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Polycystic ovary syndrome (PCOS) and Hashimoto’s thyroiditis (HT) are endocrine
disorders that commonly occur among young women. A higher prevalence of HT in
women with PCOS, relative to healthy individuals, is observed consistently. Combined
occurrence of both diseases is associated with a higher risk of severe metabolic and
reproductive complications. Genetic factors strongly impact the pathogenesis of both
PCOS and HT and several susceptibility loci associated with a higher risk of both disorders
have been identified. Furthermore, some candidate gene polymorphisms are thought to
be functionally relevant; however, few genetic variants are proposed to be causally
associated with the incidence of both disorders together.

Keywords: autoimmune thyroid disease, Hashimoto’s thyroiditis, polycystic ovary syndrome, genetic variants,
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of
reproductive age (1). Similarly, thyroid dysfunction, including Hashimoto’s thyroiditis (HT) as the
principal autoimmune thyroid disease (AITD), is frequently observed among young women (2, 3).
Both PCOS and HT can result in a wide range of metabolic syndrome features, including weight
gain, impaired glucose tolerance, insulin resistance (IR), and dyslipidemia, which can lead to
obesity, diabetes, or cardiovascular disease over a lifetime (4–6). Moreover, both disorders are major
causes of infertility, a medical problem of a growing prevalence that is associated with strong
physical, emotional, and socioeconomic consequences.

There is growing evidence that there may be mutual interaction between PCOS and HT. More
importantly, combined occurrence of both diseases is associated with a higher risk of severe
metabolic and reproductive complications than either PCOS or HT alone, and the severity of disease
symptoms depends on the duration of the thyroid dysfunction (7–10). In addition, co-occurrence of
thyroid autoimmune disease is associated with poorer response to treatment in infertile women with
PCOS (11). The strong genetic influence on the development of these two diseases is well
documented. Many candidate gene variants and susceptibility loci have been identified that are
org February 2021 | Volume 12 | Article 6066201
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associated with a higher risk of PCOS or HT; however, the
mechanisms underlying the close relationship between these two
diseases, and common components to their genetic backgrounds,
remain uncertain. Here, we comprehensively review a wide range
of reports on genetic discoveries related to PCOS, HT, and their
combined occurrence.
POLYCYSTIC OVARY SYNDROME

PCOS is a heterogeneous endocrinopathy that affects 5–20% of
women of reproductive age (12). It is characterized mainly by
clinical and/or biochemical hyperandrogenism (HA), ovary
dysfunction (OD), often reflected by chronic oligo- or
anovulatory menstrual cycles, and polycystic ovarian morphology
(PCOM) on pelvic ultrasound; for diagnosis, two of these three
criteria must be present (13). Consequently, four main PCOS
phenotypes have been proposed: phenotype A, with HA, OD, and
PCOM; phenotype B, with HA and OD but without PCOM;
phenotype C, with HA and PCOM but without OD; and
phenotype D, with OD and PCOM but without HA; with
phenotypes A and B comprising an estimated > 40% of cases
(14, 15). PCOS is characterized by symptoms of hypothalamic-
pituitary-ovarian axis dysfunction, including increased
hypothalamic gonadotropin-releasing hormone (GnRH) pulse
frequency and GnRH quantity, as well as an elevated ratio of
luteinizing hormone (LH) to follicle-stimulating hormone (FSH),
which contribute to excessive ovarian androgen production and
ovulatory dysfunction (16, 17).

Depending on the phenotype, POCS is associated with variable
degrees of reproductive and metabolic dysfunction. Dyslipidemia
occurs with a particularly high prevalence of up to 70% (14, 18).
Also, defects in insulin activity and secretion, which may lead to IR,
hyperinsulinemia, and impaired glucose tolerance, are observed
very frequently (19, 20). PCOS is a low-grade inflammatory state
(21); women with PCOS have higher levels of inflammatory
markers such as C reactive protein (CRP), tumor necrosis factor
a (TNF-a), and interleukin 6 (IL6), independent of associated
obesity (22). Over a lifetime, PCOS is associated with a higher risk of
menstrual irregularities, hirsutism, anovulatory infertility,
spontaneous abortion, obesity, and obesity-linked co-morbidities
such as nonalcoholic fatty liver disease and metabolic syndrome,
type 2 diabetes mellitus, and cardiovascular pathologies, in addition
to endometrial adenocarcinoma (20, 23–27). PCOS reduces quality
of life, resulting in more frequent depressive episodes and suicide in
women affected by this disease (28).

The etiology of PCOS is not fully elucidated. It is a complex
disorder that might be represented by a common clinical
phenotype of different processes. An IR or intrinsic ovarian
dysfunction, possibly stimulated by an imbalance of female sex
hormones, are considered inciting factors, which primarily
results in increased androgen biosynthesis and secretion by the
ovary (29, 30). Resulted hyperandrogenism can be further
modulated by impaired insulin action (14). Insulin can also
directly stimulate androgen production by amplifying theca
cell responses to LH (31).
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Genetics of Polycystic Ovary Syndrome
PCOS is a complex, multifactorial disorder with a strong heritable
component, as indicated by familial clustering and twin studies,
which accounts for as much as 72% of the risk of syndrome
development (32, 33). Until recently, the genomic approach to
PCOS research was dominated by candidate gene association
studies, including more than 100 genes whose alterations may be
functionally involved in PCOS development. These genes are
mainly related to the insulin signaling pathway and IR, chronic
inflammation, reproductive hormone disorders, and biosynthesis of
androgens; such as those encoding insulin (INS), INS receptor
(INSR), INSR substrates (IRS), methylenetetrahydrofolate reductase
(MTHFR), IL family members, TNF-a, toll-like receptor 2 (TLR2),
fat mass and obesity-associated protein (FTO), paraoxonase
1 (PON1), calpain 10 (CAPN10), peroxisome proliferator-
activated receptor g (PPAR-g), FSH receptor (FSHR), LH/
choriogonadotropin receptor (LHCGR), LH-b, sex hormone-
binding globulin (SHBG), androgen receptor, transforming
growth factor b (TGF-b), fibrillin 3 (FBN3), and vitamin D
receptor (VDR) (17, 33–37). Nevertheless, the vast majority of
candidate gene variants associated with PCOS in previous studies
have not been replicated, indicating the possibility of substantial
genetic heterogeneity across various ethnic populations or different
genetic architectures underlying specific PCOS phenotypes (38–49).

Genome-Wide Association Studies for
Polycystic Ovary Syndrome
To more deeply investigate genetic predisposition to PCOS, several
genome-wide association studies (GWAS) have been carried out
(Table 1) (50–54, 59, 66). The first two studies were conducted in
China, and together identified 11 susceptibility loci located within
or near genes implicated in: 1) gonadotropin activity, ovulation,
and erectile dysfunction [FSHR and LHCGR, both at 2p16.3, and
the zinc aminopeptidase gene (C9ORF3) at 9q22.32]; 2) insulin
signaling and diabetes mellitus [the thyroid adenoma-associated
protein (THADA) at 2p21, high mobility group AT-hook protein
(HMGA2) at 12q14.3, and INSR at 19p13.3]; 3) organ growth
control, cell proliferation, and apoptosis [yes-associated protein
(YAP1) at 11q22.1 and zinc finger protein 217 (ZNF217) at
20q13.2]; 4) endosomal membrane trafficking and exocytosis of
gonadotropins [DENN domain-containing protein 1A
(DENND1A) at 9q33.3 and RAS-related protein (RAB5B) at
12q13.2]; and 5) modification of chromatin structure [TOX high
mobility group box family member 3 protein (TOX3) at 16q12.1]
(51, 52). Subsequently, associations between the single nucleotide
polymorphism (SNP) rs13425728 in LHCGR with higher levels of
testosterone, triglycerides, and low density lipoprotein (LDL) were
detected among Hui Chinese subjects (56), and the two SNPs
rs10818854 and rs10986105 in DENND1A were associated with
increased HOMA-IR and anti-Müllerian hormone (AMH) levels
in Arab women with PCOS (68).

Later, two GWAS were conducted in Korean populations (50,
53). In the first, three novel SNPs in the glycogen synthase 2
(GYS2) gene on chromosome 12p12.2 were identified as being
associated with PCOS through investigation of individuals with
obesity-related condition (53); however, none of these variants
February 2021 | Volume 12 | Article 606620
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TABLE 1 | GWAS and replication studies for PCOS susceptibility.

Locus Nearby genes dbSNP IDa/ GWAS population
[references]

Replication study population [references]

Replicated Not replicated

1p22 OLFM3 rs11164278 downstream KRN (50)
2p16.3 LHCGR rs13405728 intron CHN (51, 52) KRN (50, 53); EUR (54, 55);

CHN (56–58)
EUR (59–63)

2p16.3 FSHR rs2268361 intron CHN (52) KRN (50); EUR (54, 59, 64) CHN (58, 65)
rs2349415 intron CHN (52) CHN (65) EUR (64); CHN (58)

2p21 THADA rs13429458 intron CHN (51, 52) KRN (50, 53); EUR (59);
CHN (57)

EUR (55, 60–64);
CHN (56)

rs12478601 intron CHN (51) KRN (53); EUR (54, 55, 63) EUR (60, 64)
rs12468394 intron CHN (51) KRN (53); EUR (54, 55, 63, 64) EUR (60)
rs7563201 intron EUR (59, 66)

2q34 ERRB4 rs1351592 intron EUR (59)
rs2178575 intron EUR (66)

3q26.33 PEX5L rs7652876 upstream KRN (50)
4p12 GABRB1 rs1159315 intron KRN (50)
4q35.2 TRIML1/TRIML2 rs7666129 upstream KRN (50)
5q31.1 RAD50 rs13164856 downstream EUR (59, 66)
8q24.2 KHDRBS3 rs10505648 upstream KRN (50) EUR (54)
8q32.1 GATA4/NEIL2 rs804279 between EUR (54, 66)
9p24.1 PLGRKT rs10739076 upstream EUR (66)
9q21.32 RASEF rs11536913 upstream KRN (50)
9q22.32 AOPEP (C9orf3) rs3802457 intron CHN (52) EUR (54); CHN (58, 65) EUR (59)

rs4385527 intron CHN (52) EUR (54, 55) KRN (50); CHN (58, 65);
EUR (64)

rs10993397 intron EUR (54)
rs7864171 intron EUR (66)

9q33.3 DENND1A rs2479106 intron CHN (51, 52) ASN (67) KRN (50); CHN (56, 58);
EUR (55, 59–64, 67);
ARB (68, 69)

rs10818854 intron CHN (51) KRN (53); ASN (67, 70); ARB
(68); EUR (54, 55, 60, 63, 67,
70)

ARB (69); CHN (58)

rs10986105 intron CHN (51) KRN (53); ASN (67); ARB (68);
EUR (54, 55, 60, 64, 67)

ARB (69)

rs9696009 intron EUR (66)
11p13 HIPK3 rs4755571 3’UTR KRN (50)
11p14.1 FSHB rs11031006 downstream EUR (54, 59) CHN (71)

rs11031005 downstream EUR (66)
11q22.1 YAP1 rs1894116 intron CHN (52) KRN (50); EUR (54, 55, 59) CHN (65)

rs11225154 intron EUR (59, 66)
11q23.2 ZBTB16 rs1784692 intron EUR (66)
12p12.2 GYS2 rs7485509 intron KRN (53)

rs10841843 intron KRN (53)
rs6487237 intron KRN (53)

12q13.2 RAB5B/SUOX rs705702 5’UTR CHN (52) KRN (50); EUR (54, 55, 59) CHN (58, 65)
12q13.2 ERBB3 rs2271194 intron EUR (66)
12q14.3 HMGA2 rs2272046 intron CHN (52) EUR (59) EUR (54, 64); CHN (58, 65)
12q21.2 KRR1 rs1275468 upstream EUR (59)

rs1795379 upstream EUR (66)
16q12.1 TOX3 rs4784165 downstream CHN (52) KRN (50); EUR (59) EUR (54); CHN (58, 65)

rs8043701 downstream EUR (66)
16p13.3 SOX8 rs500492 upstream KRN (50)
19p13.3 INSR rs2059807 intron CHN (52) EUR (64) KRN (50); EUR (54, 55, 59);

CHN (58, 65)
20q11.21 MAPRE1 rs853854 intron EUR (66)
20q13.2 ZNF217 rs6022786 upstream CHN (52) KRN (50) EUR (54, 59); CHN (58, 65)
Frontiers in Imm
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Bolded are loci replicated in at least two replication studies. Study populations: ARB, Arabic; ASN, Asian; CHN, Chinese; EUR, European; KRN, Korean.
a/SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/snp/).
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reached the genome-wide significance threshold. In the second
study, eight new susceptibility loci were suggested, including a
main association signal at rs10505648 on chromosome 8q24.2,
close to KH RNA-binding domain-containing, signal
transduction associated 3 (KHDRBS3), which is associated with
regulation of telomerase activity and variant splicing (72), and
seven moderate signals at 1p22, 3q26.33, 4p12, 4q35.2, 9q21.32,
11p13, and 16p13.3 (50). In addition, eight of the Chinese
susceptibility loci were replicated in Korean women (Table 1).

