. Wang, Jin, Zhang, & Wang, 2016) to

construct individual morphological networks. In this method, networks

are constructed with nodes representing small brain regions whose

connections are computed by evaluating intracortical similarities in

GM morphological distributions, which not only quantify the inter-

regional relations within each participant's brain but also take into

account the structural complexity of the cerebral cortex. We used this

method to investigate the topological organization of brain GM net-

works in PKD, in order to throw light on the pathophysiology of PKD

from a GM network perspective. Moreover, to explore their potential

as an aid to clinical diagnosis, we used the extracted GM morphologi-

cal network matrices of GM networks as features to classify individual

patients with PKD versus healthy controls.

Based on the finding of altered topological organization of functional

brain networks in drug-naïve patients with PKD (Y. Zhang et al., 2020),

we hypothesized (i) that PKD patients would show disrupted topological

organization in their GM morphological networks, and that these disrup-

tions would be associated with the clinical characteristics. In addition, as

previous studies have revealed focal abnormalities in the basal ganglia

and thalamus in PKD (Joo et al., 2005; Kim et al., 2015; Zhou, Chen,

Gong et al., 2010), we also hypothesized (ii) that significantly altered

nodal topological properties would be observed in these regions. More-

over, many studies have shown that network-based biomarkers, which

can capture the brain network structure in a phenotype and help to

elucidate the role of known subsystems, have diagnostic potential in

brain disorders (Sacchet, Prasad, Foland-Ross, Thompson, & Gotlib,

2015; Wen et al., 2017). We therefore hypothesized (iii) that GM

morphological network matrices could serve as neuroimaging bio-

markers to detect PKD with significant accuracy.

2 | MATERIALS AND METHODS

2.1 | Participants

Ninety patients with idiopathic PKD were recruited from the Move-

ment Disorders Outpatient Clinic of West China Hospital, Sichuan
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University. The diagnosis of idiopathic PKD was made according to

Bruno's diagnostic criteria (Bruno et al., 2004), as follows: (i) identified

kinesigenic trigger for the attacks; (ii) short duration of attacks (1 min);

(iii) no pain or loss of consciousness during attacks; (iv) normal neuro-

logic examination and exclusion of other organic diseases; (v) control

of attacks with phenytoin or carbamazepine, if tried; and (vi) age at

onset between 1 and 20 years if no family history of PKD.

A total of 120 age- and sex-matched HCs were recruited from

the local area through poster advertisements. The exclusion criteria

for all participants were as follows: (i) presence of focal brain lesions

on routine MRI; (ii) claustrophobia or MRI incompatibility; (iii) history

of alcohol/substance abuse; (iv) comorbidity with neurological or

psychiatric disorders or serious physical disease (including traumatic

brain injury, cerebrovascular disease, hypertension, diabetes mellitus,

ischemic heart disease, chronic liver disease, or other chronic systemic

disorders); and (v) presence of head movement artifacts on scanning.

Eighty-seven patients with PKD and 115 HCs were finally selected

for the study. All participants' clinical information was obtained

according to a standard protocol. To control for possible confounding

effects of antiepileptic drugs (AEDs), we recruited only patients who

had been on medication for no more than 3 months, and patients

who had previously taken medication intermittently but not within

6 months before the study. Additionally, AED-treated patients were

scanned only after medication had been withdrawn for at least

12 hours. The patients and controls were recruited from July 2013 to

June 2018. Written informed consent was obtained from all partici-

pants or their legal guardians. The study was approved by the local

human research ethics committee.

2.2 | Data acquisition

All patients and controls were scanned on the same instrument (3.0 T

Siemens Trio, Erlangen, Germany) with the same sequence and a

12-channel head coil. Foam padding was used to minimize head

motion. High-resolution 3D T1-weighted images were acquired using

a magnetization-prepared rapid gradient-echo sequence with the

following parameters: repetition time, 1,900 ms; echo time, 2.26 ms;

inversion time, 900 ms; flip angle, 9�; field of view, 256 × 256 mm2;

matrix size, 256 × 256; slice thickness, 1 mm; no interslice gap; voxel

size, 1 × 1 × 1 mm3; number of slices, 176. The total acquisition time

was 420 s.

2.3 | Data preprocessing

Structural images were preprocessed using voxel-based morphometry

(VBM) implemented in Statistical Parametric Mapping (SPM) version

12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). VBM is an

automatic whole-brain neuroimaging analysis technique that allows

the quantification of local morphological features from individual MRI

data (Ashburner & Friston, 2000). First, the MRI data for each participant

were manually assessed by two experienced radiologists/investigators to

exclude scanning artifact. Second, the individual structural data were

segmented to obtain the GM images using the unified segmentation

tool (Ashburner & Friston, 2005) in SPM 12. Next, the GM images were

nonlinearly coregistered using Diffeomorphic Anatomical Registration

Through Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007), which

involves the iterative calculation of a study-specific template based on

the GM images from all participants, then warping participants' GM

images into the generated template. Then the GM images were normal-

ized to the standard Montreal Neurological Institute (MNI) space to

yield GM images in the same space as the brain parcellation. Thereafter,

in order to preserve tissue volume following warping, voxel values in

individual GM images were modulated by multiplying the Jacobian

determinants derived from the normalization. Then all modulated GM

images were resampled to 2 mm3 voxels and individually smoothed

with a 6 mm full-width at half-maximum (FWHM) Gaussian kernel.

