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Simple Summary: Glioblastoma (GBM) is a cancer with poor prognosis, its 5-year survival expecta-
tion is approximately 5%. Advances in oncologic treatment techniques have not led to significant
improvements in survival outcomes for GBM patients. Part of the reason for the treatment failures in
GBM patients is that treatments fail to account for heterogeneities both within and between different
tumors. Radiomics is a rapidly emerging research field that examines the relationship between medi-
cal imaging features and patient clinical outcomes and biological characteristics of tumours. This
review outlines the applications of radiomics for GBM patient management and the barriers facing
the implementation of radiomics into clinical practice. In completing this review, we hope to inform
clinicians and researchers on how radiomics may be used to improve patient clinical outcomes.

Abstract: Radiomics is a field of medical imaging analysis that focuses on the extraction of many
quantitative imaging features related to shape, intensity and texture. These features are incorporated
into models designed to predict important clinical or biological endpoints for patients. Attention
for radiomics research has recently grown dramatically due to the increased use of imaging and the
availability of large, publicly available imaging datasets. Glioblastoma multiforme (GBM) patients
stand to benefit from this emerging research field as radiomics has the potential to assess the biological
heterogeneity of the tumour, which contributes significantly to the inefficacy of current standard
of care therapy. Radiomics models still require further development before they are implemented
clinically in GBM patient management. Challenges relating to the standardisation of the radiomics
process and the validation of radiomic models impede the progress of research towards clinical
implementation. In this manuscript, we review the current state of radiomics in GBM, and we
highlight the barriers to clinical implementation and discuss future validation studies needed to
advance radiomics models towards clinical application.

Keywords: radiomics; Glioblastoma; machine learning; MRI; biomarker

1. Introduction

Glioblastoma multiforme (GBM) is the most common primary brain malignancy with
an incidence of 3.1 cases per 100,000 adults in the United States [1]. Despite a multimodal
treatment regime of maximal safe resection [2] and adjuvant chemoradiation therapy, the
prognosis is poor for GBM patients. Median overall survival is approximately 15 months,
and the 5-year survival rate is 5.1% [3].

The current standard of care for GBM consists of maximal safe resection followed
by concurrent Temozolomide (TMZ, 75 mg/m2/day) and radiation therapy (60 Gy over
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30 fractions delivered over six weeks). In elderly patients, it has been found that there
is no significant difference in outcomes between patients treated with hypofractionated
radiotherapy (40 Gy in 15 fractions over three weeks) and conventionally fractionated
radiotherapy [4,5]. Recent developments in treatment include the use of low intensity,
intermediate frequency electric fields. These Tumour Treating Fields (TTFs) have been
found to arrest cell division and cause death in tumour cells [4]. Prognosis is limited
by tumour progression, which occurs in over 80% of GBM patients, demonstrating the
inefficacy of current treatment methods. Multiple factors have been cited as contributing
to treatment failure [6]. These factors include intra-tumoural heterogeneity, referring
to the physiological variations between different tumour regions, and inter-tumoural
heterogeneity, referring to the physiological differences between tumours from different
patients. This heterogeneity contributes to common treatment failure as homogeneous
treatment prescriptions are ineffective in GBM treatment [7]. Treatment failures in GBM
can be attributed to the tumour’s ability to dynamically adapt and develop mechanisms of
treatment resistance. Resistance to chemotherapy arises from the presences of the blood–
brain barrier (BBB) preventing chemotherapy drugs from reaching tumour cells and from
inherent molecular resistance to these drugs [6]. Resistance to radiotherapy arises from
tumour hypoxia reducing the treatment efficacy [8]. Additionally, peritumoural infiltration
of tumour cells in the brain parenchyma is another important hallmark of GBM contributing
to treatment failure and local relapse [9].