Two GWAS were recently conducted in populations of
European ancestry, confirming the association of the three
Asian susceptibility loci (YAP1, THADA, and C9ORF3), as well
as identifying five novel loci corresponding to the epidermal
growth factor receptor (ERBB4/HER4) gene at 2q34, double
strand break repair protein (RAD50) at 5q31.1, the GATA4/
NEIL2 region encoding zinc finger transcription factor and
endonuclease VIII-like 2 at 8q23.1, FSH b polypeptide (FSHB)
at 11p14.1, and KRR1 at 12q21.2, which encodes a ribosome
assembly factor (Table 1) (54, 59). The same rs11031006 variant
in the FSHB region, which was identified independently in both
European GWAS, was associated with lower level of FSH and
higher levels of LH and the LH/FSH ratio, suggesting that it may
act by affecting gonadotropin secretion (54, 59). Together with
the Chinese findings implicating FSHR variants, these results
strongly suggest an etiologic role for gonadotropins in PCOS
development. Additionally, the identified associations point to
gonadal development, ovarian folliculogenesis, and follicular
maturation, as well as repair of DNA damage, as processes
involved in PCOS pathogenesis in European woman.

Recently, a large-scale genome-wide meta-analysis including
10,074 PCOS cases and 103,164 controls of European ancestry
(66), confirmed 11 previously reported loci and identified three
additional novel susceptibility loci: ZBTB16 (zinc finger and BTB
domain-containing 16) at 11q23.2, which is involved in cell cycle
progression, control of the early stages of spermatogenesis, and
endometrial stromal cell decidualization (73, 74); MAPRE1
(microtubule associated protein RP/EB family member 1) at
20q11.20, which is involved in the regulation of microtubule
structures and chromosome stability, and may participate in
follicle development; and the plasminogen receptor (PLGRKT)
gene at 9p24.1, which contributes to regulation of inflammatory
responses and matrix metalloproteinase activation (Table 1).
These newly identified loci provide additional evidence for the
involvement of neuroendocrine, metabolic, and reproductive
factors in PCOS. Additionally, the data suggest that the genetic
architecture underlying the different PCOS phenotypes does not
differ in terms of common susceptibility variants (66).

Post-Genome-Wide Association Studies
for Polycystic Ovary Syndrome
A number of gene polymorphisms discovered in Chinese
populations, including LHCGR, FSHR, THADA, DENND1A,
C9ORF3, YAP1, and RAB5B/SUOX, have been confirmed in at
least two replication studies or meta-analyses for different
Caucasian populations, and can be considered general PCOS
susceptibility variants (Table 1) (55–58, 60–65, 67–71).
Frontiers in Immunology | www.frontiersin.org 4
However, GWAS have identified < 10% of the estimated
heritability of PCOS (36), and there is relatively little overlap
between the gene loci identified by candidate gene studies and
those found by GWAS, likely because polymorphisms in gene
coding regions are usually rare genetic variants that have a large
impact on disease risk, whereas GWAS is designed to focus
primarily on common variants with a low impact on genetic risk.

The greatest challenge for genomic studies is to identify
causative mechanisms and determine the functional relevance
of loci identified as risk factors by GWAS. A pathway-based
approach has been proposed to increase the power to determine
the biological meaning of GWAS results. Application of meta-
analysis gene-set enrichment of variant associations
(MAGENTA) to the PCOS GWAS dataset revealed oocyte
meiosis and regulation of insulin secretion by acetylcholine
and free fatty acids as biological pathways significantly
associated with the syndrome (75). Among significantly
associated genes, the INS gene was indicated in all three
pathways. However, some caution should be taken with regard
to these results as the analysis included variants of lower
significance level than generally accepted for GWAS.

The genetic loci identified by GWAS are often named
according to the nearest gene. While the nearby location of a
gene does not necessarily mean that it is an effector gene at a
given locus, several putative susceptibility genes located within
GWAS-discovered risk loci for PCOS were found to be
abnormally expressed in women with this condition. PCOS
subtypes have been proposed based on phenotypes, expression
quantitative trait loci, and biological pathway analyses, in which
genes related to gonadotropin levels, metabolic mechanisms, or
inflammation and its consequences, have independent impacts
on the risk of syndrome development (76). Similarly, expression
analysis of genes from 11 GWAS-identified PCOS risk loci
revealed that different mechanisms may be involved in the
pathogenesis of clinically diverse PCOS subtypes in relation to
obesity, since LHCGR is over-expressed in non-obese women
and INSR is under-expressed only in obese women with PCOS. A
causal role was hypothesized for SNPs in the LHCGR, INSR, and
RAB5B regions, suggesting that they may affect gene expression
directly or indirectly through epigenetic mechanisms (77). Also,
lower expression levels of the RAB5A gene in granulosa cells of
obese patients with PCOS were observed relative to those in
obese women without the syndrome, which may explain the high
FSHR levels and FSH-FSHR signaling pathway disorders in
PCOS (78). In turn, HMGA2, another gene identified by
GWAS as a candidate, is expressed at high levels in granulosa
cells of women with PCOS, where the HMGA2/IMP2 pathway is
suggested to be responsible for granulosa cell proliferation (79).

One of the most extensively studied GWAS-identified PCOS
candidate genes is DENND1A, which encodes a clathrin binding
protein (80). The PCOS risk SNP, rs10986105, in DENND1A was
also found to increase the risk of hyperandrogenism in women
without PCOS (60). DENND1A variant 2 (DENND1A.V2), a
truncated splice isoform of DENND1A with a unique C-terminal
sequence, is up-regulated in PCOS theca cells, and compelled
expression of V2 in normal theca cells results in increased
February 2021 | Volume 12 | Article 606620
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expression of genes encoding cytochrome P450 isoforms
(CYP17A1 and CYP11A1) and higher androgen production
(81, 82). Recently, a functional network, including miR-130b-
3p, DENND1A.V.2, LHCGR, RSB5B, and the signaling pathways
they target, was proposed to potentially mediate PCOS-related
hyperandrogenemia. The functional significance of this network
is strongly supported by the discovery of the co-localization of
LHCGR, DENND1A.V.2, and RAB5B proteins in theca cells
(82), as well as the fact that decreased expression of miR-130b-
3p, which is predicted to target DENND1A, correlates with
increased V2 mRNA levels and androgen synthesis in PCOS
theca cells (83).

Despite the clear and strong influence of genetic factors in the
pathogenesis of PCOS, common genetic risk loci identified to date
explain only a small percentage of estimated PCOS heritability.
Therefore, next-generation sequencing studies to investigate entire
genomic regions have been conducted to determine whether rare
genetic variants with large effect size may contribute to PCOS
pathogenesis. Potentially deleterious variants in AMH were
identified using whole-genome and targeted sequencing of AMH
in a case-control PCOS study (84). Seventeen PCOS-specific rare
AMH coding variants resulted in significant reduction of AMH-
mediated signaling in dual luciferase reporter tests. Therefore, AMH
mutations in PCOS are suggested to result in decreased AMH-
mediated inhibition of CYP17 expression and androgen
biosynthesis, leading to syndrome-specific hyperandrogenism.
Furthermore, the missense variant rs104893836 in the first exon
of the GnRH receptor gene (GNRHR) was detected by the whole-
exome sequencing (85). Functional analyses revealed significantly
reduced GnRH binding by the resulting variant GnRHR containing
a Gln106Arg substitution; however, since this is a fairly common
variant affecting the first extracellular receptor loop, its effect in vivo
is likely to be mild (86). It is worth noting that an increase rather
than a decrease in GnRH signaling is a hallmark of PCOS. Recently,
whole-genome sequencing revealed several rare non-coding
variants in DENND1A associated with reproductive and metabolic
traits in PCOS families, suggesting their contribution to disease
pathogenesis and providing additional evidence for the central role
of DENND1A in PCOS (87).
AUTOIMMUNE THYROID DISEASE

AITD is the most common autoimmune disorder, affecting 5%–
20% of the female population of fertile age (88). Its prevalence varies
depending on age, geographical origin, and iodine intake (2). AITD
is classified as an organ-specific autoimmune disorder mediated by
T cells (89). An autoimmune attack, directed against components of
the thyroid gland, may lead to clinically heterogeneous conditions,
manifested by either thyroid hormone excess (hyperthyroidism), as
in the case of Graves’ disease (GD), or reduced hormone production
(hypothyroidism), a typical feature of HT, on which this review will
mainly focus.

HT is considered the principal autoimmune disease among
young women and the most frequent form of AITD, affecting
4%–9.5% of the adult population (90); its occurrence is eight
Frontiers in Immunology | www.frontiersin.org 5
times more common in women than in men (88). As a result of
autoimmunity to self-antigens, approximately 60%–80% of
patients with HT have serum antibodies against thyroglobulin
(Tg) and 90%–95% have antibodies against thyroid peroxidase
(TPO) (91, 92). HT is characterized by infiltration of
lymphocytes and chronic inflammation of the thyroid gland,
which promotes T cell-induced apoptosis of thyroid follicular
cells. The Fas/Fas ligand (FasL) cascade is the main signaling
pathway leading to apoptosis of thyroid cells in response to
infiltration by pro-inflammatory cytokines, such as interferon
(IFN)-g, TNF-a, and IL1b (93). It is proposed that the
mechanism of apoptosis leading to the characteristic thyroid
destruction in HT may be a consequence of abnormal Fas/FasL
regulation and decreased expression of the apoptosis regulator
Bcl-2 (94, 95).

The progressive destruction, and finally fibrosis, of the
glandular parenchyma often leads to hypothyroidism. AITD is
considered the most frequent cause of hypothyroidism, although
it can go unnoticed for years, without overt thyroid dysfunction.
Subclinical hypothyroidism (SCH), defined as a serum thyroid-
stimulating hormone (TSH) above the defined upper limit of the
reference range, in combination with a normal level of free
thyroxine (fT4), is more common than overt hypothyroidism,
in which fT4 levels are reduced below the normal lower limit and
TSH levels are further increased (96). HT has clinically
heterogeneous presentation, from the presence of thyroid
antibodies but normal thyroid function, to SCH or overt
hypothyroidism. The prevalence of hypothyroidism among
women with HT increases with age, and in most of cases it
eventually develops despite patients initially being euthyroid
(97). The diagnostic criteria for HT are based on detection of
elevated levels of circulating anti-thyroid antibodies (anti-TPO
and/or anti-Tg) and a typical hypoechogenic pattern of the
thyroid gland on ultrasound examination (3). Although the
presence of thyroid antibodies is a marker for thyroid damage,
they are unlikely to play a role in the pathogenesis of HT (98).

Hypothyroidism may be associated with serious pregnancy
complications, such as spontaneous abortion, preterm delivery,
and placental abruption, as well as reduced fertility, ovulation
disorders, insufficient endometrial thickness, and excessive,
irregular menstrual bleeding (99–101). A recently published meta-
analysis showed that SCH significantly increases the risk of
miscarriage before 20 weeks of pregnancy and that early
treatment can reduce the miscarriage rate (102). In hypothyroid
states, lower levels of several hormones related to the ovarian axis,
including SHBG, 17-b-estradiol (E2), testosterone, and
androstenedione, were observed (103). As a result of increased
secretion of thyrotropin-releasing hormone (TRH), prolactin levels
can increase, while LH and FSH concentrations remain normal
(104). Underactive thyroid is also associated with the formation of
ovarian cysts, which were normalized after T4 replacement
(105, 106).

Metabolic changes are also common in hypothyroidism,
particularly dyslipidemia and IR, and the severity of these
disorders correlates with TSH concentration, even within its
normal range (107–109). A link between autoimmunity and
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obesity has been noted, with leptin as a factor linking the two
conditions (110). Being overweight during childhood is
positively associated with anti-TPO antibody levels in women
at 60–64 years-of-age (111). Since thyroid hormones have a wide
impact, the symptoms of thyroid dysfunction can be systemic,
affecting almost every physiological system, in addition to
significant reproductive or metabolic defects (3). Nevertheless,
the pathogenesis of HT remains largely unknown.