Finally, the smoothed and modulated GM images, comprising morpho-

logical volume information for each voxel, which was comparable

across participant, were obtained for further analyses.

2.4 | Construction of individual GM morphological
networks

The pivotal task in human brain network construction is to define the

nodes and edges. In the present GM structural network, nodes were

defined as brain regions using the automated anatomical labeling

(AAL) algorithm, which parcellates the whole GM into 90 anatomical

regions of interest (ROIs) (Tzourio-Mazoyer et al., 2002). Edges were

defined as the statistical similarity of morphological distributions

between different brain regions and were quantified by a Kullback–

Leibler divergence-based similarity (KLS) measure (Kong et al., 2014).

The connection matrices for each subject's network were quantified

as follows. First, GM volume values were extracted of all the voxels

within each ROI based on the AAL. Then the probability density func-

tions (PDFs) of these values were estimated using kernel density

estimation (KDE) (H. Wang et al., 2016). The KDE bandwidths were

not set manually but were adaptively estimated from the data using

Scott's rule (Scott, 2015). This analysis was performed using public

Matlab code provided by Botev (function:kde;http://www.mathworks.

com/matlabcentral/fileexchange/14034-kernel-density-estimator). Next,

the Kullback–Leibler (KL) divergence was used to quantify the similarity

of PDFs of different brain regions and convert it to a similarity measure.

KL divergence is an index from probability theory to measure the

difference between two probability distributions; equivalently, from

the perspective of information theory it is the information lost

when one probability distribution is used to approximate another

(Burnhan & Anderson, 2002). The details of the analyses are described

elsewhere (Kong et al., 2015; Kong et al., 2014; H. Wang et al., 2016).

Finally, we calculated the KL-based similarity values between all possi-

ble pairs of 90 brain regions to generate a 90 × 90 similarity matrix

for each subject. In this 90 × 90 network matrix, each row and column

represent a brain region, and each element represents the similarity of

morphological distributions between brain regions. The range of
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possible KLS values is 0 to 1, where 1 represents an identical distri-

bution for the two regions. The main analytical steps are shown in

Figure 1.

2.5 | Network properties

The GRETNA toolbox (http://www.nitrc.org/projects/gretna/) in

MATLAB was used to calculate the network properties of the brain

networks (J. Wang et al., 2015) and individual GM morphological

networks were thresholded and weighted. A wide range of sparsity

(S) thresholds was applied to all the correlation matrices. The mini-

mum and maximum values of S were determined to ensure that the

thresholded networks were estimable for the small-worldness with

sparse properties, and had the minimum number of spurious edges

(Watts & Strogatz, 1998). With these limits, the range of our

threshold was 0.10 < S < 0.34 with an interval of 0.01. For the

brain networks at each sparsity level, we calculated both global and

nodal network metrics. Direct comparisons across different levels

of sparsity could cause the same network metric to take on differ-

ent values, which would make the results unstable and inconsistent.

For each network metric we therefore calculated the area under

the curve (AUC) reflecting measures across the sparsity

parameter S, providing a summarized scalar for the topological

characterization of brain networks without using an arbitrary single

threshold selection. This measure has proven sensitive in detecting

topological alterations of brain networks (He et al., 2009; J. Zhang

et al., 2011).

Both global and nodal network properties were calculated for the

brain networks at each sparsity threshold. At the global level, we

focused on two key organizational aspects of the human brain: small-

worldness (Watts & Strogatz, 1998) and network efficiency (Achard &

Bullmore, 2007). We examined the following global metrics: the

clustering coefficient (Cp), characteristic path length (Lp), normalized

clustering coefficient (γ), normalized characteristic path length (λ),

small-worldness (σ), local efficiency (Eloc), and global efficiency (Eglob).

Briefly, Cp is defined as the average of the clustering coefficients over

all nodes and quantifies the “cliquishness” and reflects the extent of

local interconnectivity; Lp measures the mean distance or routing

efficiency between any pair of nodes in a network, and lower values

indicate higher routing efficiency; small-world attributes (γ, λ, and σ)

indicate the degree of small-world organization, which reflects an

optimal balance of integration and segregation for a network; Eglob

measures the global efficiency of parallel information transfer in the

network; and Eloc reflects the network fault tolerance level, the com-

munication efficiency among the first neighbors of a node when it is

removed. The nodal topological characteristics, including nodal

degree, nodal efficiency, and nodal betweenness centrality, were

chosen because these measures are interrelated, each providing a

different viewpoint on the major features of the large-scale network.

Nodal degree reflects the capacity to communicate information, nodal

efficiency characterizes the efficiency of parallel information transfer,

and nodal betweenness centrality captures the influence of a node

over information flow between other nodes in the network. Detailed

formulae, usages and explanations of these metrics can be found in an

excellent methodological review (Rubinov & Sporns, 2010).