Magnetic Resonance Imaging (MRI) is the primary imaging technique used for the
diagnosis, treatment planning and monitoring of GBM [10]. This is due to the excellent
soft tissue contrast offered by MRI and the ability to change acquisition parameters to
enhance contrast between normal and diseased tissue. Anatomical MRI sequences routinely
acquired for the clinical management of GBM include T1-weighted (T1-w), T1-weighted
contrast enhanced (T1CE), T2-weighted (T2-w) and T2 fluid attenuated inversion recovery
(T2-FLAIR) imaging [11]. Gadolinium-based contrast agents, which are administered
during T1CE imaging acquisition, enable improved delineation of the tumour boundaries.
However, as selective accumulation in the tumour tissue relies on the extravasation of the
contrast agent into the extracellular extravascular space, this technique is only useful for
the delineated tumour regions with a disrupted BBB [9], leaving infiltrating tumour regions
with an intact BBB invisible. The contrast-enhancing tumour volume delineated from T1CE
imaging is normally used to define the gross tumour volume for planning radiotherapy. As
such, this volume is often an underestimation of the ‘entire tumour burden’ [12]. FLAIR
imaging is also utilised in delineating GBM tumour volumes on MRI. Hyperintense T2-
FLAIR volumes are used in the delineation of tumour radiotherapy volumes, especially
in defining areas of peritumoural cancer infiltration in oedema [13]; however, this has
limitations as the prognostic value of FLAIR signal has not been clearly shown in GBM
tumour response assessment [13]. Radiomics could help provide a method to quantify the
extent of tumour infiltration beyond the contrast enhancing boundaries [12,14], potentially
enabling the adaptation of treatment plans tailored to the characteristics of each patient’s
individual tumour [15]. Functional imaging approaches such as quantitative MRI (qMRI)
and Positron Emission Tomography (PET) have also been increasingly utilised in the
management of GBM as they can provide information about the tumour physiological
processes, including vascularisation, cellularity, hypoxia and metabolism [10,16].

Radiomics is a method of data analysis in which many quantitative features are
extracted, and machine learning (ML) methods are used to establish correlations with
patient clinical outcomes [17,18]. The underlying hypothesis of radiomics is that radiomic
features reflect the biological characteristics of the tissue, which in turn are related to
patient clinical outcomes. While previous studies have demonstrated that radiomics have
the potential to predict clinical outcomes in GBM [19–23], its application is still far from
clinical implementation [24,25]. Radiomics models for GBM are generally based on MRI
due to its central role in the management of brain cancer patient; however, radiomics
approaches using CT and PET imaging have also been investigated [26,27].
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Radiomic models can be assessed based on three key factors: performance is defined by
the accuracy of the model’s predictions; clinical utility determines whether the predictions
can be used clinically to modify treatment and improve patient outcomes and transferability,
which represents the ability of the model to maintain performance when applied to datasets
with varied acquisition parameters [24,28].

The progress of radiomics in GBM is reviewed by outlining the radiomics methodology
as a whole and how this may be improved, performing a review of the existing models
in GBM radiomics and outlining what improvements are necessary to build confidence
in radiomics models. The current state of radiomics research in GBM, the gaps in current
research, specific challenges in developing a radiomics model for brain cancer and how
models may build confidence to advance to a state of clinical implementation are outlined.
This knowledge is essential for both clinicians and data experts to advance radiomics
research in GBM.

2. Literature Selection Methodology

In this review, we selected studies that use innovative techniques such as ML and
quantitative MRI for the development of radiomic models. The performance and potential
clinical utility of radiomics models developed using these methods is likely to be critical
to the continued progress and clinical implementation of radiomics in GBM patient man-
agement. Particular attention has been paid to studies that advances the state of research
towards clinical implementation. Studies for this review were found by searching the
PubMed Central database with keywords of ‘GBM’, ‘radiomics’, ‘machine learning’ and
‘quantitative MRI’. Studies published since 2016 and important papers in the history of
radiomics have been included in this review. Particular attention has been paid to studies
that have used innovative methods such as ML or multi-parametric imaging.

Literature was selected in this review to outline the progress of radiomics in GBM,
including the development and implementation of novel methods within the radiomics
pipeline. By reviewing literature that implemented these novel methods, we hope to
investigate how radiomics models may build confidence by improving their performance,
clinical utility and transferability.

3. Radiomics
3.1. Radiomics Methodology

The process of developing a radiomics model involves the steps of image acquisition,
pre-processing, segmentation, feature extraction, model building and validation [29], which
are represented in Figure 1.

Image acquisition involves the collection of images of the tumour and surrounding
tissue. MR images are heavily affected by acquisition parameters including pulse sequence,
pixel size and scanner specifications. The variation in acquisition parameters between
different centres limits the transferability of radiomics models [30].

Segmentation involves outlining tumours and other regions of interest on the acquired
images. Consistent segmentation is critical to the development of radiomic models. Seg-
mentation is typically performed by radiation oncologists; however, ML algorithms have
also been used for this task [11]. Inter-rater variability, which refers to the variation between
the segmentations produced by different human raters, has been identified as a factor that
can reduce the robustness of radiomic features [31].

Image pre-processing is the process of performing image transformations to stan-
dardise similar images acquired with different protocols. Whilst not strictly necessary,
pre-processing should be implemented for models incorporating datasets with varied
acquisition parameters. Common algorithms used in standardisation of brain MRI include
pixel resampling (usually to a common pixel size of 1 mm3), intensity standardisation and
bias correction [32].
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Figure 1. A scheme representing the process of developing a radiomics model. (1) Image Acquisi-
tion, (2) Tumour Segmentation, (3) Image Pre-processing and standardisation, (4) Feature Selection,
(5) Statistical Model Building and (6) Statistical Validation.