Genetics of Autoimmune Thyroid Disease
As in the case of PCOS, a strong genetic predisposition to AITD
has been established, suggesting that over 70% of the
susceptibility to the development of antibodies directed against
thyroid antigens can be attributed to genetic factors (112).
Among first-degree relatives of patients with HT, the risk of
developing HT is increased by 20- to 30-fold; in 60% of first-
degree relatives of patients with HT, anti-thyroid antibody
positivity is observed (27). Also, the high concordance of HT
in monozygotic twins (55%) strongly supports a genetic
component in AITD predisposition (113).

Candidate gene case-control studies identified several
putative susceptibility variants associated with AITD
development or progression. These included variants in genes
encoding proteins related to inflammation, modulation of
immune responses, or specific for the thyroid, such as: human
leukocyte antigen (HLA) class I and class II, forkhead box P3
(FOXP3), cytotoxic T-lymphocyte-associated protein 4
(CTLA4), cluster of differentiation 40 (CD40), protein tyrosine
phosphatase, non-receptor type 22 (PTPN22), selenoprotein S
(SEPS1), IL4, IL2 receptor a (IL2RA), VDR, Tg, TSH receptor
(TSHR), signal transducer and activator of transcription 3
(STAT3), and STAT4, with HLA-DR3 carrying the highest risk
(2, 114–120). Among non-HLA genes, CTLA4 and PTPN22 were
most consistently identified as predisposing to both HT and GD
(121–124), while the TSHR locus appears to be specific for GD,
but not HT, suggesting some genetic differences between these
two types of AITD (125, 126); however, similar to PCOS,
candidate gene screening for HT susceptibility mainly
generated controversial and non-replicable findings (127–132).
Limited understanding of disease pathogenesis and the
consequent lack of comprehensive datasets on candidate genes,
small sample sizes, and low statistical power, were some of the
main limitations of candidate gene studies for both disorders.
The era of GWAS and subsequent replication studies have
brought further data on genetic susceptibility to HT.

Genome-Wide Association Studies and
Post-Genome-Wide Association Studies
for Autoimmune Thyroid Disease and
Thyroid Function Related Traits
Several GWAS for AITD (HT or GD), hypothyroidism, positivity
for anti-thyroid (anti-TPO or anti-Tg) antibodies, and thyroid
function parameters (including TSH or fT4 levels), have been
undertaken (Table 2) (133–135, 139–146, 148, 154, 155, 157–
160). Some GWAS-identified AITD susceptibility loci have been
replicated in different populations (Table 2) (136–138, 147,
Frontiers in Immunology | www.frontiersin.org 6
149–153, 156); however, HT is rather poorly represented among
GWAS. Numerous studies have been performed using small
cohorts or patients with HT and GD grouped together (128, 161).
In total, six GWAS included separate groups of patients with HT
(134, 140, 146, 147, 154, 159), while three included patients with
hypothyroidism, a typical feature of HT (133, 135, 158). Together,
16 putative HT susceptibility loci have been identified; however, the
most convincing evidence for associations is limited toHLA (6p21),
CTLA4 (2q33.2), PTPN22 (1q13.2), and FOXE1 (9q22.33) variants.
Additionally, two loci, TPO (2p25.3) and ATXN2 (ataxin2;
12p24.12), are convincingly associated with the presence of anti-
TPO antibodies, and three loci, CAPZB (capping actin protein of
muscle Z-line subunit beta; 1p36.13), phosphodiesterase PDE8B
(5q13.3), and PDE10A (6q27), are associated with TSH levels
(Table 2).

A genetic overlap was observed between susceptibility loci
identified in GWAS for AITD or hypothyroidism and GWAS for
thyroid function, including FOXE1, CAPZB, and PDE8B. FOXE1,
also known as TTF-2 (thyroid transcription factor 2), is associated
with hypothyroidism, and with TSH and fT4 levels, as well as with
thyroid cancer (133, 143, 158, 162). This factor is involved in thyroid
gland development and differentiation (163, 164). FOXE1 regulates
TG and TPO transcription by binding to response elements in their
promoter regions (165), and is necessary for synthesis of thyroid
hormones. Both PDE8B and CAPZB also have strong links to
thyroid function. PDE8B encodes a phosphodiesterase that catalyzes
the hydrolysis of cAMP and is primarily expressed in the thyroid
gland (166). It is proposed that PDE8Bmay affect TSH release from
the pituitary and mediate the effects of TSH in the thyroid by
altering cAMP levels (155). A role for PDE8B in cAMP-dependent
generation of triiodothyronine (T3) and T4 has also been proposed
(143). Similarly, CAPZB, a member of the F-actin-capping protein
family, is highly expressed in thyroid tissue. As a protein associated
with cytoskeleton remodeling and assembly of cytoplasmic
microtubules, it may contribute to the disturbance of thyroid
follicular architecture commonly observed in AITD.

Interestingly, three independent GWAS connected VAV3
(vav guanine nucleotide exchange factor 3) variants with HT,
hypothyroidism, and TSH levels (133, 140, 141). VAV3 activates
Rho and Rac GTPases and is important for both thyroid and
immune function (167). VAV3 is also necessary for B-cell
receptor endocytosis and antigen presentation by major
histocompatibility complex (MHC) class II molecules (168).

Notably, the MHC region, CTLA4, and PTPN22, which were
identified by GWAS as most significantly associated with HT,
were previously described as AITD susceptibility loci, based on a
systematic review of candidate genes (128). All of these loci are
related to autoimmune responses and involved in antigen
presentation and T cell receptor signaling.

Human Leukocyte Antigen Alleles
The highly polymorphic MHC region of chromosome 6p21,
encoding the HLA glycoproteins, is the most intensively studied
region of the genome in the search for associations with
development of AITD. Numerous HLA alleles have been
identified as genetic risk factors for AITD; however, the data
February 2021 | Volume 12 | Article 606620
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TABLE 2 | GWAS and replication studies for AITD and thyroid dysfunction traits susceptibility.

Locus Nearby genes dbSNP IDa/ GWAS Replication study

Population [references] Phenotype Population [references] Phenotype

1p13.2 PTPN22 rs2476601 (1858 C/T) USA-EUR (133)
UK (134)

hypothyroidism
HT+GD

EUR (135, 136)
POL (137)

hypothyroidism
HT, GD

rs6679677 USA-EUR (133) hypothyroidism
rs3811021 POL (138) HT

1p13.2 MAGI3 rs1230666 EUR-CAU (139) anti-TPO level
1p13.3 VAV3 rs4915077 USA-EUR (133) hypothyroidism

rs7537605 JAP (140) HT
rs12126655 KRN (141) TSH level

1p36.13 CAPZB rs1472565 USA-EUR (133) hypothyroidism
rs10799824 ICE (142) TSH level USA-EUR (143) TSH level
rs10917469 UK (144) TSH level
rs6683419 CHN (145) TSH level

2p16.3 FSHR rs12713034 CRT (146) anti-TPO/Tg-positivity
2p25.1 TRIB2 rs1534422 UK (134) HT+GD
2p25.3 TPO rs11675434 EUR-CAU (139) anti-TPO-positivity, anti-TPO level CRT (147)

CRT (148)
HT
anti-TPO/Tg-positivity

rs2071403 KRN (141) anti-TPO-positivity
rs11211645 POL (138) HT

2q33.2 CTLA4 rs231775 (A49G) UK (134) HT+GD POL (149); IND (150) HT, GD
rs3087243 (CT60) EUR (135) hypothyroidism EUR (136)

JAP (151); CHN (152)
hypothyroidism
HT, GD

rs231779 USA-EUR (133) hypothyroidism
2q36 IGFBP5 rs13015993 USA-EUR (143) TSH level

rs6435953 CRT (153) anti-Tg level
3q13.12 DUBR rs561030786 CRT (146) anti-TPO/Tg-positivity
3q21 KALRN rs2010099 EUR-CAU (139) anti-TPO level
3q27.3 LPP rs13093110 UK (134) HT+GD
4q27 GPR103 rs7679475 NHW (154) HT

rs1513695 NHW (154) HT
4q31.2 NR3C2 rs10032216 USA-EUR (143) TSH level

rs11935941 CRT (153) HT
4q32.3 TRIM61

TRIM60
rs12507813 CRT (146) anti-TPO-positivity

5q13.3 PDE8B rs4704397 ITN (155) TSH level USA-EUR (133)
CRT (156)

hypothyroidism
HT

rs6885099 ITN (155) TSH level KRN (141);
USA-EUR (143)

TSH level

rs2046045 ICE (142) TSH level
5q21.2 RP11-138J23.1 rs13190616 CRT (146) anti-TPO/Tg-positivity
6p21.3 HLA class I rs2517532

rs2516049
USA-EUR (133)
USA-EUR (133)

hypothyroidism
hypothyroidism

CRT (157) HT

6p21.3 HLA-DPB2 rs733208 KRN (141) anti-TPO-positivity
6p21.3 HLA-DRB1 rs17886918 POL (138) HT
6p21.3 HLA-DQB1 rs3210176 CRT (157) HT
6p21.3 IP6K3 rs791903 CRT (157) HT
6q15 BACH2 rs72928038

rs10944479
UK (134)
EUR-CAU (139)

HT+GD
anti-TPO-positivity

6q27 DLL1 rs4710782 CRT (148) anti-Tg level
6q27 PDE10A rs2983521 ITN (155) TSH level

rs3008043 ICE (142) TSH level
rs753760 USA-EUR (143) TSH level

7q31.31 ANKRD7
LSM8

rs6972286 CRT (146) anti-Tg-positivity

8q12.1 XKR4 rs2622590 CHN (145) TSH level
9p24 GLIS3 rs1571583

rs10974423
USA-EUR (143) TSH level CRT (153) anti-TPO level

9q21.2 GNA14 rs75201096 CRT (157) HT
9q22.33 FOXE1 rs7850258 USA-EUR (158) hypothyroidism EUR (136) hypothyroidism

rs965513 USA-EUR (158)
ICE (142)

hypothyroidism
TSH level

CRT (157) HT

(Continued)
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on HLA haplotypes in HT are less definitive than that in GD.
Although, some HLA alleles associated with HT are common to
GD, others appear to be unique to each disease (119, 169, 170),
suggesting thatHLA genotypes may contribute, at least in part, to
differences in HT and GD immunopathogenic mechanisms.

Among the HLA class I alleles, HLA-A*02:07 was associated
with HT susceptibility in a Japanese population (169, 170). Of
note, this allele was the strongest and most significantly
associated susceptibility allele in HT, in contrast to GD, where
alleles from the MHC class II region were more strongly
associated (169). Furthermore, it was estimated that
approximately 58% of patients with HT carried at least one of
four HLA class I alleles (HLA-A*02:07, B*35:01, B*40:02, or
B*40:06) (169). Conversely, in Caucasian populations, only a
few studies have suggested associations between HLA class I
alleles and HT risk (171, 172). Hence, it is hypothesized that
ethnic differences may play a role in the immunological
mechanisms involved in thyrocyte destruction (169).

Numerous associations between HLA class II alleles and HT
have been demonstrated (particularly in Caucasian populations),
including DQA1*03, DQB1*02, DQB1*03, DRB1*03, and
DRB1*04 alleles, or DR3, DR4, and DR5 haplotypes (173–176).
In Japanese population, DRB1*04 and DRB4*01 were suggested
as susceptibility alleles, while DQA1*01 and DQB1*06 were
protective (169). However, all of these studies included
relatively small cohorts and generated inconsistent results.
Some of these previous observations have been confirmed in a
large group of UK Caucasian patients with HT; DRB1*04,
DQB1*03:01, and DQA1*03:01 showed the most significant
predisposing effect, while DQA1*01:02, DQA1*02:01, and
DQB1*06 had the most significant protective effect. Overall, a
strong predisposing association between DR4 or DR8 haplotypes
and HT has been found, as well as a borderline association with
Frontiers in Immunology | www.frontiersin.org 8
DR3, whereas protective effects were detected forDR13,DR7, and
DR15 (119). Similarly, DRB1*04:05, DQB1*02:01, DQB1*03:02,
and DQA1*03:01 allele frequencies were higher in Greek patients
with HT, while those of DRB1*07 were lower, than in the control
group (177).