F IGURE 1 A flowchart for the construction of gray matter (GM) morphological networks using T1-weighted MRI. (1) Individual structural
images were segmented, normalized, modulated, and smoothed using a routine VBM procedure to obtain the GM maps. (2) The GM map was
divided into 90 regions according to the AAL atlases. (3) For each region, its GM volume was extracted and used to estimate the PDF (4) The KLS
between the PDFs of each pair of regions was calculated, resulting in a similarity matrix. (5) Individual brain networks were represented as graphs.
(6) Finally, the network properties were calculated at both the global and nodal levels
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2.6 | Statistical analysis

2.6.1 | Comparison of demographic and clinical
variables

The analyses of demographic and clinical data were performed with

IBM SPSS Statistics V21.0. Two-tailed independent-sample t-test and

chi-squared test were used to compare quantitative and qualitative

variables.

2.6.2 | Comparison of network metrics

We performed nonparametric permutation tests on the AUC of each

network metric to assess between-group differences (Lei et al., 2015;

J. Zhang et al., 2011). Briefly, we first computed the between-group

differences using the AUC value of each network metric across

S values. To correct for multiple comparisons, we randomly

reallocated all the values into two groups and recalculated the mean

differences between the two randomized groups for each network

metric. This randomization procedure was repeated 10,000 times, and

the 95th percentiles of each distribution were used as the critical

value for significance testing. Furthermore, when node centrality was

tested, the Benjamini-Hochberg procedure was used to correct for

multiple comparisons by controlling the false discovery rate

(Benjamini, Drai, Elmer, Kafkafi, & Golani, 2001).

2.6.3 | Network-based statistical analysis

Region pairs with between-group differences of nodal characteristics

in patients with PKD were assessed using the network-based statis-

tics (NBS) (http://www.nitrc.org/projects/nbs/) approach. First, we

chose the nodes that exhibited between-group differences in at least

one of the three node centrality measures (nodal degree, efficiency,

and betweenness), and then created a connection matrix among those

nodes for each participant. Second, the NBS approach was applied to

define a set of suprathreshold links that included any connected com-

ponents (threshold = 2.9, p < .05). To estimate the significance for

each component, the nonparametric permutation approach (10,000

permutations) was also used. A detailed description of this approach

has been previously published (Zalesky, Fornito, & Bullmore, 2010).

2.6.4 | Correlation analysis

For all significantly altered global and nodal network properties in the

topological analysis, we examined the correlations with clinical vari-

ables by partial correlation analysis, controlling for age, sex, and years

of education as confounding variables (p < .05). Outlier detection was

performed to ensure that no outliers were included in the analysis. All

statistical analyses were performed using the SPSS software (IBM

SPSS Statistics V21.0).

2.6.5 | Classification analysis

We determined the efficacy of detecting PKD at the individual level

using morphological network matrices. To do this we measured the per-

formance of a support vector machine (SVM) (Cortes & Vapnik, 1995)

trained to classify PKD patients versus healthy controls using the GM

morphological network matrices (90 × 90 network matrix).

The SVM is a widely used machine learning model, and we used

the implementation from the Scikit-Learn library (Pedregosa

et al., 2012) that is based on LIBSVM (Chang & Lin, 2011). It works as

follows: first, the model maps the input data from the training set to

the feature space using a set of mathematical functions known as ker-

nels. Here, a linear kernel was preferred to a nonlinear kernel to mini-

mize the risk of overfitting. In this feature space, the model learns the

optimum separation surface that maximizes the margin between dif-

ferent classes. In our case the linear SVM has one hyperparameter

(the soft margin parameter C), which affects the model's training by

controlling the trade-off between reducing training errors and increas-

ing the separation margin. Once the separation surface is determined,

it can be used to predict the class of new unseen observations.

To obtain a reliable estimate of the performance of the models,

we used a 10-fold stratified cross-validation scheme. In this scheme

the 202 participants were divided into 10 nonoverlapping partitions,

each with the same proportion of patients and healthy controls. In

each one of the 10 iterations of the cross-validation, nine partitions

(composed of 181 subjects) were used as the training set to train the

SVM model, and then the trained model was used to obtain the pre-

dictions in the remaining partition (composed of 21 subjects and

called the “test set”). These predictions were used to calculate the

performance metrics (balanced accuracy, specificity, and sensitivity),

and since the test set was not part of the training process, the

resulting values were unbiased. The reported performance in each

case is the mean value across the cross-validation iterations. Finally,

the statistical significance was estimated using the permutation

method (1,000 permutations).

In each iteration of the cross-validation, we also performed a nested

cross-validation inside the training set (i.e., 10-fold stratified nested

cross-validation) to select the optimum C value for the SVM. This para-

meter was optimized by performing a grid search in the following range

of values: C = 10−3, 10−2, 10−1, 100, 101, 102, 103, 104. After selecting

the best C value based on the balanced accuracy, an SVM was trained

using the whole training set and used to assess performance on the test

set. Note that the test set was not used during this hyperparameter sea-

rch, to avoid biased results. The code used is available at http://github.

com/Warvito/integrating-multi-modal-neuroimaging.