Feature extraction involves the calculation of radiomic features from regions of interest.
Radiomic features are classified into one of four categories; shape, first-order, second-order
and higher order. The calculation and utility of these features will be discussed in further
detail in Section 3.2.

Feature selection and model building consist of identifying correlations between fea-
tures and relevant biological or clinical parameters. To construct a viable radiomics model
from the large number of radiomics features, it is necessary to select features representative
of clinical or biological parameters of interest. Features with high correlation to each other
(redundant features) must first be eliminated from a model [17]. From the remaining
features, those with the highest correlation to relevant outcomes are incorporated into the
model. These features can either be correlated to the outcome through statistical methods
(e.g., regression) or through ML algorithms (e.g., Random Forest, Neural Network, Support
vector machine) [33].

Model validation consists of testing the model on unseen data and measuring the
accuracy of predictions made on this data. There are multiple methods that are used to
assess the performance of a radiomics model. Validation usually requires two distinct
datasets, one for training and one for testing [34]. Ideally, an external dataset is used for
testing so that a more realistic estimate of the performance and generalizability of the
model can be made. However, most studies only use single datasets without external
testing datasets [35]. Cross validation is another method that is useful for small datasets.
This involves splitting a dataset equally into k subsamples. One subsample is used for
validation, and the remaining subsamples are used for training. This is repeated k times [34]
with each subsample used once for validation. The results are then obtained by averaging
the performance of each of the validation steps.

Variations at any point within this process can result in a reduction in accuracy or
reliability of radiomic models [32,36].

3.2. Radiomic Features

Taken as a whole, radiomics features can be thought of as ‘summary statistics’ for a
region of interest on an image. That is, that they evaluate certain characteristics of an image
using a single number.

Shape features: Shape features describe the geometric properties of the region of
interest, such as volume or surface area.
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First order features: First order features relate to the pixel values of a region of interest
and can be derived from a histogram of these pixel values. Features of this type include the
mean, skewness, standard deviation and energy of the pixel values.

Second order features: Second order features relate to the spatial distribution of pixel
values and are extracted from a set of matrices that describe the texture of images. These
features are calculated using a set of matrices that are related to the spatial distribution of
pixel values. Matrices used for this purpose include the Gray-Level Co-occurence Matrix
(GLCM), which considers the number of times a pixel intensity occurs along a certain axis,
and Gray-Level Run Length Matrix (GLRLM) which quantifies the length of segments with
the same pixel intensity.

Higher Order features: Higher order features are first or second order features that
are extracted from an image after image transformations, such as filtering or wavelet
transformations, have been applied [37].

Feature extraction in most radiomics studies has been limited to the traditional ‘hand-
crafted’ features, being features with a predefined mathematical definition. Deep or learned
features are another type of feature that have received attention in recent years [23,38,39].
These are features that are derived using convolutional neural networks. Rather than being
explicitly defined mathematically, the neural network used to derive these has been ‘trained’
to produce a prediction of a certain outcome.

Software such as MATLAB and Python is often used to extract radiomic features.
Open source packages for the calculation of radiomics features are common, including
PyRadiomics for Python, and Computational Environment for Radiotherapy Research
(CERR) for MATLAB [40]. Some variation in radiomic features extracted by different
software packages [41] has been found so it is important for studies to standardise their
feature extraction workflows for transferability and comparability.

3.3. Artificial Intelligence and Radiomics

Artificial intelligence (AI) methods and radiomics have a natural synergy. AI describes
a group of computational algorithms that can form predictions based on a large amount
of data [33]. Increasingly large datasets used to create radiomic models can benefit from
AI algorithms in generating accurate predictions. In particular ML, a group of algorithms
which improve the accuracy of their predictions by performing analysis on unseen data
shows promise in medical imaging analysis.

ML algorithms are generally classified as supervised, where data are accompanied
by relevant labels that a model ‘learns’ to predict, or unsupervised, where no labels are
provided with the data and the algorithm attempts to discern patterns within the data.
Many ML algorithms, including support vector machines, neural networks and random
forest, have found utility in radiomics [42]. Neural networks are a set of ML methods
where data are fed through a set of interconnected ‘layers’ of linear operations to produce
predictions. Support vector machine is an ML algorithm that aims to perform binary
classification on multi-variate data by identifying the best classification threshold based
on multi-dimensional data. Included in Table 1 below is a summary of some ML methods
used in conjunction with radiomics [15,33].