In recent studies including non-Caucasian populations, the
HLA-DRB4*53:01 allele was identified as associated with HT
susceptibility in Japanese patients (170) and the DR8 haplotype
in Koreans (178). Additionally, HLA alleles in the HP-2
haplotype (HLA-A*33:03-C*14:03-B*44:03-DRB1*13:02-
DQB1*06:04-DPB1*04:01) and the HP-2 haplotype itself were
associated with protective effects against GD and HT in a
Japanese population (169, 170), with OR = 0.36 for HT (169).
Furthermore, the HLA-DRB1*03 allele was shown to be
predisposing in Kayseri Turkish patients with HT, in contrast
to DRB1*01, which was associated with a protective effect (179).
Moreover, in an Indian population, DRB1*12 and DRB1*10
exhibited the strongest predisposing and protective effects,
respectively, among different HLA-DRB1 alleles (150);
however, in contrast to previous reports, a decreased frequency
of the DRB1*03 allele was observed in HT patients in this study.

Due to its crucial role in the presentation of peptide antigens
to T cells, particular attention has been paid to the molecular
structure of the peptide binding pocket in HLA class II
molecules. Arginine at position 74 of the HLA-DRb1 chain
(DRb1-Arg74) was identified as a critical pocket amino acid
signature that confers susceptibility to both GD and HT (180,
181). Conversely, the presence of glutamine at position 74 of the
DRb1 chain conferred a protective effect. It was suggested that a
specific HLA-DR peptide binding pocket structure may
predispose to AITD by enabling presentation of certain
autoantigens, such as Tg, TPO, or TSHR pathogenic peptides.
Indeed, the non-synonymous TG variant, W1999R, can interact
TABLE 2 | Continued

Locus Nearby genes dbSNP IDa/ GWAS Replication study

Population [references] Phenotype Population [references] Phenotype

rs925489 USA-EUR (158) hypothyroidism USA-EUR (133)
CHN (145)

hypothyroidism
TSH level

9q31.1 GRIN3A rs4457391
rs1935377

CRT (148)
CRT (148)

anti-TPO/Tg level
anti-TPO level

9q32 WHRN rs4979402 CRT (156) anti-Tg level
11q21 FAM76B rs4409785 UK (134) HT+GD
12q24.12 SH2B3 rs3184504 USA-EUR (133) hypothyroidism CRT (156) HT, anti-TPO level
12q24.12 ATXN2 rs653178 EUR-CAU (139) anti-TPO-positivity CRT (148) anti-TPO/Tg level

rs10774625 CRT (147) HT, anti-TPO-positivity
14q13 MBIP rs1537424 USA-EUR (143) TSH level CRT (153) HT, anti-Tg level
14q31 CEP128 rs327463 CHN (159) HT, GD
15q14 RASGRP1 rs7171171 CRT (147) HT, anti-TPO-positivity
16q24 IRF8 rs16939945 CRT (160) anti-TPO/Tg-positivity
17q21.33 CA10 rs756763 CRT (146) anti-Tg-positivity
17q25 SDK2 rs12944194 CRT (157) HT
18p11.32 YES1 rs77284350 CRT (160) anti-TPO/Tg-positivity
19p13.2 INSR rs4804416 USA-EUR (143) TSH level CRT (153) anti-Tg level
February 2021 | Volum
Bolded are loci replicated in at least two replication studies. Study populations: ASN, Asian; CAU, Caucasian; CHN, Chinese; CRT, Croatian; EUR, European; ICE, Icelandic; IND, Indian;
ITN, Italian; JAP, Japanese; KRN, Korean; NHW, non-Hispanic White; POL, Polish; EUR-CAU, EUR-Caucasian ancestry; USA-EUR, USA-European ancestry.
GD, Graves’ disease; HT, Hashimoto’s thyroiditis; Tg, thyroglobulin; TPO, thyroid peroxidase; TSH, thyroid-stimulating hormone.
a/SNP identifier based on NCBI SNP database (http://www.ncbi.nlm.nih.gov/snp/).
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with HLA-DRb1-Arg74, and together these two variants confer a
high risk for AITD (182). Recently, among Polish patients, HLA-
DRB1 with phenylalanine at position 67 (encoded by the
rs17886918T variant) was significantly associated with HT (138).

Cytotoxic T-Lymphocyte-Associated Protein 4
GWAS identified several CTLA4 genetic variants as being
associated with AITD (both HT and GD) or hypothyroidism,
and these associations were widely replicated in various ethnic
groups (Table 2). The most consistent associations with HT were
a SNP at position 49 (A49G, rs231775) in the CTLA4 leader
peptide, resulting in an alanine to threonine substitution, and a
SNP located near to the 3’ UTR (CT60, rs3087243) in both the
Caucasian and Asian populations (Table 2). Several subsequent
meta-analyses have confirmed these associations (183–187).
CTLA4 is suggested to contribute to AITD susceptibility by
interacting with other loci (188) and a strong synergy has been
demonstrated for the CTLA4 and HLA genes in AITD (189). In
an Indian population, associations with both susceptibility (for a
combination of the G allele of CTLA4, A49G, and the HLA-DR5
allele) and protection (for a combination of the A allele of
CTLA4, A49G, and the HLA-DR3, DR10, and DR15 alleles)
have been established (150).

CTLA4 is a transmembrane protein expressed on activated T
cells that functions as a negative regulator of their activation by
competing with CD28 for binding to the ligand B7 on antigen-
presenting cells (190). Therefore, it is likely that polymorphisms
that reduce CTLA4 expression or activity may cause excessive
activation and proliferation of T cells, predisposing to
autoimmunity (114, 191). Consistent with this, SNPs in CTLA4
are risk variants for various autoimmune disorders (192);
however, it is unclear which CTLA4 variants are causative and
by what mechanism they confer susceptibility to autoimmunity.

Protein Tyrosine Phosphatase, Non-Receptor Type 22
Similar to CTLA4, PTPN22 is a powerful inhibitor of T cell
activity; it belongs to a family of protein tyrosine phosphatases
expressed in both mature and immature B and T cells. PTPN22
binds to the SH3 domain of the C-terminal Src kinase (Csk),
thereby suppressing kinases that mediate T cell signaling (193).
PTPN22 also functions as a negative regulator of T cell activation
through its interaction with the Grb2 adaptor molecule (194).

After the HLA system, PTPN22 polymorphisms may be the
most important genetic risk factor for autoimmune diseases
(195). Variations in PTPN22 are associated with various
autoimmune disorders, including AITD (191). The most
extensively studied and widely confirmed is the association of
the C1858T missense mutation (rs2476601), which results in a
substitution of arginine (R) to tryptophan (W) at position 620
(R620W) of the encoded protein. The PTPN22 C1858T variant is
associated with an increased risk of both HT and GD (196, 197);
however, significant differences in this association have been
observed across various ethnic groups. A significant association
between the PTPN22 C1858T polymorphism and susceptibility
to AITD was demonstrated specifically in Caucasians, but it was
hardly detected in non-Caucasian populations (198–201). It is
suggested that this could be due to the ancestral effects and
Frontiers in Immunology | www.frontiersin.org 9
different prevalence rates of rare variants in the studied
populations. Indeed, the susceptibility allele (T) of rs2476601 is
generally extremely rare in Asian and African populations (198,
202). Also, a decreasing frequency of this allele was observed
from the north to the south of the Europe (203). It is suggested
that AITD susceptibility in different ethnic populations may be
related to distinct risk loci. Notably, an extremely rare
predisposing variant of PTPN22 (missense A77G mutation)
has recently been identified in a Chinese HT pedigree using
whole-exome sequencing (204).

Although the exact mechanism by which the R620W variant
predisposes to autoimmunity remains largely unknown, PTPN22
with a tryptophan residue at position 620 (Trp620) binds Csk less
efficiently than the variant with an arginine at this position (205).
Consequently, the capacity of PTPN22 to downregulate T cell
responses may be reduced, thereby increasing susceptibility to
autoimmunity. By contrast, PTPN22 Trp620 is more active and a
more potent negative regulator of T cell signaling, suggesting a
role for R620W in positive selection of autoreactive T cells (206).
Furthermore, PTPN22 Trp620 was associated with increased
frequencies of thymically-derived T regulatory (Treg) cells and
with increased expression of programmed cell death protein
(PD-1) on both Treg and T effector cells (207). Currently, the
role of the PTPN22 C1858T polymorphism in autoimmunity is
suggested to be alteration of both the innate and adaptive
immune responses (206, 208).

Overall, current knowledge of HT genetics is rather limited.
The majority of identified associations relate to general immune-
regulatory genes involved in the development of central and
peripheral tolerance and antigen presentation, which are
important for achieving the proper balance between an
adequate immune response against foreign antigens and
maintaining autoantigenic tolerance. Moreover, a l l
susceptibility loci identified to date together account for only a
small proportion of the heritability of HT (209). It is estimated
that < 5.5% of total HT variance can be explained by common
genetic variants (138, 157), indicating that a substantial number
of HT predisposing factors remain to be discovered.
JOINT PREVALENCE OF POLYCYSTIC
OVARY SYNDROME AND AUTOIMMUNE
THYROID DISEASE

Considering the similar elements in the pathogenic mechanisms
and high prevalence rates of both AITD and PCOS among
women of reproductive age, the interesting question of whether
thyroid dysfunction is significantly more frequent in women
with PCOS arises. An increasing number of studies indicate a
higher prevalence of AITD, and particularly hypothyroidism, in
patients with PCOS (Table 3 and relevant references therein). In
most of these studies, although not all, higher levels of anti-TPO
and/or anti-Tg antibodies were observed, exceeding the upper
limit of the normal range in an average of 22.3% of patients with
PCOS (ranging from 4.8% to 37.9%, depending on the study),
compared with an average of 8.5% in healthy women (range 3.3%
February 2021 | Volume 12 | Article 606620
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TABLE 3 | Joint prevalence of SCH and AITD in women with PCOS.

Hypoechoic thyroid
(goiter)

Prevalence of AITD; AITD
criteria

.3% vs. 6.5% p<0.001 20.6% vs. 6.5% p<0.001;
Anti-TPO and/or anti-Tg
positivity and hypoechoic
thyroid

yroid volume and
terogeneity of thyroid
renchyma - NS

PCOS alone was not
associated with AITD;
Higher thyroid volume
(p=0.001), anti-TPO
(p=0.005) and anti-Tg
(p=0.003) levels in MS

oiter 62.3% vs. 35.7%
0.0001

.5% vs. 2.5% p<0.001;
oiter 27.5% vs. 7.5%
0.001

22.5% vs. 1.25% p<0.05;
Anti-TPO positivity

.3% (28/30) of PCOS
tients with AITD

27% vs. 8% p<0.001;
At least two of three
criteria:
anti-TPO and/or anti-Tg
positivity,
TSH levels above the
normal
range and hypoechoic
thyroid

28.6% vs. 3.3% p<0.05;
Anti-TPO and/or anti-Tg
positivity

yroid nodules frequency
d thyroid gland volume
NS

32.5% vs. 23.3% - NS;
Anti-TPO and anti-Tg
positivity
and/or hypoechoic thyroid

.8% vs. 15.4% p=0.052 43.1% vs. 26.2% p=0.04;
At least two of three
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Study year
(ref)

Compared groups N Population TSH and thyroid
hormone level

Prevalence of SCH;
TSH cut-off value

Anti-TPO and anti-Tg
antibody levels

2004 (210) PCOS vs. age-
matched women
without PCOS

175 vs. 168 German TSH 2.0 ± 1.0 vs. 1.4 ±
0.6 mIU/L p<0.001;
TSH level above upper
limit 10.9% vs. 1.8%
p<0.001;
fT4 level - NS

Anti-TPO and/or anti-Tg
positivity 26.9% vs. 8.3%
p<0.001

4

2011 (211) PCOS vs. age-
matched healthy
women

84 vs. 81 Turkish TSH, fT3 and fT4 levels - NS TSH > 4.5 mIU/L Anti-TPO and anti-Tg l
evels - NS

T
h
p

2012 (212) PCOS vs. age-
matched healthy
women

78 vs. 350 Iranian TSH level - NS Higher anti-TPO median
level p=0.04;Anti-Tg level - NS

G
p

2013 (213) PCOS vs. age and
BMI-matched
women without
PCOS

80 vs. 80 Indian TSH 4.55 ± 2.66 vs.
2.67 ± 3.11 mIU/L p<0.05;
Higher fT3, fT4 levels
p<0.001