3 | RESULTS

3.1 | Demographic and clinical characteristics

The demographic and clinical data are summarized in Table 1. There

were no significant differences in age or sex between patients with
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PKD and HCs (p > .05). Although the mean duration of education

was greater in the HC group than in PKD (p < .05), we included years

of education as a covariate in the correlation analysis between net-

work properties and clinical variables to exclude its possible impact.

We also performed Pearson correlation analysis to investigate the

relationship between the topological metrics (AUC) and the years of

education in both groups, and there were no significant correla-

tions (p > .05).

3.2 | Alterations in global brain network properties

In the defined threshold range, both the PKD and control groups

exhibited normalized Cp values substantially greater than 1, and nor-

malized Lp values approximately equal to 1 (Figure S1), indicating that

both groups exhibited the typical features of small-world topology in

the GM morphological network. However, this topology was altered

in the PKD patients. Compared with HCs, the PKD patients showed a

significant increase in Lp (p = .016) and decreases in Eloc (p = .001), Cp

(p = .030), γ (p = .005) and σ (p = .005). No significant difference was

identified in Eglob (p = .238) or λ (p = .440; Figure 2).

3.3 | Alterations in nodal brain network properties

Table 2 lists brain regions exhibiting significant between-group differ-

ences in at least one nodal metric in the PKD patients compared to

the HCs (false discovery rate corrected, p < .05). Among these regions,

6 were located in the subcortical cortices, 6 were in the frontal cortex,

4 were in the parietal cortex, and the others were in the limbic, tem-

poral, and occipital cortices (Figure 3).

3.4 | NBS results

Using NBS, we identified a PKD-related subnetwork with 19 nodes

and 24 edges that was significantly altered in the PKD patients

compared with HCs. The nodes included the following brain regions:

bilateral caudate, bilateral pallidum, right thalamus, posterior cingu-

late gyrus, right hippocampus, bilateral medial superior frontal gyrus,

right angular gyrus, right superior temporal gyrus, bilateral dorsolat-

eral superior frontal gyrus, left middle frontal gyrus, right inferior

frontal gyrus, bilateral superior parietal gyrus, left supramarginal

gyrus, and right middle temporal gyrus (Figure 4). Significantly

altered edges involving each of these regions were observed. All

connectivity alterations within this network were decreased in the

PKD group.

3.5 | Relationships between network properties
and clinical variables

An outlier analysis was performed, and 14 patients were excluded

because their age of onset, duration of disease, or because AUC

values for network properties were less than Q1 − 3 (IQR) or more

than Q3 + 3 (IQR) (where Q1 is the 25th percentile, Q3 is the 75th

percentile, and the interquartile range (IQR) is Q3–Q1). After the out-

liers were excluded, the clustering coefficient (Cp) was negatively cor-

related with the duration of disease (r = −.338, p = .004) and

positively correlated with the age of onset (r = .346, p = .003;

Figure 5). There were no significant correlations between the clinical

variables and any of the other global or nodal metrics. The results of

the full correlation analysis, including the outliers, are given in

Figure S2.

TABLE 1 Demographic and clinical
characteristics of PKD patients and
healthy controls

Characteristics HC (n = 115) PKD (n = 87) p value

Age (y)a 22.7 ± 6.2 (10–58) 23.0 ± 9.5 (11–63) .781b

Education (y)a 12.9 ± 2.7 (3–19) 11.2 ± 3.2 (4–19) <.001b

Gender (M/F) 95/20 71/16 .854c

Age at onset (y) NA 12.7 ± 5.5 (2–36) NA

Disease duration (y)a NA 10.0 ± 9.5 (0.2–42) NA

Family history (+/−) NA 19/68 NA

Attack frequency (<10/d:>10/d) NA 61/26 NA

Affected side (L/R/Bil/Alt) NA 8/11/51/17 NA

Previously treated/drug naïve NA 81/6 NA

Treatments (OXC/CBZ/others) NA 24/48/9 NA

Note: Data are presented as the means ± standard deviations unless otherwise stated. Parentheses indi-

cate range.

Abbreviations: Alt, alternate; Bil, bilateral; CBZ, carbamazepine; d, day; HC, healthy controls; L, left; NA,

not applicable; OXC, oxcarbazepine; PKD, paroxysmal kinesigenic dyskinesia; R, right; y, year.
aAge, disease duration and years of education were defined at the time of MRI scanning.
bCalculated by independent-sample t-test.
cCalculated by chi-squared test.
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3.6 | Single-subject classification of patients and
healthy controls

Using GM morphological network matrices, the mean balanced

accuracy of classification was 87.8%, with sensitivity 87.6% and speci-

ficity 88.0% (p < .001), which is a mean balanced accuracy well above

that expected by chance.

Having identified GM morphological network matrices as a

powerful measure for detecting PKD, we examined the regions

contributing to their superior performance. We computed the mean

absolute value of the weights of the model across the different itera-

tions of the cross-validation. The 20 brain regions with the highest

mean values are reported in Table 3; most of these were also among

the regions with altered nodal properties.