ML methods can be integrated into the radiomics pipeline at multiple points [12,22,23].
Segmentation has been a highly investigated ML-based task in GBM research, due to the
wealth of data available expressly for this purpose [11]. ML methods also have the potential
to supplement or replace the linear regression traditionally used in building a radiomics
model [12,21] and have shown to provide improved performance [12,22].
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Table 1. A summary of ML algorithms used in radiomics research.

Algorithm Description Application in Radiomics

Support Vector
Machine

A support vector machine
aims to perform binary
classification on
multidimensional data by
finding the ideal hyperplane
to separate the two
classifications

Support vector machines can be used on a
voxel-by-voxel basis to predict tissue
biological parameters or in conjunction with
radiomic features to make a binary prediction
(for example distinguishing between high
and low grade glioma) based on multiple
feature values. This was implemented in a
study by Qian et al. [43] to differentiate
between Glioblastoma and Gliosarcoma.

Neural
Network

A neural network performs
mathematical operations on
input data through a series of
interconnected layers to
produce a prediction. Deep
Learning is a subset of
Machine Learning based on
neural networks using two or
more ‘hidden layers’ and has
received much attention in
recent years for image and
data processing.

Neural networks can be used in place of a
regression algorithm to generate predictions
based on the values of radiomic features [12].
In the case of deep learning, a class of
radiomic features known as deep features
that are derived using convolutional neural
networks. In addition to this, deep learning
has been implemented in automated
segmentation of brain tumours [44,45].

Random Forest

A random forest is an
ensemble of decision trees
with a final prediction created
by the results of all the trees.
The final decision is created by
a ‘vote’ of all these trees.

A model aiming to produce a binary
prediction based on multiple factors could
benefit from the implementation of random
forests. Tasks related to GBM patient
management suited for including
differentiation between pseudo- and true-
tumour progression, stratification of patients
into high or low risk categories [46] and a
grading of gliomas [47].

3.4. Implementation of Standardisation Methods

MRI signal is derived from a complex interplay of tissue properties and scanner param-
eters. As a result, significant variability in the accuracy of radiomics models can arise from
variation in acquisition parameters or from feature instability. Effective model building
requires the features extracted from medical images to be repeatable and reproducible. Ef-
forts to standardise imaging practice have been recommended by the Quantitative Imaging
Biomarkers Alliance (QIBA) [48,49]. These guidelines recommend quantifying repeatability,
a measure of biomarker variability over a short time when all acquisition and processing pa-
rameters are kept constant; and reproducibility, where acquisition or processing parameters
are altered in some way [50]. Additionally, specific recommendations for acquisition pa-
rameters in diffusion-weighted and dynamic contrast enhanced MRI have been suggested
to improve precision of imaging biomarkers derived from these sequences [49].

Methods to improve repeatability and reproducibility in radiomics include intensity
standardisation, volume resampling, bias field correction and noise filtering [51,52]. Inten-
sity standardisation is a method used to reduce variability in grey-level between images.
This is particularly important for MRI, where pixel values do not necessarily represent a
physical quantity and can thus vary depending on scanner model and acquisition parame-
ters. Methods used for intensity standardisation include mapping all pixel intensities to a
specific range, e.g., [0, 255], z-score, histogram matching or Gaussian normalisation [37,53].
Volume resampling involves adjusting the spatial resolution to a common pixel size, usually
1 mm3, and cropping the image to a size of 2563 voxels. Bias field correction is a method
used to eliminate bias field signal, a low frequency smooth signal produced by inhomogene-
ity in the radiofrequency field of MRI. Multiple methods have been suggested to eliminate
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this signal [37,54]. A study by Hoebel et al. [32] implemented a selection of the above
standardisation methods to determine their effect on the repeatability of radiomic features
extracted from structural MRI by way of test–retest imaging. In this study, repeatability was
measured by comparing features between the two scans. A similar study by Suter et al. [36]
assessed the repeatability of features under various image perturbations. Studies of this
nature allow non-repeatable and/or non-reproducible features to be eliminated from a
predictive model, thus contributing to a better model transferability [17].

Implementation of these standardisation methods can improve comparability of mod-
els developed at different centres [36]. However, it should be noted that these techniques
may also increase the correlation between different features [32,51]. High correlation
between features may result in reduced model accuracy, as information is lost in pre-
processing. Therefore, it is recommended that the effect of pre-processing methods that
improves the repeatability of radiomic features of interest is validated in studies utilising
data with diverse acquisition protocols.

4. Current State of Research in GBM Radiomics

Radiomics models have performed well predicting clinical and biological characteris-
tics of tumours. The performance of these models has continued to improve as more data
have become publicly available and innovative artificial intelligence methods have been
utilised in radiomic analysis.