22.5 vs. 8.75% p<0.05;
TSH > 4.25 mIU/L

Anti-TPO 28.04 ± 9.14 vs.
25.72 ± 8.27 IU/ml p=0.035

1
G
p

2013 (7) PCOS infertile vs.
infertile controls

151 vs. 155 Italian TSH 2.17 ± 1.19 vs.
1.82 ± 1.1 mIU/L p<0.009;
fT3, fT4 levels - NS

33.7% vs. 23.2% p<0.05;
TSH > 2.5 mIU/L

2013 (214) PCOS vs. age-
matched healthy
women

113 vs. 100 Italian TSH level above the normal
range in 43.3% (13/30) of
PCOS patients with AITD

SCH in 43.3% (13/30) of
PCOS patients with AITD,
remaining have normal
thyroid function

Anti-TPO and anti-Tg
positivity in 53.3% (16/30)
of PCOS patients with AITD;
Anti-TPO positivity in 33.3%
(10/30) of PCOS patients
with AITD

9
p

2014 (215) PCOS euthyroid vs.
healthy women

56 vs. 30 Syrian TSH and fT4 levels - NS TSH > 4.2 mIU/L Anti-TPO positivity 19.6% vs.
3.3% p<0.05;
Anti-Tg positivity 21.4% vs. 3%
p<0.05;
Anti-TPO 39.9 ± 59.5 vs. 18.9
± 11.2 IU/ml p=0.013;
Anti-Tg level - NS

2015 (216) PCOS vs. age-
matched women
without PCOS

73 vs. 60 Turkish TSH and fT4 levels - NS Anti-TPO and anti-Tg positivity
- NS

T
a
-

2015 (6) PCOS vs. women
without PCOS

65 vs. 65 Brazilian TSH 2.9 ± 1.8 vs. 2.2 ± 1.2
mlU/L p=0.013;

16.9% vs. 6.2% p<0.05;
TSH > 4.5 mlU/L

Anti-TPO and anti-Tg positivity
- NS

2

2

h
e
a

<

2

<

3
a

h
n
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TABLE 3 | Continued

ypoechoic thyroid
(goiter)

Prevalence of AITD; AITD
criteria

criteria:
anti-TPO and/or anti-Tg
positivity,
TSH levels above the
normal
range and hypoechoic
thyroid

18.75% vs. 10.29% - NS;
Anti-TPO and/or anti-Tg
positivity
and/or hypoechoic thyroid

36.6% vs. 13.5% p<0.001;
Anti-TPO positivity and/or
SCH

22.1% vs. 5% p=0.004;
Anti-TPO and/or anti-Tg
positivity and hypoechoic
thyroid

vs. 7% p<0.01;
iter 25% vs. 2%
.02

25% vs. 2% p<0.001;
Anti-TPO and hypoechoic
thyroid

37.7% vs. 15.6% - NS;
Anti-TPO and/or anti-Tg
positivity

25% vs. 5.6% p<0.05;
Anti-TPO positivity

roid nodules 29.9%
15.5% p=0.043

40.2% vs. 15.5% p=0.001;
Anti-TPO and/or anti-Tg
positivity
and/or hypoechoic thyroid

37.9% vs. 11.1% p<0.001;
Anti-TPO positivity

(Continued)
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Study year
(ref)

Compared groups N Population TSH and thyroid
hormone level

Prevalence of SCH;
TSH cut-off value

Anti-TPO and anti-Tg
antibody levels

fT3 level p=0.002;
fT4 level - NS

2015 (217) PCOS vs. age-
matched healthy
women

64 vs. 68 Slovak TSH and fT4 levels - NS Hypothyroidism 10.94%
vs. 13.24% - NS;
TSH > 4.5 mIU/L

Anti-TPO positivity 18.75% vs.
7.35% p=0.045;
Anti-Tg positivity - NS

2015 (218) PCOS vs. age-
matched healthy
women

142 vs. 52 Argentine TSH 3.4 ± 2.8 vs. 1.8 ±
0.9 mlU/L p<0.001;
fT4 level - NS

30.3% vs. 1.9% p<0.001;
TSH ≥ 4.2 mIU/L

Anti-TPO positivity 19% vs.
13.5% - NS

2015 (219) PCOS vs. age and
BMI-matched
healthy women

86 vs. 60 Turkish TSH median level 2.9 vs.
1.8 mlU/L p=0.037;
TSH level above the normal
range 26.7% vs. 5%
p=0.001;fT3 and fT4 levels -
NS

TSH > 4.25 mIU/L Anti-TPO positivity 26.7% vs.
6.6% p=0.002;
Anti-Tg positivity 16.2% vs. 5%
p=0.039;
Higher anti-TPO median level
p=0.017;
Higher anti-Tg median level
p=0.014

2016 (220) PCOS vs. age and
BMI-matched
healthy women

100 vs. 100 Chinese TSH 5.11 ± 22.2 vs. 2.9 ±
.2 mlU/L p<0.001;
fT3 level p=0.03;
fT4 level - NS

27% vs. 8% p=0.0002;
Overt hypothyroid 3% vs.
0% p=0.01;
TSH > 4.25 mIU/L

Anti-TPO 76.2 ± 23.4 vs.
20.14 ± 12.4 IU/ml p<0.001

34
Go
p=

2016 (221) PCOS vs. age-
matched women
without PCOS

55 vs. 51 Indian TSH, fT3 and fT4 levels - NS TSH > 6.2 mIU/L Anti-TPO 49.54 ± 136.9 vs.
22.63 ± 38.5 IU/ml - NS;
Higher anti-Tg level p=0.004

2017 (222) PCOS vs. age-
matched women
without PCOS

90 vs. 90 Indian TSH and fT4 levels - NS 6.6% vs. 5.6% - NS Anti-TPO 25.8 ± 2.9 vs. 14.6%
± 2.3 5 IU/ml p<0.009

2017 (223) PCOS vs. age-
matched healthy
women

97 vs. 71 Turkish TSH and fT4 levels - NS TSH > 5. 33 mIU/L Anti-TPO positivity
32.0% vs. 15.5% p=0.019;
Anti-Tg positivity 16.5% vs.
5.6% p=0.051

Th
vs

2017 (224) PCOS vs. normo-
ovulatory, age-
matched controls

144 vs. 48 Chinese TSH 2.72 ± 1.5 vs. 2.14 ±
0.98 mIU/L p=0.003;
fT3, fT4 levels - NS

TSH > 4.78 mIU/L Anti-TPO positivity 15.28% vs.
6.25% - NS;
Anti-Tg positivity 13.2% vs.
12.5% - NS

2018 (225) PCOS vs. age-
matched healthy
women

184 vs. 106 Turkish TSH and fT4 levels - NS TSH > 4.94 mIU/L Higher anti-TPO and anti-Tg
mean levels p<0.001;
Anti-TPO positivity 37.9% vs.
11.1% p<0.001;Anti-Tg
H

%

0

y
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TABLE 3 | Continued

of SCH;
ff value

Anti-TPO and anti-Tg
antibody levels

Hypoechoic thyroid
(goiter)

Prevalence of AITD; AITD
criteria

positivity 15.3% vs. 5.1%
p=0.013

euthyroid;
L

23% vs. 9.2% p<0.05;
At least two of three
criteria:
anti-TPO and/or anti-Tg
positivity,
TSH levels above the
normal
range and hypoechoic
thyroid

/L Anti-TPO positivity 4.8%
vs.7.6% - NS

9.3% vs. 12.3% - NS PCOS 6.2%;
Anti-TPO positivity and/or
hypoechoic thyroid

Prevalence of SCH;TSH cut-off value Metabolic and hormonal
parameters

11.3%;
TSH > 4.5 mIU/L

Higher LDL in SCH p=0.04

25.5%;
TSH > 3.75 mIU/L

Lower free testosterone in
SCH p=0.006

14%;
TSH > 5 mIU/L

In SCH higher TC p=0.049;
higher LDL p=0.001;
lower HDL p=0.051;
higher dyslipidemia p=0.014

21.9%;
TSH > 2.5 mIU/L

In SCH higher fasting
glucose p=0.03;
higher HOMA-IR p=0.03

OMA-IR, homeostasis model assessment insulin resistance; LDL, low-density lipoprotein cholesterol; MS, metabolic
; TC, total cholesterol; Tg, thyroglobulin; TPO, thyroid peroxidase; TSH, thyroid-stimulating hormone.
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Study year
(ref)

Compared groups N Population TSH and thyroid
hormone level

Prevalence
TSH cut-o

2018 (226) PCOS vs. women
without PCOS

827 vs. 804 German All PCOS were
TSH >2.5 mIU

2020 (10) PCOS vs. age-
matched healthy
women

210 vs. 343 Korean TSH and fT4 mean levels -
NS

TSH > 4.1 mIU

Study year
[ref]

Examined group N Population TSH level

2013 (96) PCOS 168 Brazilian SCH 6.1 ± 1.2 vs.
euthyroidism 2.3 ± 1.0 mIU/L

2014 (227) PCOS 75 Indian SCH 6.89 ± 5.52 vs.
euthyroidism 1.89 ± 0,78 mIU/L p=0.006

2014 (5) PCOS 428 Chinese SCH 5.94 ± 0.53 mIU/L

2018 (228) PCOS 137 U.S.

AITD, autoimmune thyroid disease; fT3, free triiodothyronine; fT4, free thyroxine; HDL, high-density lipoprotein cholesterol; H
syndrome; NS, no significant change or similar level; PCOS, polycystic ovary syndrome; SCH, subclinical hypothyroidism
/
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Zeber-Lubecka and Hennig Genetic Susceptibility to PCOS and HT
to 15.3%). Also, decreased echogenicity of the thyroid gland, a
characteristic ultrasound pattern typical of HT, was observed
more frequently in women with PCOS than in those without the
condition (mean, 29% vs. 9%, respectively). The prevalence of
SCH at TSH levels between 4.2 and 10 mIU/L ranged from 11.3%
to 30.3% (mean, 20.3%) among patients with PCOS, which was
more than 3 times higher than that reported for women without
this condition (mean, 6.2%; range, 1.9% to 8.75%). Altogether,
the estimated prevalence of AITD among women with PCOS was
nearly threefold higher than that in healthy women (mean, 28%
vs. 10%, respectively), although it should be noted that the
diagnostic criteria for AITD differed among studies (Table 3).

In women with PCOS, compared with those without the
condition, higher TSH levels, anti-thyroid antibody positivity
rate, and prevalence of thyroid disorders, particularly HT, have
been demonstrated in three independent meta-analyses
conducted to date (9, 229, 230). Based on six studies, the
combined OR of SCH risk for women with PCOS (compared
with healthy women) was 2.87 (95% confidence interval (CI),
1.82–9.92; p < 10-6), assuming a TSH cut-off level of > 2.5 mIU/L,
and 3.59 (95% CI, 2.25–5.73; p < 10-6) when limiting TSH to ≥ 4
mIU/L (229). Similarly, two meta-analyses indicated a significant
association between PCOS and the presence of AITD: one
included six studies (OR = 4.81; 95% CI, 2.88–8.04; p < 10-5)
(9) and the other included 13 studies (OR = 3.27; 95% CI, 2.32–
4.63; p < 10-4) (230). The higher risk of AITD among women
with PCOS also persisted after geographical stratification of the
study populations (230).
Possible Cross-Connections Predisposing
to Joint Occurrence of Polycystic
Ovary Syndrome and Autoimmune
Thyroid Disease
Although the association between PCOS and AITD is generally
uncontested, its cause remains unclear. Both syndromes share a
number of common clinical and pathological features; however,
whether mutual interrelationships are present, or whether one
condition predisposes an individual to another disorder, remains
speculative (8). Some evidence suggests that PCOS may have an
autoimmune background. Abnormally elevated levels of systemic
autoimmune markers such as anti-histone, anti-double stranded
DNA (anti-dsDNA), and anti-nuclear antibodies, which are
considered classic features of autoimmune disease, have been
observed in women with PCOS (231, 232); however, the presence
of anti-ovarian antibodies in PCOS remains controversial (231).

The most obvious association between PCOS and HT is the
increased metabolic risk of obesity, IR, and dyslipidemia (27,
233). Overweight and obese patients with PCOS showed a higher
tendency toward thyroid dysfunction; TSH levels > 2.5 mIU/L
were significantly more common in patients with BMI > 25 kg/
m2 (56%) than in those with BMI ≤ 25 (25.8%, p < 0.005) (7).
Patients with PCOS and AITD were more obese by an average of
2 kg/m² (226). Higher TSH levels (as well as a higher frequency
of nodular goiter and thyroid volume) were observed in patients
with PCOS, and these parameters correlated with IR (7, 223).
Furthermore, fasting glucose and homeostasis model assessment
Frontiers in Immunology | www.frontiersin.org 13
(HOMA)-IR levels among patients with PCOS and SCH were
higher than those in euthyroid PCOS patients, independent of
BMI (10, 228, 234). Notably, ethnic diversity among euthyroid
PCOS patients and patients with PCOS and SCH was suggested
with respect to IR and lipid profiles (227). By contrast, SCH is
not an independent risk factor for PCOS among obese women of
reproductive age (235).