4 | DISCUSSION

The present study used graph theoretical analyses of structural MRI

data to examine the topological organization of GM morphological

networks in patients with PKD. There were three main findings: (i) at

the global level (a) PKD patients showed decreased integration

(reflected by increased Lp) and segregation (reflected by decreased

Cp, γ, and Eloc) in the organization of GM networks, a shift to a

“weaker small-worldness” pattern, and (b) the decrease in Cp was sig-

nificantly correlated negatively with duration of disease and positively

with age of onset; (ii) at the nodal level there were altered nodal char-

acteristics in basal ganglia and thalamus, which are known to be

involved in PKD; finally (iii) GM morphological network matrices could

differentiate individual PKD patients from healthy individuals with

high accuracy. These findings may provide new insights into the path-

ophysiology of PKD and aid development of new biomarkers for

clinical diagnosis.

4.1 | Global topological alterations in PKD patients

Both PKD patients and HCs showed high Cp and short Lp, demon-

strating a shared small-world topology in their GM morphological net-

works. However, relative to HCs, PKD patients showed higher Lp and

lower Eloc, Cp, γ, and σ, implying a disturbance in the normal small-

world organization. The brain's small-world organization relates to an

optimal balance between network integration (measured by Lp, λ, and

Eglob) and segregation (measured by Cp, γ, and Eloc) of information

processing (Bullmore & Sporns, 2012; Rubinov & Sporns, 2010; Suo

et al., 2018). PKD patients had decreased global integration (increased

Lp) and local segregation (decreased Cp, γ, and Eloc) of their GM mor-

phological networks, that is, a shift toward a “weaker small-worldness”

F IGURE 2 Group differences in global network properties of brain gray matter morphological networks. Relative to healthy controls (HC),
patients with paroxysmal kinesigenic dyskinesia (PKD) showed a significant increase in characteristic path length (Lp; p = .016) and decreases in
local efficiency (Eloc; p = .001), clustering coefficient (Cp; p = .030), normalized clustering coefficient (γ; p = .005), and small-worldness (σ; p = .005).
There was no significant difference in global efficiency (Eglob; p = .238) or normalized characteristic path length (λ; p = .440). Asterisks designate
network metrics showing a significant difference (p < .05)
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pattern according to the classification of Suo and colleagues (Suo

et al., 2018). These results may relate to alterations of GM structure, for

which there is some evidence in PKD: direct evidence from high-

resolution T1-weighted MRI studies have identified morphometric/

volumetric GM changes in presupplementary motor area, inferior frontal

gyrus (H. F. Li et al., 2019) and thalamus (Kim et al., 2015); indirect

evidence from secondary PKD reported that PKD was associated with

various brain abnormalities for example, in thalamus (Camac, Greene, &

Khandji, 1990), putamen (Merchut & Brumlik, 1986), right

frontotemporal region (Gilroy, 1982), and globus pallidus (Micheli,

Fernandez Pardal, Casas Parera, & Giannaula, 1986). Our morphological

network findings are consistent with a structural brain network study

using DTI, which showed “weaker small-worldness” in PKD (L. Li

et al., 2020). However, there was no significant change in functional

global network properties in a study of drug-naïve PKD patients using

resting-state functional MRI (Y. Zhang et al., 2020). These differences

might be due to the different imaging modalities. Functional MRI–

derived networks characterize synchronized brain activity at a point in

time, while structural networks reflect more stable patterns of anatomical

organization affected by heredity, experience-related plasticity, and

mutually trophic reinforcement (Alexander-Bloch et al., 2013; Kong

et al., 2015). Future studies should employ a multimodal approach.

4.2 | Nodal topological alterations in PKD patients

In addition to changes in global network characteristics, specific nodal

changes were observed in the basal ganglia (caudate nucleus and

TABLE 2 Regions showing altered
node centrality in PKD patients and
healthy controls Brain regions Category

p values

Nodal betweenness Nodal degree Nodal efficiency

PKD > HC

SFGdor.L CEN .0001* .3996 .0586

PCG.R DMN .0775 .0737 .0008*

HIP.R DMN <.0001* .0377 .4324

CAL.R Others .0089 .0034* .0056*

FFG.R Others .0427 .0007* .0004*

PAL.L Basal ganglia .0031* <.0001* <.0001*

PAL.R Basal ganglia .1807 .0604 <.0001*

THA.L Thalamus <.0001* .0301 .0274

THA.R Thalamus .0587 .0092* .0182

PKD < HC

SFGdor.R CEN .1270 .0206 .0026*

MFG.L CEN .4130 .0042* .0128

IFGtriang.R CEN .4485 <.0001* <.0001*

SFGmed.L DMN .1738 .0003* .0002*

SFGmed.R DMN .0681 .0020* .0067*

SPG.L CEN .2114 .0001* .0002*

SPG.R CEN .2263 .0006* <.0001*

SMG.L CEN .0005* .0050* .0053*

ANG.L DMN .1828 .0072* .0069*

CAU.L Basal ganglia .0111 <.0001* <.0001*

CAU.R Basal ganglia .4246 <.0001* <.0001*

TPOsup.R DMN .0048 <.0001* <.0001*

TPOmid.R Others .2262 <.0001* <.0001*

Note: These regions exhibited significant between-group differences in at least one node centrality

parameter (marked by asterisk). Benjamini-Hochberg false discovery rate correction was applied to each

nodal measure. All p values were obtained using a permutation test. All the brain regions were defined by

AAL (automated anatomical labeling).