4.1. Potential Applications of Radiomics in GBM Patient Management

To date, clinical assessments of patient status have been primarily based on qualitative
metrics [37]. This presents two main issues. First, basing clinical decisions on qualitative
metrics introduces observer bias to treatment. Second, the qualitative metrics used are not
sufficient to describe the functional characteristics of the tumour. Radiomics could help to
address these issues by providing a quantitative, unbiased method of assessing tumour
physiology [37].

Tasks in the management of GBM patients that radiomics are suited for including
diagnosis, prognostication, stratification, response assessment and treatment planning.

In the context of diagnosis, radiomics could reduce the need for invasive biop-
sies through the automatic detection and grading of brain tumours [47,55]. The ‘gold
standard’ for the grading of gliomas is biopsy [56]. Interestingly, a recent study by
Kobayashi et al. [39] was able to achieve an accuracy of 0.90 ± 0.03 using a fully auto-
mated radiomics model for distinguishing between high and low grade glioma. This
was based on structural MRI sequences from the Brain Tumour Segmentation (BraTS)
challenge [11,45,57]. The use of radiomics for these purposes could reduce the need for
invasive surgical procedures as well as reducing observer bias.

Prognostication predicts patient clinical outcomes and can be completed to identify
if a patient would benefit from a more aggressive treatment regimen. Studies attempting
to predict patient overall survival have generally performed well when incorporating
advanced methods such as ML analysis or when incorporating multi-parametric imag-
ing [19]. A prognostic task that radiomics could be useful for in GBM patient management
is the identification of O-6-methylguanine-DNA methyltransferase (MGMT) promoter
methylation status. MGMT is a repair protein which inversely correlates to patient sur-
vival [58]. MGMT methylation is both a prognostic and predictive marker, conferring
an improved survival and better response to TMZ treatment [59]. Studies aiming to de-
termine the MGMT methylation status [60,61] have seen some success using radiomic
features extracted from structural MRI sequences. Improvements on these predictions and
treatment implementation could help clinicians identify patients that may benefit from
TMZ chemotherapy.

Stratification classifies patients based on important clinical factors and can help deter-
mine if a patient may benefit from certain treatments. This is often completed in conjunction
with prognostication. For example, a study by Kickingereder et al. [62] demonstrated the
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utility of radiomics in identifying patients who may benefit from anti-angiogenic therapies.
This study was able to achieve an area under the receiver operator curve (AUC) of 0.792 for
prediction of overall survival for patients treated with bevacizumab.

Treatment response assessments in GBM clinical trials often rely on the updated
Response Assessment in Neuro-Oncology (RANO) criteria [63]. These are based on changes
in tumour volume and contrast enhancement observed on T1CE images. Radiomics could
also be used to measure functional tumour changes occurring over time in response to
treatment [14]. The ability of radiomics to quantify underlying tissue physiology makes
it suitable for assessing tumour treatment response [18]. Diffusion-weighted imaging has
been investigated as a potential predictor of early treatment response for GBM [64]. Recent
studies implementing radiomics have shown to be able to differentiate between true tumour
progression and pseudo-progression with a sensitivity of approximately 80% [20,27]. The
combination of qMRI sequences and radiomics analyses has the potential to generate
predictive models of tumour response, which could help clinicians make timely decisions
for treatment adaptation [20].

Treatment planning is another promising application of radiomics in GBM manage-
ment. For instance, radiotherapy stands to benefit from the integration of radiomics into
clinical practice [15,65,66]. Radiomics may assist in the segmentation of radiotherapy
target volumes and in measuring and predicting treatment response [67]. Identification
of peritumoural infiltration is also a task which can improve the quality of surgery and
radiotherapy by providing a means to better define tumour margins, and is well suited to
be performed by radiomics [12,66]. Tumour hypoxia is a factor which reduces the efficacy
of radiotherapy as DNA damage is reduced in hypoxic regions. Radiomics has shown
potential in the identification of hypoxic tumour regions [8], which could be leveraged for
dose escalation treatment strategies.

4.2. Existing Models in GBM Radiomics

To date, the best performing models have incorporated functional imaging and/or ML
methods to improve predictions. A selection of radiomics models in GBM has been outlined
below. These models have been selected as they address one of the key factors for the
progress of radiomics towards clinical implementation (being clinical utility, performance
and transferability). Table 2 reports recent studies with a focus on radiomics in GBM.