In particular, combined occurrence of PCOS and SCH increases
the risk of impaired lipid profiles. Compared with euthyroid PCOS
patients, PCOS patients with elevated TSH levels show a trend
toward higher triglyceride and LDL cholesterol levels, as well as
lower high-density lipoprotein (HDL) cholesterol levels (5, 96, 220).
A positive correlation was found between TSH and LDL cholesterol
levels, with the optimal TSH cut-off point for elevated LDL
cholesterol risk defined as 4.07 mIU/L (5). Furthermore, two
recent meta-analyses covering 12 and nine studies demonstrate
that the presence of SCH in womenwith PCOS is associated with an
increase in metabolic disorders, particularly dyslipidemia, which
affect triglyceride, LDL, HDL, and total cholesterol levels (234).
Taken together, current data suggest that the combined effect of
PCOS and HT is associated with a higher risk of more pronounced
metabolic disorders than either of these syndromes alone.

It has been hypothesized that increased IR in obesity and
secretion of pro-inflammatory mediators can lead to elevated
TSH levels through one of two pathways: decreased deiodinase-2
activity or increased levels of leptin hormone, which act directly to
stimulate increased TRH secretion by the hypothalamus (110, 236).
In addition, increased leptin, as a result of weight gain, can mediate
autoimmunity by preferential up-regulation of autoreactive T cells
and down-regulation of Treg cells, mediating a suppressive effect on
the immune system (8). It is suggested that PCOS exacerbates
development of SCH, likely via obesity and IR (237). Moreover,
hypothyroidism may aggravate IR.

One possible explanation for the high prevalence of HT in
PCOS assumes that changes in the fetal thymus, and resulting
alterations in immune tolerance, may predispose to combined
PCOS and HT in adulthood (27). Estrogen or adrenal steroids,
such as corticosterone, injected into female mice early in life
(before the final stage of thymus development) results in
anovulation and follicular cyst formation (238). It is also
suggested that estrogen can damage the thymus during its
development, and that the resulting absence of Treg cells is a
prerequisite for formation of ovarian cysts (238). Similar to
PCOS, hypothyroidism can result in ovarian cyst formation (8)
and, notably, they are normalized in response to T4 replacement
(106). CD4+ CD25+ FOXP3+ Treg cells protected against
autoimmunity in a murine model of HT (239). The
transcription factor, FOXP3, which is involved in Treg cell
formation and consequently FOXP3 expression, is dependent
on production of the cytokine TGF-b (239). Since lower levels of
TGF-b1 are reported in HT than in healthy women (240), lower
levels of Treg cells are also expected. TGF-b1 inhibits
proliferation, differentiation, and apoptosis of T cells, as well as
increases the growth of naive T cells (241); hence, it is thought to
be involved in development of autoimmunity. Furthermore,
TGF-b signaling appears to be important for the fetal origin of
PCOS and folliculogenesis (242).
February 2021 | Volume 12 | Article 606620
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The impact of sex hormones on development of autoimmunity
appears obvious given the clear predominance of women among
patients affected by autoimmune diseases; the ratio of women to
men is 15:1 in the case of AITD (243). Estrogen can stimulate the
immune system and increase Treg cell formation (244). In fertile,
non-pregnant women, the number of CD4+ CD25+ FOXP3+ Treg
cells increases in the late follicular phase of the menstrual cycle and
decreases in the luteal phase, which correlates with E2 levels (245).
Unlike estrogen, progesterone levels correlate inversely with
dendritic cell secretion of pro-inflammatory cytokine IL6, which
in turn inhibits FOXP3 expression and Treg cell generation (246,
247). Furthermore, progesterone may suppress CD4+ T cell
proliferation and Th1 responses (248). In women with normal
menstrual periods, the immunosuppressive action of progesterone
and androgens counteracts the stimulating effect of estrogen (248,
249), while in women with PCOS, a decrease in progesterone levels
is usually detected due to irregular menses and oligo- or anovulatory
cycles (250). Also, a significantly higher E2 level and estrogen-to-
progesterone ratio were observed in anti-TPO-positive compared
with anti-TPO-negative women with PCOS (219). The resulting
imbalance between estrogen and progesterone is thought to be
associated with an excessive inflammatory response that promotes
autoimmune disorders in PCOS (8). Consistent with this
assumption, patients with PCOS exhibit low-grade inflammation,
characterized by elevated levels of CRP and independent of obesity
(251). PCOS is characterized by an excess of androgens; however, it
is speculated that the suppressive effect of androgens on the immune
system at the levels observed in PCOS is probably insufficient to
prevent autoimmunity (27). In addition, lower testosterone levels, a
lower free androgen index, and less severe hyperandrogenemia are
observed in patients with PCOS and HT relative to those with
PCOS alone (226), although, the results have not been confirmed in
patients with PCOS and SCH (234, 252).

Low levels of vitamin D are associated with both PCOS and
HT (253, 254) and provide another possible link between these
syndromes and autoimmunity. Vitamin D is considered to be
protective against autoimmune diseases (255). A strong
association has been reported between the severity of vitamin
D deficiency and HT, as well as anti-thyroid antibody and
thyroid hormone levels (256). Nevertheless, concerns remain
that the effects of vitamin D may not be direct, but rather
secondary to estrogen dysregulation (257). Consistent with this
hypothesis, low levels of 25 hydroxyvitamin D3 (25(OH)D3) are
associated with AITD in pre-menopausal, but not post-
menopausal, women (258). A genetic variant of CYP27B1
hydroxylase, which is responsible for production of an active
form of vitamin D from 25(OH)D3, is associated with HT (259).
Furthermore, polymorphisms in the VDR gene causing a
decrease in vitamin D levels are associated with both HT and
several metabolic syndrome features in women with PCOS (27).
Moreover, levels of 25(OH)D3 are significantly lower in women
with PCOS and AITD than those without AITD (253). Among
overweight and obese persons, a significantly higher frequency of
vitamin D deficiency was observed in patients with HT than
without HT (69% vs. 52%, p = 0.042) (260), suggesting that low
vitamin D level is not merely a marker of obesity.
Frontiers in Immunology | www.frontiersin.org 14
Genetic Predisposition to Combined
Polycystic Ovary Syndrome and
Hashimoto’s Thyroiditis
As stated above, a strong genetic impact on inheritance and
susceptibility to disease development is present in both PCOS
and HT. Although a functional relevance of several candidate
gene polymorphisms has been suggested, no common genetic
background has been established. To date, only a few genetic
variants have been proposed to be causally associated with the
joint incidence of both disorders. The most convincingly
described are three genetic polymorphisms that can contribute
to both PCOS and HT. These are polymorphisms in FBN3, a
gene related to TGF-b activity and Treg cell levels; CYP1B1, a
gene involved in E2 metabolism; and GNRHR. In addition, there
are two susceptibility loci identified in GWAS that are common
for both diseases (Tables 1 and 2): FSHR (2p16.3) and INSR
(19p13.3); however, no functional overlap between the two
diseases has yet been confirmed.

The CYP1B1 gene encodes an enzyme belonging to the multi-
gene-encoded cytochrome P450 enzyme family, which oxidizes
E2 to 4-hydroxyestradiol (261). CYP1B1 is expressed at a level 3
times lower in PCOS ovaries than in control ovaries (262). The
pathogenic polymorphism, L432V (rs1056836), in CYP1B1 is
associated with serum T4, fT4, and fT3 concentrations among
patients with PCOS (263). Although none of the studied
polymorphisms in this gene are associated with disease risk,
suggesting that CYP1B1 may not have a causative role in the
etiology of PCOS, the CYP1B1 L432V polymorphism provides a
potential link between PCOS and HT.

GnRH is a key hypothalamic peptide that, after binding to a
specific receptor, GnRHR, stimulates a release of LH and FSH from
pituitary gonadotropic cells. Increased levels of LH and a higher
frequency of LH pulses (264), as well as a higher prevalence of
increased TSH levels (8), were observed in women with PCOS.
GnRH was shown to enhance the release of TSH (265).
Furthermore, a 3’-UTR polymorphism in the GNRHR gene,
rs1038426, was found to affect GNRHR expression, with a variant
allele-dose effect, and was associated with the concentration of
serum TSH as well as insulin secretion and insulin sensitivity in
women with PCOS (266). An association between TSH and fasting
insulin levels and insulin sensitivity was also reported (267). While
GNRHR polymorphism did not contribute to the risk of PCOS
(266), it links gonadotropin action-related dysfunction with IR and
possibly also with thyroid function disorders in PCOS. Several
PCOS risk variants were identified in the INSR gene, although
replication studies produced mostly inconsistent results. The most
convincing seems to be an association of rs2252673 in intron 11,
identified by the entire gene examination with a tagging approach
(268), and silent SNP rs1799817 at exon 17, encoding the tyrosine
kinase domain of the INSR (80); especially among lean women with
PCOS. The intronic INSR variants were also independently
identified by the GWAS for PCOS and for the level of TSH
(Tables 1 and 2); however, the causal variant of this loci and the
impact on INSR expression remained unknown. Nevertheless,
pronounced IR and defects in insulin secretion are commonly
associated with PCOS. In women with PCOS, an increase in
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beta-cell function was observed when compared to the age and BMI
matched controls, which was correlated with the intensity of IR (269).

A strong association was observed in candidate gene studies
between linked to each other missense FSHR gene variants:
Thr307Ala (rs6165) and Asn680Ser (rs6166), and intensity of
some PCOS clinical traits. The Ser680 allele was associated with
higher serum gonadotrophic hormones concentrations and higher
frequency of hyperandrogenism presence (44). Longer follicular
phase and lower E2 levels after exogenous FSH stimulation were
also observed, suggesting lower sensitivity of this FSHR variant
(270). Several other FSHR polymorphisms have been shown to
correlate with ovarian function, including SNPs identified by
GWAS in Han Chinese population (Table 1) and by fine
mapping of 2p16.3 region in a population of European ancestry
(271); however, they seem to be associated with FSH levels and the
PCOM phenotype rather than with disease risk (33, 47). Recent
GWAS among patients with HT identified SNP rs12713034 in the
FSHR gene that is associated with the presence of anti-thyroid
antibodies (146). In addition, hypothyroidism has been found to
decrease FSH and E2 levels and alter FSHR-mediated expression of
CYP51, a key enzyme involved in sterols and steroids biosynthesis
during folliculogenesis and oocyte maturation, which is regulated
by FSH (272); thus providing a further link between the functions
of the ovaries and thyroid gland.
Frontiers in Immunology | www.frontiersin.org 15
FBN3 is a member of the fibrillin/LTBP (latent TGF-b
binding protein) family of ubiquitously expressed extracellular
matrix proteins that regulate the bioavailability and activity of
TGF-b, providing binding sites for its sequestration (273). The
FBN3 genetic variant, D19S884 allele 8 (A8), a dinucleotide
repeat microsatellite marker in intron 55, is the variant most
strongly associated with PCOS susceptibility at the 19p13.2 locus
(274). A rare missense variant (Asp911Val) in FBN3 was also
found by the whole-exome sequencing approach (275). Although
the results were not consistent, further studies suggest that D19S884
is likely a causal variant for PCOS susceptibility (275, 276). It was
suggested that the A8 allele may affect splicing of FBN3 transcript
(277). Women with PCOS carrying the A8 allele had significantly
lower circulating TGF-b1 levels, and higher inhibin B and
aldosterone levels, as well as higher levels of fasting INS and
HOMA-IR than women with PCOS without the A8 allele (277).
It is hypothesized that women with PCOS and the A8 variant, and
therefore lower TGF-b levels, are more susceptible to HT than those
without this allele (27). Some findings suggest that expression of the
FBN3 gene in fetal ovaries may predispose to PCOS development in
later life, supporting the existing hypothesis of the fetal origin of
PCOS (278).