Abbreviations: ANG, angular gyrus; CAL, calcarine fissure and surrounding cortex; CAU, caudate; CEN,

central executive network; DMN, default-mode network; FFG, fusiform gyrus; HIP, hippocampus; HC,

healthy controls; IFGtriang, inferior frontal gyrus, triangular part; L, left; MFG, middle frontal gyrus; PAL,

pallidum; PCG, posterior cingulate gyrus; R, right; SFGdor, superior frontal gyrus, dorsolateral; SFGmed,

superior frontal gyrus, medial; SMG, supramarginal gyrus; SPG, superior parietal gyrus; THA, thalamus;

TPOmid, temporal pole, middle temporal gyrus; TPOsup, temporal pole, superior temporal gyrus.
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F IGURE 3 Regions of significant differences in nodal centralities of brain gray matter morphological networks between PKD patients and
healthy controls, showing both increases (red) and decreases (blue) in PKD compared to HC. ANG, angular gyrus; CAL, calcarine fissure and
surrounding cortex; CAU, caudate; FFG, fusiform gyrus; HC, healthy controls; HIP, hippocampus; IFGtriang, inferior frontal gyrus, triangular
part; L, left; MFG, middle frontal gyrus; PAL, pallidum; PCG, posterior cingulate gyrus; PKD, paroxysmal kinesigenic dyskinesia; R, right; SFGdor,
superior frontal gyrus, dorsolateral; SFGmed, superior frontal gyrus, medial; SMG, supramarginal gyrus; SPG, superior parietal gyrus; THA,
thalamus; TPOmid, temporal pole, middle temporal gyrus; TPOsup, temporal pole, superior temporal gyrus; The results were visualized using the
BrainNet viewer package (http://www.nitrc.org/projects/bnv)

F IGURE 4 Regions exhibiting altered node centrality and decreased structural connections in PKD patients compared to healthy controls.
These connections formed a single network with 19 nodes and 24 edges (p < .05, corrected). ANG, angular gyrus; CAU, caudate; HIP,
hippocampus; IFGtriang, inferior frontal gyrus, triangular part; L, left; PAL, pallidum; PCG, posterior cingulate gyrus; R, right; SFGdor, superior
frontal gyrus, dorsolateral; SFGmed, superior frontal gyrus, medial; SMG, supramarginal gyrus; SPG, superior parietal gyrus; THA, thalamus;
TPOmid, temporal pole, middle temporal gyrus; TPOsup, temporal pole, superior temporal gyrus. The results were visualized using the BrainNet
Viewer package (http://www.nitrc.org/projects/bnv)
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pallidum) and thalamus, which have been shown to be involved in

PKD (Joo et al., 2005; Thiriaux et al., 2002; Zhou, Chen, Gong

et al., 2010). There are two pathways in the basal ganglia circuitry.

The striatum (putamen and caudate) sends an inhibitory projection to

the basal ganglia output nuclei (globus pallidus interna/substantia

nigra, Gpi/SNr), called the direct pathway. The striatum also sends an

inhibitory projection to the globus pallidus externa (Gpe), which, in

turn, inhibits the subthalamic nucleus (STN) and Gpi. This latter is

known as the indirect pathway and acts in opposition to the direct

pathway. The Gpi/SNr sends inhibitory fibers to the thalamus, and the

thalamus, in turn, projects excitatory fibers to the motor cortex and

supplementary motor cortex, which project to the spinal motor neu-

rons, controlling muscle contractions and movements (Breakefield

et al., 2008; Peterson, Sejnowski, & Poizner, 2010). It is also widely

accepted that PKD is a paroxysmal movement disorder caused by

abnormalities of the basal ganglia-thalamo-cortical circuit. There is

evidence that PKD may be associated with structural and functional

abnormalities in the basal ganglia and thalamus regions (Joo

et al., 2005; Kim et al., 2015; Shirane et al., 2001; Zhou, Chen, Gong,

et al., 2010; Zhou, Chen, Zhang, et al., 2010). However, at present

there is no consensus on which subcortical GM structure within the

basal ganglia-thalamo-cortical network is primarily responsible for the

abnormal involuntary movements. Based on our findings of nodal

changes in the caudate nucleus, pallidum, and thalamus, we suggest

that abnormalities in both the basal ganglia and the thalamus are pri-

mary contributors to abnormal motor symptoms in patients with PKD.