These models highlight how radiomics can build confidence to progress towards
clinical implementation. Each model has its own clinical utility. Survival prediction
models [19,23,38] can be used to determine if a patient may benefit from a more aggressive
treatment regimen, the prediction of peritumoural infiltration [12] and the prediction
of local vs. distant recurrence [22] could allow for improved treatment planning and
stratification studies [62] can help determine if a patient can benefit from a certain treatment
regimen. Innovative methods such as deep learning and mpMRI were implemented in
these models to improve their performance. Suter et al. [36] investigated the repeatability
of radiomic features and the performance of a model when applied to images acquired with
different acquisition protocols to the training dataset. This study was an excellent example
of a method that could be used to measure and improve transferability of radiomics models.

One problem hindering the clinical translation of radiomic models is the lack of multi-
centre data being utilised for training and technical validation. By training and validating
a model on single-centre data, the issue of inter-centre variability is largely neglected.
Inter-centre variability refers to variability in image intensity due to differences in scanner
or acquisition protocols, which has been found to have a significant impact on MRI and
MRI-derived radiomic features [51,68]. Technical validation studies aim to investigate the
performance of models when applied to data not drawn from the same dataset used for
training [69]. Some of these studies have been completed to date [25,36]; however, further
studies will be required so that reproducibility of model results can be assured.
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Table 2. A selection of modern radiomics models for predicting clinical and biological factors in GBM.

Author Model Description Conclusions Clinical Application Performance Patient Numbers

Kickingereder et al.,
2016 [62]

Stratification of patients
into groups who were
likely or not likely to

benefit from
anti-angiogenic therapies

A radiomics model based on
supervised principal

component analysis is
effective at stratifying

patients into groups that can
benefit from the addition of

anti-angiogenic therapy

Identification of which
patients may benefit from
certain therapies provides
clinicians a convenient to
tailor treatment regimens

to individuals

AUC = 0.792 172

Lao et al., 2017 [38]

Deep features were
extracted using transfer

learning and implemented
into a survival prediction

model. This model
utilised learned features,
handcrafted radiomics

features and clinical
factors to produce a
prediction of overall

patient survival.

Implementing learned
features into a predictive

radiomics model can
improve the performance of

a predictive model.

A survival prediction
model can be used to
determine if a patient

would benefit from a more
aggressive treatment
regimen. Improving

performance by
implementing learned
features and clinical

factors can build
confidence in the model.

AUC = 0.739 112

Shboul et al., 2019
[23]

A fully automated
segmentation pipeline

using Deep Neural
Networks was developed
using the BraTS challenge

dataset. Survival
prediction was then

performed using radiomic
features extracted from

this dataset.

A fully automated
framework for the

delineation of GBM and
patient survival prediction

can be useful to reduce
clinical workload and bias in

the tasks of segmentation
and survival prediction.

A framework such as this
can be used to provide a

perform a tumour
segmentation for the

purpose of radiotherapy
treatment planning.

Survival predictions can
be used to recommend a
more or less aggressive

treatment regimen
as required

Leave one out cross
validation accuracy

= 0.73
396 total

Park et al., 2020
[19]

Survival Prediction based
on T1 Post Contrast, T2
FLAIR and DSC MRI as
well as clinical factors.

By incorporating mpMRI as
well as clinical factors, it is
possible to achieve a high

performing survival
prediction model

An accurate prediction of
survival period can

provide a quantitative
measure of the severity of

the disease.

AUC = 0.74 216

Yan et al., 2020 [12]

Identification of
peritumoural invasive

regions in GBM based on
Structural,

Perfusion-weighted and
Diffusion-weighted MRI.

Convolutional Neural
Network was used along
with radiomics to identify
regions of peritumoural

infiltration

Lower intensity on
Diffusion-weighted MRI and

higher intensity on T1,
FLAIR and

Perfusion-weighted MRI
was observed in

peritumoural invasion areas.

Identification of regions of
peritumoural invasion

will allow treatment plans
to accurately target whole

tumour volumes and
improve local control.

Accuracy = 78.5% 57

Suter et al., 2020
[36]

Feature robustness was
tested and models

developed on single centre
data were applied to
multicentre data. In

addition to this, a model
developed using robust
features on single centre

data was tested on
multicentre data.

A large performance drop
was found when models

trained on single centre data
were applied to multicentre
data. This performance drop
could be reduced when the

model was restricted to
robust features.

Model transferability is an
important factor in

radiomic research. To
develop transferable

radiomics models, it will
be necessary to develop
models on multi-centre

data and identify
reproducible radiomic

features.

AUC reduced by
0.56 for single

centre model tested
on multicentre data

63 single centre patients,
76 multicentre data

Shim et al., 2021
[22]

Prediction of recurrence
pattern based on DSC MRI

radiomics and neural
networks, model

produced to predict local
and distant recurrence

Quantitative measures of
tumour perfusion can

accurately predict recurrence
patterns of tumour

recurrence

Identifying the likely
course of tumour

progression could enable
early intervention or

treatment plan adaptation.