As outlined in this review, our current knowledge of the
genetic basis of the joint occurrence of PCOS and HT leads us to
FIGURE 1 | Schematic presentation of possible cross-linkages between PCOS and HT. Involvement of the most important genetic factors and molecular pathways.
Treg cell dysregulation emerges as a critical point in the genetic and functional network linking the two diseases. In PCOS, genetic variation emphasizes the
contribution of both hormonal imbalance (gonadotropins, androgens, and female sex hormones) and metabolic factors (IR and INS secretion), often interacting
through a feedback loop. Suppression of TGF-b signaling pathway in combination with IR may lead to dysregulation of Treg cells and promotion of autoimmunity in
women with PCOS (red line connections). Possible interaction of ncRNA (miRNA, lncRNA) with TGF-b signaling. The most important genes are indicated in blue;
darker blue designates susceptibility genes for both diseases.
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believe that there may be no strong shared genetic variants
associated with the risk of both diseases. Rather, it is a specific
combination of risk factors for individual diseases that
predisposes them to occur together. Moreover, due to the
complex background of both disorders, this combination may
be specific not so much to the risk of the disease itself as to the
expression of its individual phenotypes. In line with this
assumption, it has been recently indicated that the use of
combined polygenic and phenotypic risk prediction may
improve the accuracy of PCOS diagnosis (279).

As shown in Figure 1, which simplifies the possible cross-
linkages between PCOS and HT, the multi-directional link seems
to be the best explanation for the predisposition to joint occurrence
of both diseases. Treg cells dysregulation emerges as a critical point
in the genetic and functional network connecting the two diseases.
In PCOS, genetic variation emphasizes the contribution of both
hormonal imbalance (gonadotropins, androgens, and female sex
hormones) and metabolic factors (IR and INS secretion), often
interacting through a feedback loop (230, 248). It can be assumed
that the favorable hormonal and metabolic background in women
with PCOS may predispose them to thyroid autoimmunity and
aggravate the disease symptoms through the HT susceptibility
factors (8, 219).

The best documented genetic association between PCOS and
HT relates to the TGF-b signaling pathway. Factors involved in this
pathway are clearly good candidate susceptibility genes for both
syndromes, since they have key roles in the immune system,
hormone regulation, inflammation, cell proliferation, tissue
differentiation, apoptosis, and related metabolic consequences
such as IR. In PCOS, the inflammation of visceral adipose tissue
resulting in chronic release of pro-inflammatory cytokines is a
major contributor to IR (280). Treg cells suppress pro-inflammatory
effects of autoreactive T cells (281). Depletion of CD4+CD25+Foxp3+

Treg cells and increased inflammation in visceral adipose tissues was
found to contribute to IR in HT (282).We are hypothesizing that the
suppression of TGF-b signaling pathway in combination with IR
may lead to Treg cells dysregulation and promotion of
autoimmunity in women with PCOS (Figure 1). Beside FBN3, no
members of the TGF-b signaling have been shown to be among the
top GWAS associations for PCOS or HT. However, rs4803457
polymorphism in TGFB1 gene was associated with PCOS
susceptibility in candidate gene studies in Chinese Han women
(273). The genetic variation in transcription factor FOXP3 has also
been reported in candidate gene studies for AITD (2). FOXP3 is a
crucial regulator of Treg cells differentiation and function and its
expression is induced by TGF-b, which activity, in turn, is regulated
by FBNs (33).

In recent years, there has been an increase in evidence of the
role of non-coding RNA (ncRNA) in the development of various
diseases. Differentially expressed microRNA (miRNA) and long
ncRNA (lncRNA) were identified both in PCOS and HT (283,
284). The ncRNAs were shown to be involved in regulating T cell
production and differentiation (285). Furthermore, several
ncRNAs were involved in regulation by the TGF-b signaling
pathway. In HT, the expression of miR-141 was downregulated
due to its involvement in TGF-b pathway and regulation through
Frontiers in Immunology | www.frontiersin.org 16
IL2 (286). In turn, lncRNA-IFNG-AS1 was upregulated in HT
patients, and it was associated with IFN-g expression in human
CD4+ T cells and with the frequency of circulating Th1 cells (287).
The lncRNA TGFB2-AS1 was shown to be transcriptionally
regulated by TGF-b and to suppress TGF-b/BMP-mediated
response of target genes (288). In granulosa cells from patients
with PCOS, expression of miR-423 was downregulated, and both
miR-33b and miR-142 were upregulated, compared to controls;
miR-423 directly suppressed SMAD7, while miR-33b and miR-
142 targeted TGF-b receptor 1 (TGFBR1) (289). Several lncRNA
have been reported to positively regulate TGF-b/SMAD signaling
(290). The lncRNAs can act directly or as miRNA sponges, thus
reducing their regulatory effect on target mRNAs (291). In
granulosa cells, lncRNA-NORFA directly interacts with miR-
126 and prevents it from binding to TGFBR2 3’UTR (292).
Another lncRNA, MALAT1, has been found to regulate TGF-b
signaling through sponging miR-125b and miR-203a, TGF-b
negative regulators by targeting TGFBR1 and TGFBR2 (293).
Considering the above-mentioned examples of the role of ncRNA
in modulating of TGF-b signaling, the involvement of ncRNA in
the processes leading to the joint occurrence of PCOS and HT
seems very likely; however, there are no strong data supporting
this hypothesis and it requires confirmation in further studies.
CONCLUSIONS

PCOS and HT are two of the most common endocrine disorders
among young women worldwide. Both syndromes are causally
related to the risk of severe metabolic and reproductive disorders
and are significant social problems. Thyroid dysfunction in
PCOS appears to enhance the clinical symptoms of the disease
and the severity of its consequences. The pathogenesis of the
association of PCOS with HT is not clear, although the
relationship between thyroid hormones and ovary function is
indisputable. There is good evidence for a strong genetic impact
on the development of both diseases; hence, a common genetic
predisposition is possible. However, to date, it is not apparent.
Furthermore, the question of whether PCOS predisposes to
development HT, or whether HT is a forerunner of PCOS,
remains open.
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R, Brzeziańska E. CTLA-4 gene polymorphisms and their influence on
predisposition to autoimmune thyroid diseases (Graves’ disease and
Hashimoto’s thyroiditis). Arch Med Sci (2012) 8:415–21. doi: 10.5114/
aoms.2012.28593

150. Ramgopal S, Rathika C, Padma MR, Murali V, Arun K, Kamaludeen MN,
et al. Interaction of HLA-DRB1* alleles and CTLA4 (+49 AG) gene
polymorphism in Autoimmune Thyroid Disease. Gene (2018) 642:430–8.
doi: 10.1016/j.gene.2017.11.057

151. Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Association of a CTLA-4 3’
untranslated region (CT60) single nucleotide polymorphism with
autoimmune thyroid disease in the Japanese population. Autoimmunity
(2005) 38:151–3. doi: 10.1080/08916930500050319

152. Ting W-H, Chien M-N, Lo F-S, Wang C-H, Huang C-Y, Lin C-L, et al.
Association of Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA4)
Gene Polymorphisms with Autoimmune Thyroid Disease in Children and
Adults: Case-Control Study. PLoS One (2016) 11:e0154394. doi: 10.1371/
journal.pone.0154394
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223. Karaköse M, Hepsen S, Çakal E, Saykı Arslan M, Tutal E, Akın Ş, et al.
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225. Heps ̧en S, Karaköse M, Çakal E, Öztekin S, Ünsal I,̇ Akhanlı P, et al. The
assessment of thyroid autoantibody levels in euthyroid patients with
polycystic ovary syndrome. J Turk Ger Gynecol Assoc (2018) 19:215–9.
doi: 10.4274/jtgga.2018.0001

226. Ulrich J, Goerges J, Keck C, Müller-Wieland D, Diederich S, Janssen OE.
Impact of Autoimmune Thyroiditis on Reproductive and Metabolic
Parameters in Patients with Polycystic Ovary Syndrome. Exp Clin
Endocrinol Diabetes (2018) 126:198–204. doi: 10.1055/s-0043-110480

227. Enzevaei A, Salehpour S, Tohidi M, Saharkhiz N. Subclinical hypothyroidism
and insulin resistance in polycystic ovary syndrome: is there a relationship?
Iran J Reprod Med (2014) 12:481–6.

228. Bedaiwy MA, Abdel-Rahman MY, Tan J, AbdelHafez FF, Abdelkareem AO,
Henry D, et al. Clinical, Hormonal, and Metabolic Parameters in Women
with Subclinical Hypothyroidism and Polycystic Ovary Syndrome: A Cross-
Sectional Study. J Womens Health (2018) 27:659–64. doi: 10.1089/
jwh.2017.6584

229. Ding X, Yang L, Wang J, Tang R, Chen Q, Pan J, et al. Subclinical
Hypothyroidism in Polycystic Ovary Syndrome: A Systematic Review and
Meta-Analysis. Front Endocrinol (2018) 9:700. doi: 10.3389/fendo.2018.00700

230. Romitti M, Fabris VC, Ziegelmann PK, Maia AL, Spritzer PM. Association
between PCOS and autoimmune thyroid disease: a systematic review and
meta-analysis. Endocr Connect (2018) 7:1158–67. doi: 10.1530/EC-18-0309
February 2021 | Volume 12 | Article 606620

https://doi.org/10.1016/S0301-472X(01)00794-9
https://doi.org/10.1016/j.febslet.2011.04.032
https://doi.org/10.1210/jc.2004-1108
https://doi.org/10.1086/429096
https://doi.org/10.1086/429096
https://doi.org/10.1089/thy.2005.15.1115
https://doi.org/10.1080/03014460902817968
https://doi.org/10.1507/endocrj.ej11-0381
https://doi.org/10.1007/s12020-013-9908-z
https://doi.org/10.1007/s10038-005-0246-8
https://doi.org/10.1038/sj.gene.6364252
https://doi.org/10.1186/s12902-018-0305-8
https://doi.org/10.1038/ng1323
https://doi.org/10.1016/j.autrev.2012.12.003
https://doi.org/10.3389/fimmu.2019.02606
https://doi.org/10.4049/jimmunol.1403034
https://doi.org/10.4049/jimmunol.1403034
https://doi.org/10.1159/000343834
https://doi.org/10.1530/eje.0.1500363
https://doi.org/10.3275/7681
https://doi.org/10.1007/s00404-011-2040-5
https://doi.org/10.4103/2230-8210.109714
https://doi.org/10.1016/j.ejogrb.2013.03.003
https://doi.org/10.1016/j.ejogrb.2013.03.003
https://doi.org/10.5812/ijem.17954
https://doi.org/10.5812/ijem.17954
https://doi.org/10.1007/s12020-014-0504-7
https://doi.org/10.1007/s12020-014-0504-7
https://doi.org/10.5507/bp.2014.062
https://doi.org/10.3109/07435800.2015.1015730
https://doi.org/10.3109/07435800.2015.1015730
https://doi.org/10.1155/2016/2067087
https://doi.org/10.4103/0974-1208.178636
https://doi.org/10.1007/s13224-016-0914-y
https://doi.org/10.4274/jtgga.2016.0217
https://doi.org/10.4274/jtgga.2016.0217
https://doi.org/10.1080/09513590.2016.1273895
https://doi.org/10.1080/09513590.2016.1273895
https://doi.org/10.4274/jtgga.2018.0001
https://doi.org/10.1055/s-0043-110480
https://doi.org/10.1089/jwh.2017.6584
https://doi.org/10.1089/jwh.2017.6584
https://doi.org/10.3389/fendo.2018.00700
https://doi.org/10.1530/EC-18-0309
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zeber-Lubecka and Hennig Genetic Susceptibility to PCOS and HT
231. Hefler-Frischmuth K, Walch K, Huebl W, Baumuehlner K, Tempfer C, Hefler L.
Serologic markers of autoimmunity in women with polycystic ovary syndrome.
Fertil Steril (2010) 93:2291–4. doi: 10.1016/j.fertnstert.2009.01.056

232. Makled AK, Fathi HM, Gomaa MF, Bakr RM. Serologic markers of
autoimmunity in women with polycystic ovary syndrome. Middle East
Fertil Soc J (2015) 20:86–90. doi: 10.1016/j.mefs.2014.05.006

233. Kowalczyk K, Franik G, Kowalczyk D, Pluta D, Blukacz Ł, Madej P. Thyroid
disorders in polycystic ovary syndrome. Eur Rev Med Pharmacol Sci (2017)
21:346–60.