We also found decreased nodal centralities in bilateral caudate

nucleus (implying weaker information transfer and integration) and

increased nodal centralities in bilateral pallidum and thalamus (stron-

ger information transfer and integration). These results are broadly

consistent with the hypothesis that loss of normal inhibitory control

of basal ganglia and thalamus output, and the resulting overexcitation

of the thalamocortical circuit, underlie the hyperkinetic movement of

PKD (Mink, 2003; Quartarone & Hallett, 2013; Y. Zhang et al., 2020).

Altered nodal metrics in PKD were also found in posterior cingu-

late gyrus, right hippocampus, bilateral medial superior frontal gyrus,

right angular gyrus, and right superior temporal gyrus. These regions

are the vital regions of the default-mode network (DMN) (Buckner,

Andrews-Hanna, & Schacter, 2008; Montembeault, Rouleau, Provost, &

Brambati, 2016). Although DMN abnormalities are not commonly

reported in PKD, they have been described in other hyperkinetic move-

ment disorders, such as writer's cramp (Mohammadi et al., 2012) and

Tourette syndrome (Wen et al., 2017). Further, altered nodal

F IGURE 5 Scatter plots of the clustering coefficient (Cp) against the age of onset and duration of disease in patients with paroxysmal
kinesigenic dyskinesia. Cp was negatively correlated with duration of disease (r = − .338, p = .004) and positively correlated with age of onset
(r = .346, p = .003)

TABLE 3 Top 20 most relevant brain regions for the classification
analysis

No. Regions

1 Lenticular nucleus, pallidum PAL.L

2 Inferior frontal gyrus, triangular part IFGtriang.R

3 Posterior cingulate gyrus PCG.R

4 Temporal pole: Middle temporal gyrus TPOmid.R

5 Caudate nucleus CAU.R

6 Angular gyrus ANG.L

7 Cuneus CUN.L

8 Temporal pole: Superior temporal gyrus TPOsup.R

9 Caudate nucleus CAU.L

10 Superior parietal gyrus SPG.L

11 Supramarginal gyrus SMG.L

12 Fusiform gyrus FFG.R

13 Middle frontal gyrus MFG.R

14 Inferior parietal, but supramarginal and angular gyri IPL.R

15 Thalamus THA.R

16 Inferior parietal, but supramarginal and angular gyri IPL.R

17 Inferior frontal gyrus, orbital part ORBinf.L

18 Superior frontal gyrus, medial SFGmed.R

19 Superior frontal gyrus, medial SFGmed.L

20 Lenticular nucleus, putamen PUT.L

Note: All brain regions are defined by AAL (automated anatomical labeling).

Abbreviations as in Table 2.
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centralities in posterior cingulate gyrus, angular gyrus, and temporal

pole have been reported in the functional network of drug-naïve PKD

patients (Y. Zhang et al., 2020). One critical function of the DMN is in

emotional processing (Mohan et al., 2016). PKD symptoms depend on

the internal emotional state: anxiety and stress are known to lower the

threshold for attacks in many PKD patients (Bruno et al., 2004; De

Gusmao & Silveira-Moriyama, 2019). The attack can also be triggered

by startle (Waln & Jankovic, 2015). Moreover, patients with PKD

exhibit manifestations of anxiety or depression disorders (Kunii,

Matsuda, & Yabe, 2017; Tian et al., 2017). Our findings may help

account for this, defining structural network abnormalities that may

underlie abnormal emotional processing in PKD.

Interestingly, we observed nodal changes in the bilateral dorsolat-

eral superior frontal gyrus, left middle frontal gyrus, right inferior frontal

gyrus, bilateral superior parietal gyrus, and left supramarginal gyrus

which are the key regions of the central executive network (CEN)

(Menon, 2011; Niu et al., 2018; Patel, Spreng, Shin, & Girard, 2012;

Sylvester et al., 2012). The CEN plays a crucial role in the execution,

control, and inhibition of task performance (Y. Chen et al., 2016; Littow

et al., 2015). Most PKD patients have a sensory aura which alerts them

to try to control or suppress the attacks by ceasing general movement

and performing determined movements with the affected limb, but only

a few succeed in aborting or minimize the attack (Bruno et al., 2004;

Silveira-Moriyama et al., 2013). Our finding of decreased node centrali-

ties in most CEN regions may reflect this impairment. Furthermore,

attacks in PKD are frequently unilateral and asymmetric, and patients

often try to control the affected limb with the normal limb

(De Gusmao & Silveira-Moriyama, 2019). Our finding of increased

nodal centralities in left dorsolateral superior frontal gyrus, the cardinal

region in CEN, may reflect the brain's adaptive plasticity, given that

PKD patients must expend more effort to inhibit attacks. However, our

novel demonstration of nodal changes in CEN requires further study.

4.3 | Significant relations between global network
properties and clinical variables

We found that alterations in global network properties in PKD are

associated with illness duration and age of onset. In particular, the

decreased Cp was significantly correlated negatively with disease

duration and positively with the age of onset. Some previous studies

in PKD failed to detect significant correlations between outcomes and

illness duration (Kim et al., 2015; Zhou, Chen, Gong, et al., 2010;

Zhou, Chen, Zhang, et al., 2010). However, Long et al. (2017) found

that the functional connectivity (FC) of the thalamo–motor-cortical

network was positively correlated with disease duration, and a recent

study also reported a negative correlation of disease duration with

GM volume in the presupplementary motor area (H. F. Li et al., 2019).