AUC = 0.969; AUC
= 0.864 (local and

distant)
192

DSC = Dynamic Susceptibility Contrast, mpMRI = multi-parametric MRI.

4.3. Challenges of Developing a Radiomics Model for Brain Cancer

For any model to reach clinical implementation, it needs to fulfill several criteria. It
should provide valuable information that can improve the clinical workflow; it should pro-
duce accurate predictions of underlying physiology/clinical outcomes (clinical/biological
validation); it should yield reproducible predictions on images acquired from different
centres (technical validation); and it should be statistically sound, meaning that it has been
trained on a large amount of diverse data [37]. A greater number of patients in the training
cohort produces a more accurate model; thus, there is no upper limit on the number of
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patients required for the development of a radiomics model. As a guideline for a statistically
robust dataset, there should be at least 10 patients per radiomic feature implemented in the
model [70].

Maintaining both transferability and performance is a challenge when constructing
any radiomics model. Transferability can be achieved in some capacity by restricting a
model to features that are stable when acquired with different parameters [36]. It can be
difficult to maintain performance of a model while restricted to these features. Additionally,
difficulties can arise in radiomics due to the lack of confidence around the reproducibility
of radiomic features. A lack of reproducibility in features will mean that radiomic models
will be inaccurate in creating predictions [32].

Challenges arise in constructing radiomics models for brain cancer in establishing a
biological ‘ground truth’ [25]. As radiomics models are often designed to predict biological
characteristics of tissue, it is necessary to obtain the biological data for training these
models. A biopsy is considered the gold standard for assessing biological function of
tissue. However, using a biopsy in conjunction with radiomics is non-trivial for brain
cancer. Challenges include that whole brain resection cannot be performed to investigate
the biology of the whole brain; accurate image-guided biopsies are difficult to perform
due to brain shifts on craniotomy [71]; challenging tumour location in critical areas of
the brain prevent the performance of biopsies; and fragility of brain tissue compromises
the retention of the tissue structural integrity. These factors make it difficult to assess
the accuracy of radiomics models via image-guided biopsy. This creates challenges in
assessing intratumoural heterogeneity, due to the difficulty in identifying biopsy location
and retaining spatial information of the sampled tumour tissue. A study aiming to achieve
spatial accuracy in GBM biopsy had a mean error of 1.5 ± 1.1 mm; however, this required
MRI to be completed during the biopsy procedure [71]. Challenges in retaining spatial
registration between the biopsy location and the region of interest marked on the image
make it difficult to build radiomic models predicting biological heterogeneity with high
accuracy. The alternative to biopsy is for an expert radiologist to label a tumour based on
available imaging; however, this method may suffer from poor accuracy in comparison
to biopsy.

GBM also poses the challenge of having tumour infiltration that extends beyond the
visible margins of contrast enhancement. Tumour infiltration is not visible on conventional
MRI due to the presence of an intact BBB preventing the contrast agent from entering the
tumour extracellular extravascular space. As such, accurate delineation of the tumour
boundaries beyond the extent of contrast enhancement on T1CE images is extremely chal-
lenging, and clinicians are forced to rely on margins of uncertainty in planning treatments,
which ultimately contributes to suboptimal treatment efficacy [72]. This presents both a
challenge and an opportunity for radiomic research. Radiomic research can suffer from
not having the full extent of the tumour delineated for feature extraction; however, it has
also shown some promise in identifying regions of peritumoural infiltration by integrating
machine learning methods into the analysis pipeline [12].

5. Improvements Required to Build Confidence in GBM Radiomics
5.1. Multi-Parametric Radiomics Models

Advanced imaging techniques, including multiparametric MRI, and advanced anal-
ysis methods, including ML algorithms, have led to improvement in the performance of
radiomics models.

To date, research in GBM radiomics has primarily utilised anatomical (T1, T2, FLAIR)
MRI sequences. However, much stands to be gained in terms of model performance by
implementing functional imaging sequences into radiomics. Given that radiomics aims
to predict clinical outcomes of patients based on imaging features, which are related to
underlying tissue physiology, it stands to reason that images quantifying tissue physiology
should contain valuable information for radiomics. Specialised MRI sequences that have
shown promise in GBM radiomics include [10]:
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• Diffusion weighted imaging (DWI)—MRI sequences which quantify diffusion of water
molecules [19];

• Perfusion weighted imaging (PWI)—Group of MRI sequences which quantify perfu-
sion parameters [19];

• Magnetic Resonance Spectroscopy (MRS)—MRI spectroscopy sequence to identify the
presence of certain metabolites [73].