234. de Medeiros SF, de Medeiros MAS, Ormond CM, Barbosa JS, Yamamoto
MMW. Subclinical Hypothyroidism Impact on the Characteristics of
Patients with Polycystic Ovary Syndrome. A Meta-Analysis of
Observational Studies. Gynecol Obstet Invest (2018) 83:105–15.
doi: 10.1159/000485619

235. Zhang B, Wang J, Shen S, Liu J, Sun J, Gu T, et al. Subclinical hypothyroidism
is not a risk factor for polycystic ovary syndrome in obese women of
reproductive age. Gynecol Endocrinol (2018) 34:875–9. doi: 10.1080/
09513590.2018.1462319

236. Muscogiuri G, Sorice GP, Mezza T, Prioletta A, Lassandro AP, Pirronti T,
et al. High-normal TSH values in obesity: is it insulin resistance or adipose
tissue’s guilt? Obesity Silver Spring Md (2013) 21:101–6. doi: 10.1002/
oby.20240

237. Tagliaferri V, Romualdi D, Guido M, Mancini A, De Cicco S, Di Florio C,
et al. The link between metabolic features and TSH levels in polycystic ovary
syndrome is modulated by the body weight: an euglycaemic-
hyperinsulinaemic clamp study. Eur J Endocrinol (2016) 175:433–41.
doi: 10.1530/EJE-16-0358

238. Chapman JC, Min SH, Freeh SM, Michael SD. The estrogen-injected female
mouse: new insight into the etiology of PCOS. Reprod Biol Endocrinol (2009)
7:47. doi: 10.1186/1477-7827-7-47

239. Chen W, Jin W, Hardegen N, Lei K-J, Li L, Marinos N, et al. Conversion of
peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by
TGF-beta induction of transcription factor Foxp3. J Exp Med (2003)
198:1875–86. doi: 10.1084/jem.20030152

240. Akinci B, Comlekci A, Yener S, Bayraktar F, Demir T, Ozcan MA, et al.
Hashimoto’s thyroiditis, but not treatment of hypothyroidism, is associated
with altered TGF-beta1 levels. Arch Med Res (2008) 39:397–401.
doi: 10.1016/j.arcmed.2007.12.001

241. Govinden R, Bhoola KD. Genealogy, expression, and cellular function of
transforming growth factor-b. Pharmacol Ther (2003) 98:257–65.
doi: 10.1016/S0163-7258(03)00035-4

242. Raja-Khan N, Urbanek M, Rodgers RJ, Legro RS. The role of TGF-b in
polycystic ovary syndrome. Reprod Sci Thousand Oaks Calif (2014) 21:20–31.
doi: 10.1177/1933719113485294

243. Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-Villarraga A,
Anaya J-M. Autoimmune disease and gender: plausible mechanisms for the
female predominance of autoimmunity. J Autoimmun (2012) 38:J109–119.
doi: 10.1016/j.jaut.2011.10.003

244. Pennell LM, Galligan CL, Fish EN. Sex affects immunity. J Autoimmun
(2012) 38:J282–291. doi: 10.1016/j.jaut.2011.11.013

245. Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune
Disease. Front Immunol (2018) 9:1–21. doi: 10.3389/fimmu.2018.02279

246. Angstwurm MW, Gärtner R, Ziegler-Heitbrock HW. Cyclic plasma IL-6
levels during normal menstrual cycle. Cytokine (1997) 9:370–4. doi: 10.1006/
cyto.1996.0178

247. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA. Plasticity of CD4(+)
FoxP3(+) T cells. Curr Opin Immunol (2009) 21:281–5. doi: 10.1016/
j.coi.2009.05.007

248. Hughes GC. Progesterone and autoimmune disease. Autoimmun Rev (2012)
11:A502–514. doi: 10.1016/j.autrev.2011.12.003

249. Gubbels Bupp MR, Jorgensen TN. Androgen-Induced Immunosuppression.
Front Immunol (2018) 9:794. doi: 10.3389/fimmu.2018.00794
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Inflammatory Markers in Polycystic Ovary Syndrome: A Systematic
Review and Meta-Analysis. Fertil Steril (2011) 95:1048–58.e1-2.
doi: 10.1016/j.fertnstert.2010.11.036
Frontiers in Immunology | www.frontiersin.org 23
252. Cai J, Zhang Y, Wang Y, Li S, Wang L, Zheng J, et al. High Thyroid
Stimulating Hormone Level Is Associated With Hyperandrogenism in
Euthyroid Polycystic Ovary Syndrome (PCOS) Women, Independent of
Age, BMI, and Thyroid Autoimmunity: A Cross-Sectional Analysis. Front
Endocrinol (2019) 10:222. doi: 10.3389/fendo.2019.00222

253. Muscogiuri G, Palomba S, Caggiano M, Tafuri D, Colao A, Orio F. Low 25
(OH) vitamin D levels are associated with autoimmune thyroid disease in
polycystic ovary syndrome. Endocrine (2016) 53:538–42. doi: 10.1007/
s12020-015-0745-0

254. Tamer G, Arik S, Tamer I, Coksert D. Relative vitamin D insufficiency in
Hashimoto’s thyroiditis. Thyroid (2011) 21:891–6. doi: 10.1089/thy.2009.0200

255. Skaaby T, Husemoen LLN, Thuesen BH, Linneberg A. Prospective
population-based study of the association between vitamin D status and
incidence of autoimmune disease. Endocrine (2015) 50:231–8. doi: 10.1007/
s12020-015-0547-4

256. Kim D. Low vitamin D status is associated with hypothyroid Hashimoto’s
thyroiditis. Hormomes Athens Greece (2016) 15:385–93. doi: 10.14310/
horm.2002.1681

257. Nandi A, Sinha N, Ong E, Sonmez H, Poretsky L. Is there a role for vitamin D
in human reproduction? Horm Mol Biol Clin Investig (2016) 25:15–28.
doi: 10.1515/hmbci-2015-0051

258. Kim C-Y, Lee YJ, Choi J-H, Lee SY, Lee HY, Jeong DH, et al. The Association
between Low Vitamin D Status and Autoimmune Thyroid Disease in Korean
Premenopausal Women: The 6th Korea National Health and Nutrition
Examination Survey, 2013-2014. Korean J Fam Med (2019) 40:323–8.
doi: 10.4082/kjfm.18.0075

259. Lopez ER, Zwermann O, Segni M, Meyer G, Reincke M, Seissler J, et al. A
promoter polymorphism of the CYP27B1 gene is associated with Addison’s
disease, Hashimoto’s thyroiditis, Graves’ disease and type 1 diabetes mellitus
in Germans. Eur J Endocrinol (2004) 151:193–7. doi: 10.1530/eje.0.1510193

260. De Pergola G, Triggiani V, Bartolomeo N, Giagulli VA, Anelli M, Masiello
M, et al. Low 25 Hydroxyvitamin D Levels are Independently Associated
with Autoimmune Thyroiditis in a Cohort of Apparently Healthy
Overweight and Obese Subjects. Endocr Metab Immune Disord Drug
Targets (2018) 18:646–52. doi: 10.2174/1871530318666180406163426

261. Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human
CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res (2004)
64:3119–25. doi: 10.1158/0008-5472.can-04-0166

262. Jansen E, Laven JSE, Dommerholt HBR, Polman J, van Rijt C, van den Hurk
C, et al. Abnormal gene expression profiles in human ovaries from polycystic
ovary syndrome patients. Mol Endocrinol Baltim Md (2004) 18:3050–63.
doi: 10.1210/me.2004-0074

263. Zou S, Sang Q, Wang H, Feng R, Li Q, Zhao X, et al. Common genetic
variation in CYP1B1 is associated with concentrations of T4, FT4 and FT4 in
the sera of polycystic ovary syndrome patients.Mol Biol Rep (2013) 40:3315–
20. doi: 10.1007/s11033-012-2406-1

264. Marshall JC, Eagleson CA. Neuroendocrine aspects of polycystic ovary
syndrome. Endocrinol Metab Clin North Am (1999) 28:295–324.
doi: 10.1016/s0889-8529(05)70071-2

265. Okada R, Kobayashi T, Yamamoto K, Nakakura T, Tanaka S, Vaudry H,
et al. Neuroendocrine regulation of thyroid-stimulating hormone secretion
in amphibians. Ann N Y Acad Sci (2009) 1163:262–70. doi: 10.1111/j.1749-
6632.2008.03662.x

266. Li Q, Yang G, Wang Y, Zhang X, Sang Q, Wang H, et al. Common genetic
variation in the 3’-untranslated region of gonadotropin-releasing hormone
receptor regulates gene expression in cella and is associated with thyroid function,
insulin secretion as well as insulin sensitivity in polycystic ovary syndrome
patients. Hum Genet (2011) 129:553–61. doi: 10.1007/s00439-011-0954-4

267. Michalaki MA, Vagenakis AG, Leonardou AS, Argentou MN, Habeos IG,
Makri MG, et al. Thyroid function in humans with morbid obesity. Thyroid
(2006) 16:73–8. doi: 10.1089/thy.2006.16.73

268. Goodarzi MO, Louwers YV, Taylor KD, Jones MR, Cui J, Kwon S, et al.
Replication of association of a novel insulin receptor gene polymorphism
with polycystic ovary syndrome. Fertil Steril (2011) 95:1736–41.e1-11.
doi: 10.1016/j.fertnstert.2011.01.015

269. Song DK, Hong YS, Sung Y-A, Lee H. Insulin resistance according to b-cell
function in women with polycystic ovary syndrome and normal glucose
tolerance. PLoS One (2017) 12:e0178120. doi: 10.1371/journal.pone.0178120
February 2021 | Volume 12 | Article 606620

https://doi.org/10.1016/j.fertnstert.2009.01.056
https://doi.org/10.1016/j.mefs.2014.05.006
https://doi.org/10.1159/000485619
https://doi.org/10.1080/09513590.2018.1462319
https://doi.org/10.1080/09513590.2018.1462319
https://doi.org/10.1002/oby.20240
https://doi.org/10.1002/oby.20240
https://doi.org/10.1530/EJE-16-0358
https://doi.org/10.1186/1477-7827-7-47
https://doi.org/10.1084/jem.20030152
https://doi.org/10.1016/j.arcmed.2007.12.001
https://doi.org/10.1016/S0163-7258(03)00035-4
https://doi.org/10.1177/1933719113485294
https://doi.org/10.1016/j.jaut.2011.10.003
https://doi.org/10.1016/j.jaut.2011.11.013
https://doi.org/10.3389/fimmu.2018.02279
https://doi.org/10.1006/cyto.1996.0178
https://doi.org/10.1006/cyto.1996.0178
https://doi.org/10.1016/j.coi.2009.05.007
https://doi.org/10.1016/j.coi.2009.05.007
https://doi.org/10.1016/j.autrev.2011.12.003
https://doi.org/10.3389/fimmu.2018.00794
https://doi.org/10.1016/j.ejim.2010.06.008
https://doi.org/10.1016/j.fertnstert.2010.11.036
https://doi.org/10.3389/fendo.2019.00222
https://doi.org/10.1007/s12020-015-0745-0
https://doi.org/10.1007/s12020-015-0745-0
https://doi.org/10.1089/thy.2009.0200
https://doi.org/10.1007/s12020-015-0547-4
https://doi.org/10.1007/s12020-015-0547-4
https://doi.org/10.14310/horm.2002.1681
https://doi.org/10.14310/horm.2002.1681
https://doi.org/10.1515/hmbci-2015-0051
https://doi.org/10.4082/kjfm.18.0075
https://doi.org/10.1530/eje.0.1510193
https://doi.org/10.2174/1871530318666180406163426
https://doi.org/10.1158/0008-5472.can-04-0166
https://doi.org/10.1210/me.2004-0074
https://doi.org/10.1007/s11033-012-2406-1
https://doi.org/10.1016/s0889-8529(05)70071-2
https://doi.org/10.1111/j.1749-6632.2008.03662.x
https://doi.org/10.1111/j.1749-6632.2008.03662.x
https://doi.org/10.1007/s00439-011-0954-4
https://doi.org/10.1089/thy.2006.16.73
https://doi.org/10.1016/j.fertnstert.2011.01.015
https://doi.org/10.1371/journal.pone.0178120
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zeber-Lubecka and Hennig Genetic Susceptibility to PCOS and HT
270. Behre HM, Greb RR, Mempel A, Sonntag B, Kiesel L, Kaltwasser P, et al.
Significance of a common single nucleotide polymorphism in exon 10 of the
follicle-stimulating hormone (FSH) receptor gene for the ovarian response to
FSH: a pharmacogenetic approach to controlled ovarian hyperstimulation.
Pharmacogenet Genomics (2005) 15:451–6. doi: 10.1097/01.fpc.0000167330.
92786.5e

271. Mutharasan P, Galdones E, Peñalver Bernabé B, Garcia OA, Jafari N, Shea
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