Our results are consistent with this, suggesting that with greater

illness duration the segregation (reflected by Cp) of GM morphological

networks decreased. Although few studies have reported the relation

between outcomes and age of onset in PKD, a recent functional net-

work study found significant correlations between nodal efficiency of

left pallidum and the age of onset in patients with PKD (Y. Zhang

et al., 2020). And we found positive correlations between decreased

Cp and age of onset, suggesting that the earlier the onset, the more

the decrease in the segregation function of the GM morphological

networks. Of course we cannot say whether the changes in Cp are the

cause or consequence of repeated movement symptoms in PKD.

More studies are needed to clarify this.

4.4 | The classifying ability of GM morphological
network matrices

Modern neuroimaging in conjunction with machine learning is particu-

larly suited to the study of complex neuropsychiatric diseases. In the

SVM analysis, we achieved a high (87.8%) classification accuracy using

GM morphological network matrices, showing that GM morphological

network matrices were sensitive in identifying PKD from controls. Our

results provide support for the emerging view that GM structural net-

works, which capture cellular, molecular and functional features of the

brain, are a powerful tool to examine the structural organization of psy-

chiatric and neurological illnesses (T. Chen et al., 2017; Niu et al., 2018;

Seidlitz et al., 2018; Tijms et al., 2014; Yun et al., 2020), and that net-

work biomarkers which can capture the role of brain network structure

in a given phenotype, and study the role of known subsystems in a par-

ticular disorder, have the potential to improve diagnosis of neuropsy-

chiatric diseases (Schindlbeck & Eidelberg, 2018; Wen et al., 2017). In

particular, a recent study suggested that connectome-wide matrices

had greater diagnostic value than graph-based metrics or preprocessed

whole-brain image data (Lei et al., 2019). Our results are consistent

with this, suggesting that GM morphological network matrices

(i.e., connectome-wide matrices) might have high diagnostic value for

PKD. Moreover, we found that the 20 brain regions that provided the

greatest contribution to the classification overlapped with the regions

known to have altered nodal properties in PKD. Importantly, these

included the caudate nucleus, pallidum, and thalamus, which are well

known to be altered in PKD. This further supports the concept that

GM morphological network matrices might serve as a neuroimaging

biomarker to assist the clinical diagnosis of PKD.

4.5 | Limitations

The study has several limitations. First, different templates may cause

considerable variations in graph-based theoretical parameters

(J. Wang et al., 2009). We tested the reproducibility of our findings by

constructing brain networks based on an alternative templates (the

Harvard-Oxford atlas), and found similar results (Table S1). However,

more templates are needed to test the reproducibility of the results in

the future. Second, most patients were treated with AEDs. Although

we recruited only patients who had been on medication for

<3 months or had not taken medication within the 6 months prior to

the study, most were taking a low dose of AEDs to control the attacks

and avoid the side effects (Huang et al., 2015). The treated patients
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were scanned only after medication had been withdrawn for at least

12 hr, and there were no significant correlations between the topo-

logical metrics (AUC) and months on medication within the PKD

group. Nonetheless, we cannot completely eliminate the effects of

AEDs. Third, the recruited PKD patients were heterogeneous in terms

of genetic mutation. Although the precise role of proline-rich trans-

membrane protein 2 (PRRT2) mutations in the pathophysiology of

PKD remains unknown, a subgroup analysis should be conducted to

address whether the PRRT2-mutattion specifically affects GM

morphological networks. Fourth, the biological significance of these

network alterations needs to be more fully understood. Although

accumulating evidence indicates that heredity, experience-related

plasticity, mutually trophic influences and coordinated neurodevelopmental

and aging trajectories play important roles in the formation of mor-

phological brain networks (Alexander-Bloch et al., 2013; Evans, 2013),

we need to clarify which of these factors is related to the abnormali-

ties in PKD. Fifth, although the methodology we used (Kong

et al., 2014; Kong et al., 2015) to extract individual structural

morphology brain networks is completely data-driven, the relatively

wide age range of participants might have biased the results. We

therefore performed a subgroup analysis by dividing the sample

(patients and controls) into adult and adolescents groups, and analyzing

separately: the results were similar to our main findings (Tables S2-S5).

5 | CONCLUSION

Our study provides the first demonstration that PKD features

disrupted topological organization in GM morphological networks.

Patients with PKD also showed altered nodal properties in basal gang-

lia and thalamus, which were previously shown to be involved in the

disease. Furthermore, the GM morphological network matrices per-

mitted differentiation of PKD from healthy controls with a high accu-

racy of 87.8%, indicating that GM morphological network matrices

were sensitive in identifying PKD from controls. Our results provide

structural insights into the brain networks associated with PKD and

may help extend our understanding of how structural disruptions of

GM networks are linked to the pathophysiology of PKD. GM morpho-

logical network matrices also have potential as neuroimaging bio-

markers to assist in clinical PKD diagnosis.
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