In addition to MRI, PET imaging has shown some utility in performing a functional
assessment of GBM [26,27]. PET imaging in GBM has most often utilised Fluoro-deoxy
Glucose (FDG-PET) [74] as a marker of metabolism or flouro-L-tyrosine (FET-PET) as a
marker of protein synthesis [26].

5.2. A Roadmap for the Implementation of Radiomics in Clinical Practice

The development pathway for radiomics models can broadly be broken down into
three main steps, discovery, validation and clinical implementation [24,28]. During the
discovery stage, radiomic signatures are selected to be predictive of clinical or biological
parameters within existing data. During the validation stage, models are tested on diverse
data. During clinical implementation and validation, models passing the discovery stages
are implemented into clinical trials to assess their performance within a clinical setting. For
now, the development of radiomics models largely remains in the discovery stage.

Within GBM, it is important to develop models designed to predict clinically useful
parameters. Within GBM patient management, this means measuring parameters useful
for treatment adaptation to improve patient outcomes. This is the primary purpose of
the discovery stage of radiomics and research has found some useful correlations for the
prediction of biological and clinical parameters. Useful predictions for implementation of
radiomics into GBM patient management include: stratification of patients to determine if
they will respond to a certain therapy [62]; early assessment of treatment response to assess
the need for treatment adaptation [75]; prediction of patient survival [19] or recurrence and
determination of peritumoural infiltration [12]. Each of these tasks can be performed by
radiomics and provides valuable information for treatment adaptation.

Barriers to clinical implementation of radiomic models arise from the lack of trans-
ferability in the development [25]. Standardisation of imaging acquisition protocols and
development of image analysis standardisation methods are necessary for the development
of transferable radiomics model [10,76]. It will also be necessary to standardise the feature
extraction and analysis methods used to develop radiomics models. Improving the public
availability of imaging datasets with supporting data, such as clinical outcomes or biopsy
results, will be beneficial as uncertainties in ML techniques are linked to the small sample
sizes in training sets. Improved availability of data from multiple sites will also allow for
the development and validation of radiomics models on multicentre data. This, in turn,
will enable the assessment of the transferability of radiomics models. The existence of
publicly available multicentre data through the Cancer Imaging Archive (TCIA) [77] and
the BraTS challenge [11] has helped in this regard with datasets from these sources being
used in multicentre validation studies [36,68].

One issue facing the development of radiomics models for GBM is that many of
the modern models are developed using the same datasets, those being the TCIA [77]
datasets and the BraTS [11,45,57] dataset. These datasets include patients treated before
2000, potential segmentation errors and images acquired with widely varying protocols and
image quality. Despite these datasets making up a large amount of the data being analysed
in the radiomics space, there has not been extensive work into assessing the quality of these
data [77]. Without a complete quality assessment, the accuracy of the predictions can not
be assured.

It is important for models to improve their performance. With the performance
achieved by the modern radiomics models referenced in Table 2, it is unlikely that these
will be considered for implementation in clinical practice. The AUC is a common metric
used to assess the performance of binary prediction models which ranges from 0.5–1 with
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0.5 being no better than random and 1 being a perfect prediction. Generally, a value greater
than 0.8 is considered a good prediction while above 0.9 is excellent. There is not an agreed
minimum level of performance for implementation in clinical practice. The acceptable level
of performance will need to be decided by clinicians depending on the task that a radiomics
model is performing [78]. It is also important that the acceptable level of performance is
compared to what is currently achieved in the clinic, although determining these values can
also be a major area of research. This level of performance may be achieved by using high
quality, multi-parametric data in training and implementing advanced analysis methods to
build these models.

Clinical trials evaluating the effects of the using radiomics models on patient treatment
outcomes will be necessary to see widespread clinical implementation of radiomics. How-
ever, before such studies can be performed, standardised imaging and analysis protocols
ensuring reliability of models predictions should be established [28].

Another important consideration for the development of radiomics models towards
clinical implementation is the knowledge gap between data experts and clinicians. While
radiomics models have the potential to provide useful information to clinicians, it is impor-
tant that clinicians understand how this information is developed and what its limitations
might be. Conversely, it is also important for data experts who develop these models
to have an understanding of what important and relevant endpoints a radiomics model
should predict or include and what performance a model should have to be clinically useful.

6. Conclusions

The development of radiomics models aimed to assist in the management of GBM
in recent years has yielded promising results. The increased use of ML methods, and
multi-modal imaging has driven an improvement in performance of GBM radiomic models.
To overcome the challenges associated with GBM radiomics, increased access to diverse,
large datasets will be necessary. In pursuit of this goal, multicentre collaborations should
be sought. Further development in this direction should improve the performance, useful-
ness and transferability of emerging radiomics models, bringing them one step closer to
clinical implementation.
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